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ABSTRACT

Usage of rolling contact bearings in variety of rotor-dynamic applications has put forth a need to develop a
detailed and easy to implement techniques for the assessment of damage related features in these bearings so that
before mechanical failure, maintenance actions can be planned well in advance. In accordance to this, a method
based on dimensional amplitude response analysis and scaling laws is presented in this paper for the diagnosis of
defects in different components of rolling contact bearings in a dimensionally scaled rotor-bearing system. Rotor,
bearing, operating and defect parameters involved are detailed for dimensional analysis using frequency domain
vibration data. A defect parameter for modeling all the three dimensions of the defect as well as the different
shapes like square, circular, rectangular is put forth which takes into account the volume as well as the surface
area of the defect. Experimental data set is generated for the ‘model’ bearing (designated as SKF30205J2/Q) using
Box-Behnken design of response surface methodology for solution of the theoretical model by factorial regression
approach. Obtained metamodel is then used for the prediction of the objective variable, i.e., Vibration acceleration
amplitude at the defect frequency component for other types of ‘test’ bearings (designated as SKF 30305C and
SKF 22220 EK) using the developed scaling laws. Confirmation experiments showed that the computable relation-
ship amongst objective variable and the dimensionless parameters can be forecast and correlated.
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Nomenclature
d Inner bore diameter, mm, (L)
D Outside diameter, mm, (L)
B Width, mm, (L)
d1 Pitch diameter, mm, (L)
dr Rolling element diameter, mm, (L)
Z No. of rollers, –, (F0 L0 T0)
mi Inner race mass, kg, (F1 L-1 T2)
mo Outer race mass, kg, (F1 L-1 T2)
ms Shaft mass, kg, (F1 L-1 T2)
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mr Mass of roller, kg, (F1 L-1 T2)
mc Bearing cage mass, kg, (F1 L-1 T2)
md Rotor disc mass, kg, (F1 L-1 T2)
L Roller length, mm, (L)
E Young’s modulus, N/mm2, (F1 L-2)
Ρ Density of material, kg/mm3, (F1 L-4 T2)
Δ Bearing deflection, mm, (L)
FH Hertzian contact force, N, (F)
C Damping coefficient, N-s/mm, (F1 L-1 T1)
Δ Effective defect size parameter, mm, (L)
K Constant for load-deformation,
N/mm1.11 for roller bearings, (F1 L-1.11)
N/mm1.5 for ball bearings, (F1 L-1.5)
wd Width of the defect, mm, (L)
dd Depth of the defect, mm, (L)
ld Length of the defect, mm, (L)
Dd Diameter of the defect, mm, (L)
As Surface area of the defect, mm2, (L2)
Vd Volume of the defect, mm3, (L3)
rc Radial clearance, μm, (L)
N Speed of shaft, rpm, (T-1)
W Radial load, N, (F)
Fa Axial load, N, (F)
Mu Unbalance mass, gram, (F1 L-1 T2)
υ Lubricant Viscosity, mm2/s, (L2 T-1)
fFTF Fundamental train frequency, Hz, (T-1)
fVCF Varying compliance frequency, Hz, (T-1)
fBPFO Outer race defect frequency, Hz, (T-1)
fBPFI Inner race defect frequency, Hz, (T-1)
fBSF Roller spin frequency, Hz, (T-1)
fRDF Roller defect frequency, Hz, (T-1)
x
::

Vibration acceleration, m/s2 or g, (LT-2)

Abbreviations
DA Dimensional Analysis
DARA Dimensional Amplitude Response Analysis
COM Condition Monitoring Program
DEB Drive End Bearing
NDEB Non-Drive End Bearing
FD Forced Draft
SA Secondary Air
ID Induced Draft
BBD Box-Behnken Design

1 Introduction

Rolling contact bearings commonly known to be antifriction bearings are the most widespread and acute
components in majority of the rotating machines. Occurrence of defects/damages can put operation and
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service of these machines on the risk. Hence, timely detection of these defects is an important issue as far as
safe and normal operation of these machines is concerned. Accordingly, it calls for a systematic and routinely
planned bearing health monitoring program. From long time, vibration signal assisted condition monitoring
of rotating machines has gained a substantial importance and is a major area of study. As a result of that
numerous refined techniques have been developed to extract defect related features from the vibration
signatures obtained from accelerometers attached with the bearing housing or placed in the machine
vicinity [1]. On every occasion, the defective bearing components interact with each other, it generates an
impulsive force for a short duration of time and acts as source of excitation and sets the components of
bearing to vibrate at the resonant frequencies [2]. Hence, the response measured in terms of the vibration
signature on the housing of bearing reveals a pattern comprising of series of frequency spikes conquered
by major system resonant frequency components. The time for which this impulse is in action is very
short in comparison with time interval between two consecutive impulses.

Hence, the impact energy due to this impulsive force is spread over a wide frequency range and usually
is concealed by noise and unwanted low/high frequency components. These defect related frequencies are
referred as the characteristic bearing vibration frequencies and are dependent on geometrical parameters
and the shaft speeds. As the rolling elements are continuously entering and leaving the loading zones,
sometimes may experience slippage/skidding also and hence the appearance of the defect related force
impacts will never retrace the same exact previous position from cycle to cycle. Also, whenever the
defect location is moving in and out of the loading zone, the series of force impacts are curbed in
amplitude. All these points makes analysis and detection of bearing defects more complex problem and
estimation of the defect related features a difficult one [1,3]. Conventionally there are two main
approaches in the vibration based defect diagnosis of rolling contact bearings. They include running the
undamaged bearing until its failure and continuously monitoring changes in their vibration responses. The
other one includes deliberately creation of defects/scratches on the different components of these rolling
contact bearings by a suitable method and comparing vibration response of these artificially defected
bearings with the healthy bearings by monitoring vibration signals either in time domain or in frequency
domain or both. As a result of that, different theories and techniques have developed over the years a
small history of which is discussed here. One of the pioneering work in this area has been done by
McFadden et al. [2], who developed a theoretical model to describe vibration behavior of the inner race
defected rolling contact bearings running under the radial load. In this work, vibration due to the defect is
modeled as a product of serial force impulses appearing at the characteristic inner race defect frequency.
For the purpose of analysis of the vibration signal, they used high frequency resonance technique and
furthermore utilized this work to detect the multiple defects [4]. Ohta et al. [5] experimentally
investigated the vibration behavior of the healthy taper roller bearings running under different speeds and
loads and specified the reasons of vibrations into these bearings. A theoretical model developed by
Tandon et al. [6] predicted the significant defect frequencies and amplitudes and reported the existence of
‘sidebands’ around these defect frequencies. Wang et al. [7] proposed a vibration model for a bearing
running under very low shaft speeds and made simplifications by incorporating the envelop-
autocorrelation function into this model.

Peter et al. [8], compared the application of the wavelet analysis (WA) and Fast Fourier Transform (FFT)
in the fault diagnosis scheme and reported that both these method perform well in the detection of outer race
faults but WA is more prominent in diagnosis of the inner race/roller faults. A single sided auto-power
spectrum and cross power spectrum of the original time domain signal is computed that has successfully
revealed the existence of the emerging bearing faults and located the damage propagation in any types of
ball bearings [9]. Liew et al. [10] developed a nonlinear dynamic model in that the centrifugal load on
the rollers and axial dynamics have been incorporated to analyze the chaotic bearing vibrations at higher
speeds and reported the considerable effect of bearing preloads on the unbalance responses. Shi et al. [11]
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integrated wavelets and envelop spectrum in that the wavelet analysis was applied to decompose the original
vibration signal into the different scales and then the defect related frequency components were obtained to
trace fault related features of defective bearing components. Choy et al. [12] carried out experimental
investigations on the defective bearing components and proposed a method that utilizes the vibration
signature analyzing schemes such as Poincare maps and reported the usefulness of modified Poincare
maps to find out the pinpoint damages in the different bearing components. Choudhury et al. [13]
proposed an analytical model that has predicted the characteristic defect frequency and the side bands
components around the defects frequencies particularly in case of inner race or roller defects. The
amplitude values have also predicted for these frequency components in that the amplitude value of the
outer race defect is more than that of inner race/roller defects.

Zeki et al. [14] applied finite element based vibration analysis technique for the detection of single and
multiple defects. A nodal excitation function was used to provide external loading due to the presence of
defects and the time domain parameters such as rms, crest factor, kurtosis and the frequency domain
parameters such as band energy ratio have been used to detect the position and the number of defects.
Arslan et al. [15] developed a nonlinear dynamic model to investigate the vibration behavior of the
defective angular contact ball bearings and reported the presence of defect frequencies in the vibration
spectrum of the faulty bearings as compared to a healthy bearing spectrum. Also they observed that, there
is increase in the vibration amplitudes of the defective frequency components due to the increase in
preloads. Cao et al. [16] developed a vibration model for the spherical roller bearings using the Lagrange
equations and conducted experiments to understand the effect of operating parameters, bearing geometry
and defects on the dynamic behavior of the spherical roller bearings. Sawalhi et al. [17] formulated a
combined model for gearbox test rig and the localized bearing faults based on Hertzian contact theory to
simulate vibration behavior of the whole system of gears consisting of shaft supported in bearings. Also
they used signal processing techniques such as spectral kurtosis, envelope analysis and spectrum
comparison for the detection of the localized spalling of the inner/outer race or rollers and further applied
this work for the detection extended inner and outer race spalls [18]. Khalid et al. [19] applied
autocorrelation of the vibration signal which was originally filtered out using the wavelets in that bearing
impulse response was used to derive the wavelet base function. Also they used the kurtosis maximization
criteria to optimize the wavelet shape parameters. Wang et al. [20] applied autoregressive method that
was based on time difference and vibration amplitude. A relationship developed between the
autoregressive method and a back-propagation neural network (BPNN) has used to classify the different
fault types.

Desavale et al. [21,22] developed non-dimensional model equations using the conventional
Buckingham’s pi theorem and applied it to test damaged spherical roller bearing along with multivariable
regression analysis and neural networks. Sawalhi et al. [23] proposed spall size estimation procedure
based on pre-whitening of the experimental vibration signal and octave band analysis based on theory of
wavelets. The impact time between entry and exit of a fault and the corresponding acceleration response
have been used as a tool for the determination of the spall size. Tang et al. [24] proposed modeling
method for overcoming the shortcomings of the loss of the statistical information in the signal processing
of vibration data based on the box theory for the fault diagnosis of the rolling contact bearings. Gao et al.
[25] proposed a force model for investigation of the nonlinear dynamic characteristics of a dual rotor
system affected by the localized surface defects on the raceways of the rolling contact bearing. It was
observed that the fault related resonant vibration frequencies to be determined by the rotation speed ratio
whereas the amplitudes of the vibration to be determined by the depth and span of the defect. Yang et al.
[26] developed impulse sequence model and nonlinear multibody dynamic bearing model for elucidation
of the difference of the fault signatures for different bearings operating in different surrounding. It is

168 SV, 2022, vol.56, no.2



noticed in this study that the vibration amplitudes of the characteristics to be dependent on the initial bearing
clearance, radial loads, position of the defects and the random speed fluctuations.

Chen et al. [27] performed experiments for studying the vibration signal transfer characteristics from the
ball bearing to the casing measuring points using impulse response method. The fault related features were
extracted with the help of the envelope and wavelet analysis and explored the effect of the stiffness of the
bearing housing and casing on the vibration attenuation. The developed methodology was then
implemented for practical aero engine fault diagnosis. Khanam et al. [28] performed impact force
evaluation based on the principles of engineering mechanics for the development of model to diagnose
the localized bearing faults. The magnitude of the excitation force was found to be the function of the
bearing geometric parameters, operating speed, load and the defect size. Attoui et al. [29] proposed a
time-frequency procedure which combines wavelet packet decomposition energy distribution and
selection of the highly impulsive frequency band for fault detection of the ball bearings. Jadhav et al. [30]
put forth an approach based on the dimensional analysis for the diagnosis of the distributed defect in
rolling element bearings. Buckingham’s pi theorem was used for obtaining the mathematical model of the
vibration velocity amplitude due to presence of distributed defects. The experimental validation of the
theoretical model was also presented for the case of outer race defect and inner race defect.

From the literature it is observed that the available dynamic models and signal processing techniques
have been used mainly to recognize the features such as rms, peak vibration amplitudes, and defect
frequencies in frequency domain and statistical parameters such as rms, skewness, kurtosis etc. in time
domain. The correlation of the spall sizes, geometric, operating parameters of the rotor-bearing system
with the amplitude of the vibration at the characteristic bearing defect frequencies have not been
quantified much. With such a correlation, it is possible to gain insight into the defect severity as well as it
is possible to study the effect of operating parameters such load, speed, rotor unbalance, etc. Because
these parameters are directly affecting the amplitude levels at the characteristic bearing defect frequencies
and an overall vibration levels in the machines supported by them. It is also seen that out of the existing
approaches for the detection of defects in rolling contact bearings very few have applied it for actual
industrial machines [21,27]. Hence, to address these issues, this paper proposes an in-depth DA based
dimensional characterization of the vibration acceleration response model and then scaling of an obtained
model and its dimensionless representation. The applicability of the proposed DARA of vibrations
produced by defects is explored in this study and is effectively applied it in the condition monitoring of
various rotating machineries used in the sugar industries such as sugar cane kicker, leveler, fibrizer, ID
fan, FD fan, SA fan, etc. The manuscript is organized as, a brief summary of the works related to
defection of faults in rolling contact bearings and gaps in the existing literature are given in Section 1.
Theoretical formulation of the mathematical model is presented in Section 2. The details of the
experimental setup and numerical, experimental results are reported in Section 3. Formulations of the
different scaling laws is presented in Section 4. The comparison of the numerical and experimental results
for laboratory case study and an industrial case study are presented in Sections 5 and 6, respectively.
Important conclusions of this study are reported in Section 7.

2 Theoretical Formulation of Dimensional Amplitude Response Analysis

DA is essentially a means of utilizing correlation analysis of a complex problems wherein a detailed
analytical expressions are difficult to work out and a simple and meaningful expressions of the problems
are required [31,32]. A DARA of vibration is proposed to find its predictive performance in detecting the
bearing defects. Let us assume that the vibration acceleration amplitude at the characteristic defective
bearing frequency depends on the parameters such as,

SV, 2022, vol.56, no.2 169



€x ¼ f
cd;D;B; d1; dr;Z;mi;mo;ms;mr;mc;md;
L;E; q;K; d;FH ;C;D; rc;N ;W ;Fa;Mu

; m; fRDF ; ; fFTF ; fVCF ; fBPFO; fBPFI ; fBSF

0
@

1
A (1)

These factors affecting the vibration amplitude of the defective rolling contact bearing are to be
expressed in the system of dimensions [32]. According to generalized theorem of DA, if a physical
phenomenon contains total ‘m’ variables including the output variable, each involving ‘n’ fundamental
dimensions then this phenomenon can be expressed in-terms of (m-n) independent dimensionless
variables. This fundamental theorem needs to be kept in mind while applying a DA to any problem. In
Eq. (1), m = 33, n = 3, hence number of dimensionless parameters will be 30 including 29 dimensionless
variables for each of the independent parameters and 1 dimensionless variable corresponding to the
vibration amplitude. But for the complex system this is a very large number to handle during the
experimentation because, all these factors could not be varied individually. For the purpose of this, matrix
method of dimensional analysis is used [33,34]. For modelling, d1, N, and W were selected as a repeating
variables which are always equal to the number of basic dimensions of the different parameters affecting
a physical phenomenon of the bearing vibration due to defects. Here, there are three basic dimensions
(n = 3) viz. F, L, and T representing the force, length and the time. Another important characteristic of
the repeating variables is that these variables are not forming any dimensionless group by themselves
[33]. The matrix of these repeating variables then is written as,

R½ � ¼
R11 R12 R13

R21 R22 R23

R31 R32 R33

2
4

3
5 F
L
T

(2)

The other significant variables involved in Eq. (1) are the non-repeating variables (nr = 30) which
includes the model output variables that is vibration amplitude. The non-repeating variables can be
written in the form of a matrix as,

U½ � ¼
U11 U12 : : U1n

U21 U22 : : U2n

U31 U32 : : U3n

2
4

3
5F
L
T

(3)

Number of non-dimensional groups are always equal to the number of non-repeating variables (nr = 30)
in the problem. Now, according to the matrix method, these variables are obtained as,

Un

RC1n
1 RC2n

2 RC3n
3

¼ F0L0T0 ¼ ðpnÞ (4)

After substitution of the variables from Eqs. (2) and (3) in Eq. (4) we get,

FU1nLU2nTU3nð Þ
FR11LR21TR31ð ÞC1n FR12LR22TR32ð ÞC2n FR13LR23TR33ð ÞC3n

¼ ðpnÞ (5)

Expressing Eq. (5) in the form of a system of linear algebraic equations as,

R11C1n þ R12C2n þ R13C3n ¼ U1n

R21C1n þ R22C2n þ R23C3n ¼ U2n

R31C1n þ R32C2n þ R33C3n ¼ U3n (6)
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Writing Eq. (6) in matrix form,

R11 R12 R13

R21 R22 R23

R31 R32 R33

2
4

3
5 C1n

C2n

C3n

8<
:

9=
; ¼

U1n

U2n

U3n

8<
:

9=
; (7)

Finally rewriting Eq. (7),

R½ � C½ � ¼ U½ � (8)

The matrix, C½ � of unknowns in Eq. (8) is obtained by the inversion of the equation. After substitution of
all these unknowns, one by one in Eq. (4) all the non-dimensional variables can be evaluated. All these non-
dimensional variables are written in Table 1.

Substituting the non-dimensional parameters from Table 1 in Eq. (1) gives,

€x

d1N2
¼ f

d

d1
;
D

d1
;
B

d1
;
dr
d1

; z;
mid1N2

W
;
mod1N2

W
;
msd1N2

W
;
mrd1N2

W
;
mcd1N2

W
;

�

mdd1N2

;
L

d1
;
Ed1

2

W
;
Kd1

1:11

W
;
qN2d1

4

W
;
d
d1

;
FH

W
;
CNd1
W

;
D

d1
;
rc
d1

;
Fa

W
;
Mud1N2

W
;

m

d1
2N

;

fFTF
N

;
fVCF
N

;
fBPFO
N

;
fBPFI
N

;
fBSF
N

;
fRDF
N

�
(9)

Eq. (9) depicts dimensional model for correlating the acceleration amplitude of the faulty bearing
vibration. We have transformed Eq. (1) into its equivalent non-dimensional form and correlated directly

Table 1: Bearing parameters in non-dimensional form

pterm pterm pterm pterm

p1 ¼ d

d1
p9 ¼ mrd1N2

W
p16 ¼ d

d1
p24 ¼ fFTF

N

p2 ¼ D

d1
p10 ¼ mcd1N2

W
p17 ¼ FH

W
p25 ¼ fVCF

N

p3 ¼ B

d1
p11 ¼ mdd1N2

W
p18 ¼ CNd1

W
p26 ¼ fBPFO

N

p4 ¼ dr
d1

p12 ¼ L

d1
p19 ¼ D

d1
p27 ¼ fBPFI

N

p5 ¼ Z
p13 ¼ Ed1

2

W
p20¼

rc
d1

p28 ¼ fBSF
N

p6 ¼ mid1N2

W
p14 ¼ qN2d1

4

W
p21 ¼ Fa

W
p29 ¼ fRDF

N

p7 ¼ mod1N2

W
p15 ¼ Kd1

1:11

W
…. (Roller Bearing)

p22 ¼ Mud1N2

W
p30 ¼ €x

d1N2

p8 ¼ msd1N2

W
p15 ¼ Kd1

1:5

W
….(Ball Bearing) p23 ¼ m

d1
2N
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the physical size of the defect, bearing dimensions and its operating parameters with vibration acceleration
amplitudes in frequency domain so as to put forth DARA. Thus insertion of a DA simplifies the assessment
of the measureable relationship between the objective variable and developed dimensionless numbers. Now,
as the number of non-dimensional parameters involved in Eq. (9) are still more, they are minimized further
by performing the mathematical steps given below:

pa ¼ p19
p4 � p5

¼ D

drZ
(10)

Here, the effective defective parameter D ¼ Vd
As
; can be referenced from Fig. 1. This parameter can be

used for modeling all the three dimensions of the defect as well as the defects with different shapes like
square, circular, rectangular can be evaluated that takes into account the volume as well as the surface
area of the defect.

pb ¼ p14
p13

� p3 � p20ð Þ ¼ qN2rcB

E
(11)

Figure 1: (a) Reference axes (b) 3 D point defects of different shape (c) and (d) Defining defect size
parameters
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pc ¼ 1

ðp15 � p23Þ (12)

¼ Wd1
0:89N
Km ….(Roller Bearing)

¼ Wd1
0:5N

Km ….(Ball Bearing)

K ¼ 34600� Lð8=9Þ ….(Roller Bearing)

¼ 34300�dr
0:5

k0:35 …. (Ball Bearing)

where, k is the curvature ratio and is obtained as [34],

k ¼ ro þ ri � dr
dr

pd ¼ p2
p1

¼ D

d
(13)

pe ¼ p6 � p7 � p10
p8 � p9 � p11

¼ mi � mo � mc

ms � mr � md
(14)

pf ¼ p16
p12

¼ d
L

(15)

pg ¼ p25
p24

� p26 � p27 � p29
p28

¼ fVCF
fFTF

� fBPFO
N

� fBPFI
N

� fRDF
fBSF

(16)

Hence Eq. (9) can be written in reduced order as,

p30¼ fðpa; pb;pc;pd; pe; pf ; pg;p17;p18;p21;p22Þ (17)

Let,

[ ¼ pd;pe;pf ; pg;p17;p18;p21 (18)

Upon substitution of Eq. (18) into Eq. (17),

p30¼ fðpa; pb;pc;[; p22Þ (19)

After rearranging the terms this relationship can be written in implicit form as [35],

f 0 p30;[; pa; p22; pb;pcð Þ ¼ 0 (20)

In above equation, f 0 represents the pragmatic relationship between model output factor, i.e., p30 and the
independent factors inside the bracket of Eq. (20) that has evaluated by performing the real experiments. It is
noticed that the variables obtained by applying steps in Eqs. (10)–(18) are again dimensionless. Eq. (18)
represents the set of parameters whose variation affects the corresponding change in the [ term. Eq. (19)
is the reduced order model of the Eq. (9) in that the original 29 non-dimensional parameters inside the
bracket have reduced to only 5, the functional relationship between them needs to be evaluated
experimentally. It is earnest to note here that each non-dimensional term in Eq. (20) represents the impact
of a certain physical term as listed in Eq. (1) on the vibration amplitude response due to defects in
bearings. To the end of this section, standard procedures for carrying out the regression were adopted for
the recognition of the most important one. The governing reduced order model Eq. (19) can be solved by
multiple factorial regression by expressing it in the power-law form as [35],
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p30¼[ � pað Þa1 � p22ð Þa2 � pbð Þa3 � pcð Þa4 (21)

Taking log on the both the sides of Eq. (21) we can write,

lnðp30Þ ¼ ln [ð Þ þ a1 lnðpaÞþa2 lnðp22Þþa3 lnðpbÞþa4 lnðpcÞ (22)

Now suppose that,

lnðp30Þ ¼ y ln [ð Þ ¼ a0 lnðpaÞ ¼ x1

lnðp22Þ ¼ x2 lnðpbÞ ¼ x3 lnðpcÞ ¼ x4

Hence, Eq. (22) can be written as,

y ¼ a0 þ a1x1 þ a2x2 þ a3x3 þ a4x4 (23)

where a ¼ a0; a1; a2; a3; a4f g is an unknown parameters set determined by regression. If there are ‘n’
physical experiments to be performed to obtain the unknowns, i.e., a0, a1, a2, a3, a4 then all of the
experimental results can be grouped as,

Xn
i¼1

yi ¼ na0 þ a1
Xn
i¼1

xi1 þ a2
Xn
i¼1

xi2 þ a3
Xn
i¼1

xi3 þ a4
Xn
i¼1

xi4 (24)

The suffix ‘i’ in above equation represents the response of ith experiment. To compute the five
unknowns in Eq. (24), other equations are developed by multiplying xi1, xi2, xi3, xi4 with Eq. (24)
separately and the obtained equations are written in matrix form in Eq. (25) which are evaluated using
MATLAB code.

n
Pn
i¼1

xi1
Pn
i¼1

xi2
Pn
i¼1

xi3
Pn
i¼1

xi4

Pn
i¼1

xi1
Pn
i¼1

xi1xi1
Pn
i¼1

xi1xi2
Pn
i¼1

xi1xi3
Pn
i¼1

xi1xi4

Pn
i¼1

xi2

Pn
i¼1

xi3

Pn
i¼1

xi4

Pn
i¼1

xi2xi1

Pn
i¼1

xi3xi1

Pn
i¼1

xi3xi1

Pn
i¼1

xi2xi2

Pn
i¼1

xi3xi2

Pn
i¼1

xi4xi2

Pn
i¼1

xi2xi3

Pn
i¼1

xi3xi3

Pn
i¼1

xi4xi3

Pn
i¼1

xi2xi4

Pn
i¼1

xi3xi4

Pn
i¼1

xi4xi4

2
666666666666664

3
777777777777775

a0

a1
a2

a3

a4

2
66666666666664

3
77777777777775

¼

Pn
i¼1

yi

Pn
i¼1

xi1yi

Pn
i¼1

xi2yi

Pn
i¼1

xi3yi

Pn
i¼1

xi4yi

2
666666666666664

3
777777777777775

(25)

3 Experimentation and Numerical Results

Now, to solve the set of unknowns a ¼ a0; a1; a2; a3; a4f g in Eq. (21), requires experimental data for
factorial regression analysis. To generate this data we conducted experiments using Box-Behnken designs
(BBD) from response surface methodology (RSM) [36,37]. The schematic of the test setup is shown in
Fig. 2. The setup consists of a horizontal shaft driven by a DC motor rotating at different speeds.

The speed variation is achieved by means of a frequency controller of the motor. The shaft is coupled
with the motor by making use of flexible coupling. The shaft is supported at the two ends by bearings one of
which is a self-aligning spherical bearing at the drive end (DEB) and test bearings at the non-drive end
(NDEB). The shaft is loaded centrally by using a hydraulic loading arrangement. The hand pump is used
for creation of the hydraulic pressure and load is applied using the ram. Both pressure gauges and
loadings are calibrated to load the bearing to a precise value of loading. The bearings used are the single-
row taper roller bearing designated as SKF 30205J2/Q, and hence further referred to be as the ‘model’
bearing in the next coming discussions, the specifications of which are given in Table 2.
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This bearing is lubricated with SKF LGMT3 type grease and loaded with a radial load of 2 kN. For the
measurement of the vibration characteristics of the defective bearings, use of the data acquisition system is
made utilizing the piezoelectric accelerometers and the charge amplifier. Data acquisition system converts
the analog signal into digital signal and the data acquisition software makes it possible to set the number of
samples, sampling frequency, the number of averages and it converts the time domain signals into the
frequency domain, also it stores the digital signals for further study. The vibration signals are captured by
mounting an accelerometer model-Adash-(AC-102-1A) having sensitivity 100.0 mV/g on the bearing
housing of the test bearing in vertical direction [38]. The digital tachometer gives direct speed measurement.
After execution of the experimentation a set of 45 data sets 15 each for the condition of the outer race,
inner race and roller damage condition is obtained and unknowns in Eq. (21) are evaluated to be,

p30¼ 2:37944� 10�9 � pað Þ0:5626 � p22ð Þ0:3302 � pbð Þ0:1821 � pcð Þ�1:5759 (26)

p30¼ 6:08462� 10�9 � pað Þ0:4588 � p22ð Þ0:2379 � pbð Þ�0:2920 � pcð Þ�0:2534 (27)

p30¼ 6:96756� 10�9 � pað Þ0:4556 � p22ð Þ0:1735 � pbð Þ0:1490 � pcð Þ�1:0563 (28)

Figure 2: (a) Rotor-bearing-vibration test setup (b) Data acquisition system

Table 2: Specifications of the model and test bearings

Parameters Model bearing Test bearing-1 Test bearing-2
SKF 30205J2/Q SKF 30305 C SKF 22220EK

d 25 25 100

D 52 62 180

B 16.5 18.25 46

Z 17 14 38

α 14.03 20 9.11

d1 38.329 43.5 141.6

dr 6.7 8.2 21.5

rc 13.5 18.5 38.4
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Once these unknowns are evaluated, it is necessary to test for their significance using a coefficient of
correlation obtained as [39],

R2 ¼ 1� SSN

SSD
(29)

where, SSD represents the deviation sum of squares of the experimental values from the mean and SSN
represents sum of squares of difference between the predicted numerical values by Eqs. (26)–(28) and the
corresponding experimental values. R2 value nearer to 1 is indication of a good match between the
predicted and experimental values. For the models (26)–(28) the R2 values are evaluated to be 0.9971,
0.9985 and 0.9939 respectively indicating a fair adequacy of the developed models. Hence by proposing
a non-dimensional model the comparative worth of a physical mechanism of vibrations produced due to
presence of defects in bearings can be inferred by the magnitude of coefficients of non-dimensional
numbers. The obtained expressions for the dimensional amplitude responses, i.e., p30 as given in Eqs.
(26)–(28) are normally associated to each dimensionless number with assured order of scale as,
p30 / pia, where pi stands for each dimensionless number and a stands for the corresponding exponent.
Following this, the relationship is plotted with reference to the developed dimensionless numbers using
the data from the model Eqs. (26)–(28) and the experimental results for outer race defect, inner race
defect and roller defect case in Figs. 3–5.

Figure 3: Magnitude of dimensionless amplitude response for outer race defect under varying

dimensionless numbers: (a) pa ¼ D
drZ

(b) p22 ¼ Mud1N2

W (c) pb ¼ qN2rcB
E (d) pc ¼ Wd1

0:89N
Km
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It is noticed that that the dimensionless amplitude response of the defective bearing components are
significantly affected by the developed non–dimensional terms which justifies in all the three cases that
with increase the size of the defect, rotor unbalance, speed and load the dimensional amplitude response
increases and similar observation can be made from the Figs. 3–5. Also, the significance of each
dimensionless number on the objective variable, i.e., dimensional amplitude response can be assessed
based on the order of magnitude of a1, a2, a3, a4. The numerical values foreseen by the obtained models
and the corresponding experimental values are also compared in Figs. 3–5. It is commendable to note
here that the proposed correlations are able to attain the predictions in line with the experimental values
with error band of less than 10%.

Consequently, the connection of the dimensional amplitude response generated from suitable DA with
the developed non-dimensional numbers evolves as an effective tool in the analysis of vibrations due to
defects in rolling bearings.

Figure 4: Magnitude of dimensionless amplitude response for inner race defect under varying

dimensionless numbers: (a) pa ¼ D
drZ

(b) p22 ¼ Mud1N2

W (c) pb ¼ qN2rcB
E (d) pc ¼ Wd1

0:89N
Km
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4 Scaling Analysis

After the developed dimensional amplitude response model has exhibited its predictive capability, it is
decided to undergo an in-depth scaling analysis of it. The scaling analysis starts with non-dimensionalization
and bounding of the variables appearing in the mathematical model as given in Eq. (21). As briefed below the
suffix ‘tb’ stands for the test bearing whose performance is to be evaluated and suffix ‘mb’ stands for the
model bearing. Recalling expression for �b and using similarity concept,

qN2rcB

E

� �
mb

¼ qN2rcB

E

� �
tb

(30)

In above expression (30), q and E are the bearing material parameters, rc and B are the geometry
parameters, N is the operating parameter which can be related as,

Ntb

Nmb

� �2

¼ qtb
qmb

� ��1

� rctb
rcmb

� ��1

� Btb

Bmb

� ��1

� Etb

Emb

� �

SN
2 ¼ Sq

�1 � Src
�1 � SB

�1 � SE (31)

From Eq. (31), we can obtain the speed to be incorporated in the model, i.e., Nmb. Recalling expression
for, �c for roller bearings and using similarity concept,

Figure 5: Magnitude of dimensionless amplitude response for roller defect under varying dimensionless

numbers: (a) pa ¼ D
drZ

(b) p22 ¼ Mud1N2

W (c) pb ¼ qN2rcB
E (d) pc ¼ Wd1

0:89N
Km
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Wd1
0:89N

Km

� �
mb

¼ Wd1
0:89N

Km

� �
tb

(32)

Using above expression, the important operating parameter,W can be evaluated to be incorporated in the
model, i.e., Wmb as,

Wtb

Wmb

� �
¼ d1tb

d1mb

� ��0:89

� Ntb

Nmb

� ��1

� Ktb

Kmb

� �
� mtb

mmb

� �

SW ¼ Sd1
�0:89 � SN

�1 � SK � Sm (33)

Recalling expression for, �22 and using similarity concept,

Mud1 N2

W

� �
mb

¼ Mud1 N2

W

� �
tb

(34)

In above expression, the important operating parameters are,W, N andMu out of thatW and N is already
evaluated in above steps as, Wmb and Nmb. Now Mu can be evaluated to be incorporated in the model, i.e.,
Mumb as,

Mutb

Mumb

� �
¼ Wtb

Wmb

� �
� d1tb

d1mb

� ��1

� Ntb

Nmb

� ��2

SMu ¼ SW � Sd1
�1 � SN

�2 (35)

Recalling expression for, �a and using similarity concept,

D

drZ

� �
mb

¼ D

drZ

� �
tb

(36)

In above expression, D is the important parameter which can be evaluated to be incorporated in the
model, i.e., Dmb as,

Dtb

Dmb

� �
¼ drtb

drmb

� �
� Ztb

Zmb

� �

SD ¼ Sdr � SZ (37)

Eqs. (31), (33), (35), and (37) are different scaling laws for evaluating the different parameters such as,
speed (Nmb), radial load (Wmb), mass unbalance (Mumb), defect size (Dmb) to be incorporated in the model in
accordance with the specifications and operating parameters of the test bearing whose dynamic behavior is to
be evaluated so that the model and test bearing can be ‘similar’ and ‘S’ stands for the scaling factor of the
corresponding suffix term. After substitution of these parameters into the Eq. (21), we can obtain the
corresponding dimensionless output variable, i.e., p30. After obtaining p30 we can obtain the vibration
acceleration of the test bearing, i.e., €xtb: The above steps implemented to solve different scaling laws are
outlined in Fig. 6 and are summarized below:

i) Calculate the speed of the model Nmb from the dimensionless number, pb and applying the
similitude concept.

ii) Using Nmb as input and making use of pc compute the load by which model should be loaded, i.e.,
Wmb.
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iii) Now, with Nmb and Wmb as inputs, find the mass unbalance on the model, i.e., Mumb from the
dimensionless number p22.

iv) Next, find out the effective defect size parameter to be incorporated in the model, i.e., Dmb

from, pa.
v) Now, with these evaluated parameters, load the model data and find out the vibration acceleration

value of the test bearing, i.e., €xtb from the term p30 using Eq. (21).

Compare the value of the vibration acceleration obtained in above Step (v) with the experimental value
and detect the presence of a defect so as to take the decision to plan the next routine maintenance activity of
bearing replacements and machine condition correction. After execution of the above developed SBM
methodology, we can systematically workout these series of equations. One of the prime advantage
offered by this proposed methodology is that it does not requires more computing time as compared to
the traditional bearing models and machine operating personnel can work out these equations.

5 Laboratory Case Study

For validation of the proposed method, we tested for the artificially defected bearings and called it a
prototype, the specifications of which are listed in Table 2. We wanted to predict the vibration amplitude
response of the selected prototype/test bearing. For the purpose of analysis only we are calling the
bearings as model and prototype. In the proposed method we made effective use of this concept of
similarity. By making use of ‘model’ bearing as listed in Table 2, first we developed numerical Eqs. (26)–
(28) and used it to predict the performance of the prototype/test bearings. So that with this concept, we
can correlate vibration responses of the variety of the test bearings with the vibration response of the
model bearing without requiring the high ended calculations and costly computational trials. The test
bearing designated as SKF 30305C was analyzed for a radial load of 2.5 kN and a mass unbalance of
75 grams attached to the balance disc. The bearing for all the tests is lubricated with SKF LGMT3 grease
and analyzed for a constant shaft speed of 900 rpm. The characteristic vibration frequencies of this
bearing are calculated using the equations given in [39] and are listed in Table 3.

Figure 6: Scheme for the solution of the scaling laws
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For the reference purpose, a baseline data is generated after execution of the experiment on the healthy
SKF 30305C bearing. Fig. 7 shows the frequency spectrums obtained from the housing of the test bearing.
From Fig. 7, it is observed that the peak amplitude of vibration appears at the super harmonics of the shaft
frequency at 15fS which is equal to 225 Hz. In addition to this distinct frequency components corresponding
to the harmonics of the varying compliance frequency are visible in the spectrum at fVCF, 2fVCF, 3fVCF and are
equal to 86 Hz, 172 Hz and 258 Hz, respectively.

After obtaining the baseline data, experiments are performed then on the defective SKF 30305C test
bearing shown in Fig. 8 to check the competence of the developed model Eqs. (26)–(28). Making use of
the scaling laws and principles of the similarity briefed in beginning of this section, we calculated
different parameters of the model bearing as per the scheme shown in Fig. 7 and used it to predict the
vibration accelerations of various defective components of the test bearing. Table 4 shows the results of
analytical solutions of the scaling laws for the test bearing. A close similarity is observed between the
model and the test bearing as for both these cases, the differences in the evaluated dimensionless
parameters between model and test bearing are very lesser.

Table 3: Characteristic vibration frequencies of the SKF 30305C test bearing

Distinctive frequencies, Hz Defect frequencies, Hz

fS fFTF fVCF fBPFI fBPFO fRDF
15 6.16 86.25 123.45 86.25 76.95

Figure 7: Frequency spectrum for healthy SKF 30305C bearing
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Figs. 9a–9c shows the response spectrums for the test bearings running at 900 rpm. For outer race defect,
as seen from Fig. 9a, that the significant peak of 0.534 m/s2 is observed at the second harmonics of the outer
race defect frequency, i.e., 172 Hz which is nearly equal to the theoretical peak of 0.5392 m/s2 obtained using
model Eq. (26). In addition to this the other major peaks in the spectrum are appeared at harmonics of outer
race defect frequency and combination frequency between the cage frequency and the outer race defect
frequency observed at fBPFO, 2fBPFO + 2fFTF, 3fBPFO-fFTF, 3fBPFO, 3fBPFO + fFTF, which are 86 Hz,
184 Hz, 249 Hz, 257 Hz, 264 Hz, respectively. For inner race defect case, as seen from Fig. 9b, the
model Eq. (27) has predicted a peak of 0.4076 m/s2 which is nearly matching with experimentally
observed value of 0.405 m/s2 at nearly equal to the third harmonics of the inner race defect frequency of
373 Hz.

Figure 8: Test bearing, SKF 30305C (a)–(c) Photographs of circular point defect of 2 mm, and (d)
Measurement of roller length

Table 4: Similarity between SKF 30305C and SKF 30205 J2/Q bearings

Bearing Dimensionless model parameters

�a �22 �b �c

30305C 0.017422 1057050 9.6959761 1.709655

30205 J2/Q 0.017421 1056913 9.6958265 1.709678
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The other major peaks in the spectrum are at the harmonics of inner race defect frequency and a
combination frequency of inner race defect frequency and cage frequency observed at fBPFI, 2fBPFI,
3fBPFI-fFTF, 3fBPFI + fFTF, 4fBPFI, which are 124 Hz, 248 Hz, 365 Hz, 378 Hz, 494 Hz, respectively. For
the roller defect case, the significant peak vibration amplitude predicted by model Eq. (28) is 0.3426 m/s2

and the experimentally observed vibration amplitude is 0.344 m/s2, observed nearly at the third
harmonics of the roller defect frequency which is 228 Hz as noticed from Fig. 9c. In addition to this, the
other major peaks in the spectrum are at the lower and super harmonics of shaft frequency and a
combination frequency of roller defect frequency and cage frequency observed at, fS, 2fRDF + 3fFTF,
3fRDF + 2 fFTF, 18fS, 5fRDF, which are 15 Hz, 172 Hz, 243 Hz, 270 Hz, 386 Hz, respectively.

Figure 9: Frequency spectrum of SKF 30305C bearing for (a) Outer race defect, (b) Inner race defect, and
(c) Rolling element defect
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6 Industrial Rotor-Bearing System

To test the competence of the developed numerical models (26)–(28) for the bearings used in the
industrial rotating machines, we implemented a condition monitoring program in one of the well-known
sugar producing unit situated in the sugar cane producing belt in Sangli District of the Western
Maharashtra recognized as, Rajarambapu SSK Pvt., Ltd., Unit-III, Ashta, Sangli, India. Before
implementing the COM, it is necessary to perform some homework regarding the types of machineries
used in the plant, their importance related to functioning of the plant, impact of failures of these machines
on the condition of the plant etc. Based on this homework, first of all we visited the factory before
commencement of the sugar production and identified the ‘critical machineries’, the stoppage of which
can cause shutting down the entire production process and impede the smooth and safe operation of the
unit. After this field study we identified the following machineries for implementation of our developed
methodology, they include,

Sugar Cane Kicker

Sugar Cane Leveler

Sugar Cane Fibrizer

Boiler Fans-ID/FD/SA

The layout of the entire unit is shown in Fig. 10. It shows the different rotating machineries to which we
have implemented the COM. All fans (ID/FD/SA) are driven by separate three phase induction motors. The
kicker and leveler are also driven by separate three phase induction motors. The fibrizer unit is driven by the
steam turbine using steam from boilers. We did condition monitoring of both DEB and NDEB and assigned
numbers from B1 to B18 as shown in Fig. 10. Before, taking the readings, the characteristic bearing defect
frequencies of the bearing are calculated using the expressions given below in Table 5 as in [34], to set
the frequency limits for the vibration measurement.

Figure 10: Layout of the production unit
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Generally, the accelerometer is attached with the bearing housing to measure vibration responses in
vertical direction as shown in Fig. 11. A case study particularly of the FD Fan 1 shown in Fig. 10 is
presented here. We particularly wanted to detect the ‘inchoate defects’ because all these selected
machineries are falling into the category of heavy critical machineries and requiring considerable time for
their maintenance and bearing replacements. The unexpected failure of these machineries directly affects
the production capacity of the unit. Also, the raw sugarcane being a perishable item, once it is brought on
the factory, has to be further processed further. In short, the stoppage of production due to the unwanted
machinery shutdown was not allowed. After calculation, we tried with different end limit frequencies for
setting of the low and high frequency pass filters of the vibration analyzer so as to set the ideal frequency
range for the measurement purpose. Based on that we chose a frequency range of 10 Hz for low pass
filter and 3200 Hz for the high frequency pass filter and the sampling frequency range of the signal
recorder was set to 8192 (213) Hz.

The commencement of COM program was started with the starting up of the production season in
factory. Health monitoring activity has been performed as per the requirement of the clients once in a
week as the scheduled maintenance period was of four weeks for the entire unit. Generally theses
machineries are well inspected, lubricated and balanced before starting up of the production processes but
during the operation of the plant there may be chances of unbalance or misalignment problems of rotors
which will start deteriorating the performance of the machines and its indication can be seen by
inspecting the condition of the bearings. Before commencement of the sugar cane crushing season, the
vibration analysis was performed on the healthy bearings of FD fan. A baseline data is generated after
execution of the experiment on the healthy SKF 22220 EK bearing.

Table 5: Characteristic vibration frequencies of the SKF 22220 EK test bearing

Distinctive frequencies, Hz Defect frequencies, Hz

fS fFTF fVCF fBPFI fBPFO fRDF
24 10.20 193.84 262.16 193.84 154.61

Figure 11: Details of the industrial rotor-fan (a) Schematic layout, position of sensors, and (b) Actual
experimental setup
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Figs. 12a and 12b show the frequency spectrums obtained from the housing of the test bearing at the
drive end (B11) and the fan end (B12). As evident from the spectrums, there are no any significant
amplitude peaks at the defect frequencies hence the bearings at drive end and non-drive end can be
considered to be healthy. Some smaller amplitude peaks are present in the spectrums attributed to the
inherent bearing characteristics. This served as a reference for the further experimental work. At the drive
end (DE) we experimented with bearing having the outer race defects, this bearing is designated to be
B11. Fig. 13 shows the obtained experimental spectrum for that bearing. As it is seen from Fig. 13 that
the significant peak of 0.153 g is noticed at the 1804 Hz which nearly equal to the 9th harmonics of the
outer race defect frequency as evaluated from the Table 5. This shows that it is expected to have defects
on the outer race. The bearing is dismantled as shown in Figs. 14a and 14b, which showed crack and few
significant pits on the outer race. Fig. 14b shows the photograph of the outer race defective bearing taken
after cleaning it with kerosene. For the bearing B11, the different scaling laws are implemented to
evaluate the different dimensionless parameters and are listed in Table 6. Then it was decided to check
the amplitude response from the model equation for outer race damaged bearing having significant crack
of width 1.2 mm, length 37 mm and depth of 5.6 mm.

The model Eq. (26) has predicted an acceleration amplitude of 0.1493 g. The experimentally observed
peak for this case as seen from the spectrum shown in Fig. 13 is 0.153 g. By comparing these two values, a
good agreement between the model and the experimental results is noticed.

Figure 12: Frequency spectrum for healthy SKF 22220 EK bearing (a) Drive end (b) Non-drive end
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7 Conclusions

A unique and easy to implement technique based on DA and scaling laws established here for the
dimensional amplitude response analysis of the vibration due to presence of defects in different

Figure 13: Frequency spectrum for bearing B11

Figure 14: Bearing B11 dismantled for (a) Inspection, and (b) Actual photograph of line defect

Table 6: Similarity between 22220 EK and 30205 J2/Q bearings

Condition Dimensionless model parameters

�a �22 �b �c

22220 EK 0.006854 5505408 129.86316 4.759574

30205 J2/Q 0.006854 5504246 129.85879 4.759491
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components of rolling contact bearings. All the responses are obtained by analysis of the vibration data in
frequency-amplitude domain. The proposed methodology of integrating DA and scaling facilitates an in-
depth fundamental understanding of the vibration mechanism in rolling contact bearings due to defects.
The developed correlations originated from this study provides a strong perception on the connection
between the identified objective variable i.e., dimensional amplitude response and the corresponding non-
dimensional numbers. From the developed methodology following important findings are obtained,

i) In the present correlation based study integrating DA and scaling laws, considering different
design, material and operating parameters of the bearings, theoretical physics based model is
proposed for relating spall sizes and other geometric, material and operating parameters with
the vibration accelerations amplitudes at characteristic defect frequencies due to defective
bearing components with these parameters.

ii) The coefficient of the dimensionless number offers important perception into the comparative
significance of the physics behind that particular term. Also, the numerical and experimental
shows that the proposed method can detect the localized bearing faults of different shapes.

iii) Based on the analysis, a close similarity is observed between the developed dimensionless
numbers of model bearing and the test/prototype bearings. As, the observed difference between
the dimensionless numbers for the model and the test bearings are found to be very lesser.

iv) The dimensional vibration amplitude at bearing defect frequency found to be increasing with
increase in the system operating parameters such as unbalance and the rotor speeds.

v) For both the case studies, outer race defective bearing having higher acceleration amplitude as
compared to the inner race or roller defective bearing. The difference between the theoretical
and actual defect frequencies as seen from the experimental frequency spectrum in case of
outer race defects is very lesser.

vi) In the present investigation an effective use of the frequency domain vibration data has made it
possible to successfully detect the presence of defects in the different bearing components and
proven to be the simplified method to be applicable for the condition monitoring programs in
various industrial applications.
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Appendix: Technical Specifications

Case Study II: FD Fan of Boiler 1

Model = BCW 86

Capacity = 17 m3/sec of air

Fan Size = 855 mm
(Continued)
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(continued)

Case Study II: FD Fan of Boiler 1

Bearing Number = 22220 K both DEB and NDEB

Sleeve = H 320

Pedestal = SN 520

Coupling = Pin Bush Type (10’’)

Driver Motor = 75 Hp, 3 phase Induction Motor, Kirloskar Make
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