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Abstract: In this work, we have developed a novel machine (deep) learning 
computational framework to determine and identify damage loading parameters 
(conditions) for structures and materials based on the permanent or residual plastic 
deformation distribution or damage state of the structure. We have shown that the 
developed machine learning algorithm can accurately and (practically) uniquely 
identify both prior static as well as impact loading conditions in an inverse manner, 
based on the residual plastic strain and plastic deformation as forensic signatures. 
The paper presents the detailed machine learning algorithm, data acquisition and 
learning processes, and validation/verification examples. This development may have 
significant impacts on forensic material analysis and structure failure analysis, and it 
provides a powerful tool for material and structure forensic diagnosis, determination, and 
identification of damage loading conditions in accidental failure events, such as car crashes 
and infrastructure or building structure collapses.
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Most engineering materials, products and structures are designed, manufactured or
constructed with an intention to function properly. However, they can fail, get damaged
or may not operate or function as intended due to various reasons including material or
design flaws, extreme loading, etc. It is important to identify the reasons of these failures
or damage situations to improve the designs and detect any flaws in the materials or designs.
One of the essential requirements of identifying the reasons of these failures is to know the
loading conditions that lead to the failures.
Engineering products and structures are designed with specific intent and function. They
may fail due to reasons including material shortcomings, construction flaws, extreme
loading, or other conditions and behaviors exceeding their design parameters. To improve
design and prevent failures, it is important to analyze actual failures, and identify the



associated loading conditions.
Unfortunately, these loading conditions are not readily known while the forensic signatures
such as the plastic strains or plastic deformations are easily measurable. For example, in
car crashes, the impact loads on cars are not known, while the permanent deformations can
be quantified after the fact. If the impact loads can be determined, it could potentially help
insurance companies determine which party is responsible for the accident, and help car
manufactures develop more realistic crash test scenarios. Both of these have high potential
for concrete and significant economic impact.
Particularly for the situation of car crushes, it is very important to know the impact loads
for two reasons. First, this will help greatly to determine which party is mainly responsible
for the accident. Second, accidents are real crush tests. If the accident data can be added to
the crush test data, it can help enhance car designs substantially.
What emerges from these considerations is an inverse problem of finding loading
conditions from engineering responses. This represents an inverse of current engineering
practice, in which the typical setup is to develop finite element models of structures, subject
them to static and dynamic loading conditions, and then compute the resulting strains and
residual displacements.
As a general methodology, we believed that machine learning (ML) and artificial
intelligence (AI) techniques provide an effective solution for inverse problems. ML and
AI encompass powerful tools for extracting complicated relationship between input and
output sampling data, potentially through a training process, and then using the uncovered
relationship to make predictions [Hastie, Tibshirani and Friedman (2009); Nasrabadi
(2007)]. ML and AI have found a large number of successful applications in various
fields beyond their birthplace in computer science[Sebastiani (2002); Bratko, Cormack,
Filipič et al. (2006); Sajda (2006)]. Recent years have also witnessed a number of studies
devoted to applying ML techniques to explore forensic materials engineering problems
[Jones, Keatley, Goulermas et al. (2018); Mena (2016)]. In the context of this paper, the
measurable engineering responses would be fed as input, with the loading conditions as
output. The inverse nature of the problem does not hinder ML and AI’s effectiveness in
discovering complex mathematical relationships between input and output.
This paper develops a novel machine learning computational framework to determine and
identify damage loading conditions for structures and materials based on their permanent
or residual plastic deformation or damage state. Our work combines the current mature
state of finite element models with the recent advances in machine learning methodologies.
This approach advances the state of the art in forensic materials engineering, which seeks
to examine material evidence and determine the original causes [Lei, Liu, Du et al.
(2019); Zheng, Zheng and Zhang (2018); Zhou, Tang, Liu et al. (2018); Kirchdoerfer and
Ortiz (2018)]. We believe the ML based approach can solve many previously intractable
problems, with prior approaches incurring impractical computational costs due to the scale
of the finite element models, the large degrees of freedom, and the complex and dynamic
nature of the loading forces.
The rest of the paper begins with a detailed description of the machine learning algorithm
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used. We then outline our process for gathering the required data to train the machine
learning algorithms. This is followed by examples that demonstrate how we solve the
inverse problem, including a cantilever beam of inelastic materials statically loaded at
different locations, and the same beam loaded dynamically with impact loading. We seek
to demonstrate with these examples that the machine learning algorithms can accurately
identify both static loading and impact loading conditions based on observed residual
plastic strain or deformation.

2 Methods
2.1 Deep neural network model

Recently, machine learning, especially deep neural networks, has become one of the 
most popular key words in every scientific or engineering field. Deep learning 
architectures, such as deep neural networks, deep belief networks and recurrent neural 
networks, have been applied to fields including computer vision, speech recognition, 
natural language processing, audio recognition, social network filtering, machine 
translation, bioinformatics, drug design and board game programs, where they have 
produced results comparable to and in some cases superior to human experts, e.g. 
[Ciresan, Meier and Schmidhuber (2012); Krizhevsky, Sutskever and Hinton (2012)].

Figure 1: Flowchart of developing the machine learning neural network

Using machine learning methods, one could make relatively accurate predictions on some
problems that were difficult to be solved before. In this work, we adopted a fundamental
model of deep neural network (DNN), namely an artificial neural network. There are five
stages in our model, as shown in Fig. 1 .
(1) Data collection: Collect data from software Abaqus.
(2) Data cleaning and processing with feature selection and feature engineering. During this
stage, we applied dimension reduction, removed irrelevant data, and created new features



so the model could perform better.
The original data of static has 120 variables, which indicate 60 pairs of displace from x
and y directions. The 60 pairs of data represent three parts of the cantilever beam which
are the top, middle, and bottom parts. Due to the similarities, the top and bottom data was
eliminated and we only keep the middle parts. Since the cantilever beam has a relative small
displacement on x-direction, we only keep the y displacement to simplify the model. When
doing the feature engineering, we tried to use our expertise and mathematical methods to
create new relative features and established five new variables, including finding slope from
plotting data of displacement x and displacement y, the summation of displacement y, the
amplitude of displacement x, and the centroid distance. (First, we find a linear fit for the
deformation change, namely, the approximate slope of the displacement x and displacement
y from plotting data. Second, we generate the sum of displacement of y as another new
feature. Third, to make the feature more obvious, we create a variable by using the top
displacement x minus the bottom displacement x. Last but not least, we made centroid
distance as a new feature. The equation is

centroid distance =
√

(ux − center)2 + (uy − center)2) (1)

where ux is the displacement of x and uy is the displacement of y) For the dynamic data,
we did a relative radical method. Like the static data we pick only 20 variables, instead
of keep them we use the product of displacement x with displacement y, which lead all
variables new. Then we applied summation of the variable and the centroid distance of the
new dataset.
(3) Building network: Initialize bias, weight, number of layers and number of neurons in
each layer.
(4) Application of deep neural network to obtain a specific mathematical model. It is
noted that the basic mathematical model for the first stage of neural network is a simplified
projection pursuit regression [Friedman and Stuetzle (1981)],

ŷi =

n∑
j=1

gj(w
T
j xi) (2)

where g(x) is an activation function, w is a distributed weight, and x is an observation.
During the second stage, the w is redistributed to optimize the loss or error used through
back-propagation.
(5) Using a chosen test data set, which is different than the training sets, to validate the
model and analyze errors.

2.2 Models and settings

As mentioned earlier, a deep neural network [LeCun, Bengio and Hinton (2015)] is used in
this study to solve this inverse problem with procedures considered for the features. One
sample fully-connected layer is shown in Fig. 2 [Castrounis (2016)]. In one certain neuron
j, the employed mathematical model is described as
gj(β

T
k X,β0) = σ(β0X0 + βTk X), where X0 = 1 (3)
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One can clearly observe from Fig. 2 that, the input data flow(X) multiplied by the
distributed weight(βk) and then added a bias (β0) as a parameter of an activation function
(σ(x)), reflects the mathematical model in Eq. (3). Among all the options of activation
functions, such as hyperbolic tanh, Sigmoid, or Relu. According to Ramachandran,
"currently, the most successful and widely-used activation function is the Rectified Linear
Unit (ReLU)." [Ramachandran, Zoph and Le (2018)] In our case, Rectified Linear Unit
(ReLU) performs well as an activation function σ(x) for both static and dynamic loading
conditions. ReLU provides a nonlinear function f(x) = max(0, x). Over-fitting is usually
a concern that a model would perform too "well" on the training data set. In order to
prevent over-fitting, a dropout was applied during the training process, "the key idea is
to randomly drop units (along with their connections) from the neural network during
training." [Srivastava, Hinton, Krizhevsky et al. (2014)].

Figure 2: Illustration of neuron structure of the neural network

Furthermore, the used loss function is the Mean Square Error (MSE), which is defined as

MSE =
1

n

n∑
i=1

(ŷi − yi)
2 (4)

MSE is commonly adopted as a loss function in statistical models. It provides an intuitive
measurement of errors. The objective is to minimize MSE and make the model fit both
the training data and validation data well. An optimizer will adjust between forward and
backward propagation in order to achieve this objective. The optimization tool used herein
to minimize MSE is the Adam optimizer [Kingma and Ba (2014)] with exponential descent
in learning rate.

2.3 Implementation

TensorFlow is an open-source software library for dataflow programming across a range
of tasks. It is a symbolic math library, and is also used for machine learning applications
such as neural networks. In this project, we developed a machine learning computer code



by using TensorFlow.
There are four layers in the developed DNN code, with the learning rate of 0.0035, and the
dropout of 0.05. We use the ReLu as the activation function, and we ran it in 18000 steps. In
general, the number of hidden neurons should be between the size of the input layer and the
size of the output layer. The input parameters of neural network is the plastic displacements
or the permanent displacements along both the horizontal and vertical directions of all
the nodes of the FEM mesh, except the boundary nodes, of the cantilever beam. The
size of input layer is 60 or more after the numerical process, depending on the mesh of
the model. The size of output layer is 3 or 8, depending on different numerical models.
Thus, we choose from eight to sixty hidden layers in our machine learning code. After
trying different numbers of hidden layers, we found that four hidden layers neural network
provides good computation results for the FEM mesh size used and the numerical model.
More hidden layers will lead to much more calculation time, but not much better results.
Thus, we choose four hidden layers as the default structure for our machine learning test
code. The number of hidden neurons should be less than twice the size of the input layer.
Hence, we choose the first hidden layer 32 neurons, the second and third hidden layers have
64 neurons each. The final hidden layer has 8 neurons.

3 Data collection
3.1 Geometric and material properties

Table 1: Mechanical properties of AISI 4340 steel (33 HRc) (From [Guo and Yen (2004);  
Johnson and Cook (1985)]).

Density (kg/m3) 7830
Young’s modulus (GPa) 208
Poisson ratio 0.3

792
510
0.014
1.03

A(MPa) 
B(MPa) 
C
m
n 0.26
D1 0.05
D2 3.44
D3 -2.12
D4 0.002
D5 0.61
ε˙0(s-1) 1

A 2D cantilever beam was chosen for the study, which has a length of 5 meter and a width of
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1 meter. The finite element model of the cantilever beam was developed with the 
ABAQUS software. Plane strain condition was assumed throughout this study, and 
CPE4R element was used, which is a 4-node bilinear plane strain quadrilateral element 
[Simulia (2011)]. In order to ensure the accuracy of the numerical calculation, different 
mesh sizes of the beam were chosen for the convergence analysis, and the final mesh 
size was chosen as 0.25 m. Accordingly, the number of nodes is 105, and the number of
elements is 80. 
We choose AISI 4340 steel (33 HRc) as the material of the cantilever beam, which is 
modeled by using the Johnson-Cook plasticity model ([Guo and Yen (2004); Johnson and 
Cook (1985)]). It is model as a thermo- elastoplastic solid, as expressed in the following 
equations,
σ = [A + B(εp)n][1 + C ln(

ε̇p

ε̇0
)][1 − (T ∗)m] (5)

T ∗ =
T − T0

Tm − T0
(6)

where σ is the flow stress, εp is the equivalent plastic strain, ε̇p is the strain rate, ε̇0 is
the reference strain rate, A,B,C,m, n are material constants, and T ∗ is the homologous
temperature which is related to the absolute temperature T , the reference temperature T0
and the melting temperature Tm.
The critical failure strain is defined as [Guo and Yen (2004); Johnson and Cook (1985)]:

εf  = [D1 + D2e
(D3σ∗)] [1 + D4 ln (

ε̇p

ε̇0
)][1 +D5T

∗] (7)

where Di are material constants, and σ∗ is the dimensionless pressure-stress ratio.
Material parameters of AISI 4340 steel are listed in Tab. 1.

3.2 Boundary conditions and loads

Figure 3: Finite element model of the cantilever beam and the loading positions

The finite element model of the cantilever beam is presented in Fig. 3. All degrees of 
freedom of the five nodes on the left at x = 0 m are rigidly fixed. As shown in this 
figure, seven numbered nodal points were chosen to apply loads and corresponding sets



Figure 4: Dynamic loading time history

of simulation data were generated. In most cases when loads are applied to the three 
points closer to the support of the cantilever beam (nodes 5, 6 and 7 in Fig. 3), the 
residual displacement and plastic strain are all zero at all the nodes, which leads to the 
issue multiple-answer issue to DNN since zero residual displacement corresponds to three 
different locations. Thus, the loading at these points are excluded and only the loading 
points 1-4 are considered in the training, as shown in Fig. 3.

Four case studies have been conducted to test, validate, and verify the deep learning 
algorithm and the trained neural network:
(1) Prediction of static loads acting on the numbered nodes (also referred as training nodes 
in this paper). Static loads simultaneously imposed to one up to four numbered nodes 
shown in Fig. 3. Responses of the beam under static loads of different amplitudes were 
numerically predicted, and the database for the deep learning was developed. Then, a 
different deformation of the beam caused by loads applied to the numbered nodes was 
given by ABAQUS program, and the amplitude of the static load was predicted by the deep 
learning algorithm and compared with the exact solution.
(2) Prediction of static loads acting between the numbered nodes. In this case study, the 
database for the deep learning was also developed by applying static forces to the numbered 
nodes. Then, a deformation of the beam caused by a load acting on a node between the two 
adjacent numbered nodes (as shown in Fig. 3) was given by ABAQUS program. Amplitude 
and position of the static load were predicted by the deep learning algorithm.
(3) Prediction of the impact load acting on the numbered nodes. Impact loads imposed 

Both static and dynamic responses of the cantilever beam under concentrated loading forces 
are computed by using ABAQUS. It should be noted that the loading history of each 
concentrated force acting on the beam, which can cause plastic deformation of the 
beam, is featured with a bi-linear loading and unloading curve of bandwidth t and loading 
amplitude Fmax, as shown in Fig. 4.
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Table 2: Loads for the static analysis
Node Fmax (N) t

1 5.0× 107 − 8.0× 107 0.5
2 6.0× 107 − 9.0× 107 0.5
3 8.0× 107 − 12.0× 107 0.5
4 8.0× 107 − 14.0× 107 0.5

Table 3: Loads for the dynamic analysis

Node Fmax (N) t (s)
1 7.1× 107 − 7.3× 107 0.01-0.03
2 8.1× 107 − 9.3× 107 0.01-0.03
3 10.0× 107 − 11.8× 107 0.01-0.03
4 12.0× 107 − 14.8× 107 0.01-0.03

(a)

(b)
Figure 5: Permanent displacement distribution: (a) Plastic displacement along horizontal
direction, and (b) Plastic displacement along vertical direction

to one numbered node. Responses of the beam under impact load with different amplitudes 
and durations were numerically predicted. Then, a different deformation of the beam 
caused by an impact load acting on this numbered node was given, and both the 
amplitude and duration of the impact load were predicted.

(4) Prediction of the impact load acting between the numbered nodes. This case study is 
similar to the second case study. Position, amplitude and duration of the impact load were



all predicted by the deep learning algorithm.
The bi-linear pulse load–time history curve is assumed throughout this study as shown 
in Fig. 4. For the static analysis, the step time T equals 1, and durations of loading 
and unloading are 0.5. For the dynamic response, durations of loading and unloading are 
significantly reduced to orders of 0.01-0.03 s to simulate the impact loads. Meanwhile, 
in order to minimize the influence of inertial effects and get the final stable deformation 
of the beam, the step time T for the dynamic analysis is set as 50-100 s. For the static and 
dynamic analysis, amplitude, duration and step time for the first two case studies are 
listed in Tab. 2 and Tab. 3, respectively. For the multi-points condition, amplitude of 
the load is reduced. For static analysis as an example, amplitude of the load was between 
2.0 × 107 - 7.0 × 107 N for two nodes cases, 1.0 × 107 - 5.0 × 107 N for three nodes cases, 
and 1.0 × 107- 4.0 × 107 N for four nodes cases.

3.3 Training data

When applying above magnitude force to the cantilever beam, it will have permanent 
plastic deformation. One of particular plastic displacement examples is as shown in Fig. 5, 
while the associated plastic residual strain distribution is shown in Fig. 6.
After obtaining the residual plastic displacements from all FEM nodes of the beam, we 
combine them together as the input of training data of DNN. The process is as shown in 
Fig. 7. The right table of Fig. 7 is the input of one set of raw training data of DNN. The 
output of this set of training data is the value and location of the outside force according 
to this plastic displacement distribution, for static modes, and the location, magnitude and 
duration according to this plastic displacement distribution, for dynamic models.

4 Results and discussions
4.1 Prediction of the static loads on training nodes

Table 4: The correct and predicted loads of the testing cases (107N)
Testing cases 1 2 3 4
Combination 4© 2© 4© 1© 2© 4© 1© 2© 3© 4©

correct predicted correct predicted correct predicted correct predicted
1©x 0 -0.0353 0 -0.1221 2.1543 2.0785 1.2917 1.3145
1©y 0 0.0214 0 -0.0524 -1.9067 -1.969 -1.5630 -1.5402
2©x 0 -0.1143 4.5138 4.514 2.7296 2.8529 1.7999 1.8281
2©y 0 -0.0335 -4.5320 -4.5488 -3.1083 -3.0752 -1.9380 -1.9136
3©x 0 0.0294 0 -0.0004 0 0.0598 2.1204 2.1566
3©y 0 -0.0469 0 0.0317 0 -0.0062 -2.7124 -2.8005
4©x 9.4431 9.2816 6.1548 6.0149 3.4294 3.3453 2.8181 2.793
4©y -9.8902 -9.6926 -5.8801 -5.8765 -3.8756 -3.8447 -2.6192 -2.5966

Generally speaking, in machine learning, the more the data are available, the more 
accurate a prediction may be. However, there is still no rule about how much data is enough. It  
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(a)

(b)

(c)
Figure 6: Permanent plastic strain distribution: (a) Plastic strain component εp11, (b) Plastic
strain component εp22, and (c) Plastic strain component εp12

depends on how complex of the problem and how complex of the learning algorithm 
are. So the rules we used to generate data is as follows,
1. Generating the preliminary database with a little samples.
2. Training the model to see how the performance of the model is and if the predicted
accuracy hits the requirement.
3. If the results are not accurate enough, then generating more data to see if the performance
increases.
4. If the performance increases, then repeat the 1 to 3 Steps until the result hits the required
accuracy.
5. If the performance stays still or increases slowly, then modifying the learning model or
learning parameters.
For our static problem, we have generated 290 sets of data (about 20 sets for each load
case) from which we get a good training effect. The training effect is usually evaluated by
the training loss which is a value representing the fitting of the model to the training data.



Figure 7: Collect one set of training data input

Figure 8: Training loss

In this study, the mean square error (MSE) between the outputs and the correct results was 
chosen as the training loss. There is an updated loss in each epoch which can show the 
fitting of the model. The record of the loss throughout the process of our case is shown as 
Fig. 8:
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Table 5: Predicted errors of the testing cases (%)
Loading Cases 1 2 3 4
Combination 4© 2© 4© 1© 2© 4© 1© 2© 3© 4©
1©x null null 3.5182 1.7654
1©y null null 3.2667 1.4555
2©x null 0.0041 4.5163 1.5689
2©y null 0.3699 1.0641 1.2582
3©x null null null 1.7097
3©y null null null 3.246
4©x 1.7104 2.2732 2.4529 0.8908
4©y 1.9981 0.0602 0.797 0.8644

In Fig. 8, the loss gradually decreases and reaches the minimum value of 0.2611 after 18k 
steps. The minimum value and the smooth descend curve of the loss indicates that the 
model was trained steadily and has fitted the training data very well.
To test the performance of the model, four sets of testing data were generated. Each testing 
data represents one type of loading combination, as shown in Tab. 4. For this problem, we 
designed our output layers with eight neurons which represent the two direction loads in 
four valid loading points, as mentioned in Section 3.2. Therefore, inputting the testing data 
to our DNN model, we get the output as shown in Tab. 4. The errors of the prediction are 
listed in Tab. 5.
In Tab. 4 , due to the eight-neuron output layer, all the eight values of the output were non-
zero, but the values on the real-loaded nodes were much larger than the values on the other 
nodes. For example, in Case 1, the real load is located in node ©4 . In the predicted result, 
the values of ©4 x and ©4 y is obviously much larger than the values on the other nodes. And 
the values of ©4 x and ©4 y is very close to the real values, with the errors of 1.71% and 
1.998%. The output of the other three test cases have the same pattern. Predicted errors are 
all smaller than 5%, as shown in Tab. 5. Therefore, the trained DNN model can correctly 
predict the loading locations and the magnitude of the static loads which act on the training 
nodes.

4.2 Prediction of the static loads between training nodes

Table 6: Correct values of the testing data
Testing Cases 1 2 3 4 5 6 7 8
Interval 3©∼ 4© 3©∼ 4© 2©∼ 3© 2©∼ 3© 1©∼ 2© 1©∼ 2© 1©∼ 2© 1©∼ 2©
Location (m) 3.0 3.25 3.75 4.0 4.5 4.5 4.75 4.75

11.47 10 9.02 6 6.45 6.34 7.34Load x (107N) 12 
Load y (107N) -12 -10.35 -10 -9.56 -6 -6.63 -6.76 -7.76



Table 7: Predicted results of the testing data
Testing Cases 1 2 3 4 5 6 7 8
Interval 3©∼ 4© 3©∼ 4© 2©∼ 3© 2©∼ 3© 1©∼ 2© 1©∼ 2© 1©∼ 2© 1©∼ 2©
Location (m) 2.922 3.037 3.82 4.131 4.723 4.543 4.835 4.618
Load x (107N) 12.214 11.163 9.327 8.356 5.675 6.389 5.886 7.167
Load y (107N) -12.065 -10.808 -9.9 -9.383 -6.108 -6.707 -6.599 -7.877

Table 8: Predicted errors of the testing data (%)
Testing Cases 1 2 3 4 5 6 7 8

Interval 0 0 0 0 0 0 0 0

Location 2.604 6.554 1.88 3.281 4.949 0.96 1.785 2.769

Load x 1.784 2.68 6.729 7.366 5.418 0.814 7.159 2.361

Load y 0.545 4.424 1.002 1.85 1.792 1.164 2.377 1.505

In Section 4.1 we demonstrated the capability of the DNN model to predict the statics 
loads acting on the training nodes. In this section, following the data collection rules 
outlined in Section 4.1, we trained the DNN model with 133 sets of data that were 
obtained by static loads acting on the four valid training nodes individually. Then, we 
tested the model with 8 sets of deformation states caused by 8 different loads acting in the 
interval between the training nodes, to see if the DNN can make extended prediction. The 
testing data is shown in Tab. 6. We designed the output layer with three neurons which 
represent the location of theload and the magnitudes of the loads in x and y directions 
because the loads are all acting individually in this section. The predicted results are shown 
in Tab. 7 and Tab. 8.
According to the results, all the predicted locations were in the correct intervals. The 
correct interval is an important information which can indicate the location range of the 
load. Then one can further locate the load by subdividing or reducing the interval. For the 
prediction of the specific location and the magnitude in x and y directions, the maximum 
errors are 6.554%, 7.366% and 4.424% respectively. The average error of the output is 
3.098%, which is less than 5%. The errors of the prediction are small and can meet a lots 
of engineering requirements. Therefore, the results show that the DNN model is able to 
predict the static loads in the interval between the training nodes.

4.3 Prediction of the impact loads on training nodes

Table 9: Predicted errors of the nodal impact loads(%)
Loading Cases 1 2 3 4
Location 3.321 0.94 3.175 0.474
Magnitude 0.289 0.293 1.641 2.338
Duration 12.321 5.032 0.682 3.535
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Figure 9: Training loss

Figure 10: Training and testing data

Compared to the static problems, dynamic problems are more common in real situations 
but also more complicated. By following the data collection rules stated in Section 4.1, 
for the dynamic problem discussed here, about 40 sets of data for each load case 
would produce a good training effect. We finally trained the DNN model with 175 sets 
of deformation states caused by different single vertical impact load acting on the training 
points. Then five sets of test data were generated to test the performance of the trained 
model. All the training and testing data are shown in Fig. 10. The output layer has three 
neurons which represent the location, magnitude and the duration of the impact loads.
The training loss throughout the training process is shown as Fig. 9. The minimum loss 
(MSE) reached 0.056 after 18k iteration steps which shows a good fitting of the model to



Figure 11: Predicted result of the loads on the nodes

the training data.The prediction of these impact loads are shown in Fig. 11. The predicted 
loads and the correct loads are very close to each other in the shown three dimension space. 
The maximum errors of the predicted location and the magnitude are 3.321% and 2.338%, 
respectively, as shown in Tab. 9. The maximum error of the duration is 12.321%. During 
the study, we found that the load duration is more difficult to be predicted than the other 
two parameters. The overall errors of these five testing cases are less than 5.4%. It shows 
that the DNN also works very well in the prediction of the impact loads which are located 
on the training nodes, especially for the location and the magnitude of the impact.

4.4 Prediction of the impact loads between training nodes

Table 10: Predicted errors of the loads in intervals(%)
Predicting Cases 1 2 3
Interval 3©∼ 4© 2©∼ 3© 1©∼ 2©
Location 3.058 9.718 3.418
Magnitude 2.047 6.859 1.195
Duration 7.213 8.516 1.233

For the prediction of the impact loads acting within different intervals, we generated three
sets of testing deformation which were caused by three different impact loads acting in
each interval individually. Then, we used the DNN model in the Section 4.3 which had
been trained with the 175 sets of deformation by single impact loads acting on training
nodes. The values of the training data and the test loads are shown in Fig. 12. The output
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Figure 12: Training and testing data

Figure 13: Predicted result of the loads in the intervals

of the DNN model is shown in Fig. 13, and the error of the output is listed in Tab. 10. The 
maximum error of the location, magnitude and duration are 9.718%, 6.869% and 7.213%, 
respectively. Compared to the Section 4.3, the overall errors are increased but still less than 
10%. And the predicted locations are all in the correct intervals. It is concluded that the 
DNN can predict the loads in the interval between the training nodes, too.
The results show that the DNN model is capable to do interpolation between the training 
data by itself. However, the interpolation accuracy still depends on the density of the 
training data. The higher the density of the training data, the higher the predicted accuracy 
will be.



Thus, while training the DNN model, we can choose some typical loading cases as 
training data depending on the accuracy demand, which would save a lot of time in 
training phrase. To further reduce the predicted error, another approach is developed as 
explained in the Section 4.5.

4.5 Improving accuracy of prediction on the load location

Figure 14: Refine interval

Table 11: Correct values of the predicted impact loads
Predicting Cases 1 2
Interval 5©∼ 6© 5©∼ 6©
Location (m) 4.5 4.5
Magnitude(107N) 8.2 8.4
Duration (s) 0.018 0.014

Table 12: Predicted value of the impact loads
Predicting Cases 1 2 1 2

Before refine After refine
Interval 6©∼ 1© 6©∼ 1© 5©∼ 6© 5©∼ 6©
Location(m) 4.906 4.66 4.464 4.444
Magnitude(107N) 7.332 7.739 8.444 8.435
Duration(s) 0.0191 0.0146 0.0171 0.0145

According to the above results, it is shown that the DNN model can tell the correct interval
in which the loads acts. Therefore, after the first prediction, we can concentrate our
attention to the predicted interval. To further locate the true value of the load, we can
subdivide the interval into several smaller intervals, and then add more training data within
this area. Here, we took the Testing Case 3 in the Section 4.4 as an example. The DNN
model had predicted that the load was located in interval 1©∼©2 . So we can subdivide
the interval 1©∼©2 into three smaller intervals. The location coordinate of the smaller
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Table 13: Predicted errors of the nodal impact loads(%)
Predicting Cases 1 2 1 2

Before refine After refine
Interval 6©∼ 1© 6©∼ 1© 5©∼ 6© 5©∼ 6©
Location 9.02 3.552 0.798 1.238
Magnitude 10.583 7.866 2.978 0.421
Duration 5.945 4.236 4.864 3.725

5 Conclusions
In this study, we applied deep (machine) learning techniques to solve an inverse 
engineering problem of identification of the location, amplitude, and duration of 
impact forces on a structure, both static and dynamic loads, based on the permanent 
residual deformation as well as the permanent strain distributions. For static problems, 
the developed machine learning algorithm can predict both the location as well as the 
amplitude of the force with high accuracy. The prediction on the location of the 
applied load is not necessarily from the training data, after studying the training data, 
the machine learning algorithm can automatically use interpolation to find the applied 
load location that is not in the train data. This is to say that we only need to train the 
neural network with a limited number of loading sets, it can then predict any loading 
locations on the boundary of the cantilever beam. This is a remarkable success for an 
inverse problem solution that was impossible to realize because of the non-unique 
solutions for inverse problems. Based on this study, we have come to a conclusion 
that by using the forensic signatures such as permanent deformation and residual plastic

intervals are 4.25∼4.375 m, 4.375∼4.625 m and 4.625∼5 m, as shown in Fig. 14. Eighteen
sets of new training data were generated on each of the new numbered points ©5 and ©6 ,
respectively. Then, we retrained the DNN model with the data on Node ©1 ,©2 ,©5 and ©6 .
Different from the previous model which was trained with all data, the retrained model
would only predict the loads in interval 1©∼©2 and achieve a much higher accuracy in the
prediction. Two testing data were generated, as shown in Tab. 11. The predicted results and
the errors before and after the retraining are shown in Tab. 12 and Tab. 13. The predicted
errors of all three parameters are reduced greatly by refining the interval, from 9.02%,
10.583% and 5.945% to 0.798%, 2.978% and 4.864%, respectively. Also, the prediction
of the smaller intervals reached 100% accuracy. Therefore, by refining the interval and
retraining the DNN model step by step, it is possible to finally reach the required accuracy.
Based on the convergence tendency, it is also shown that finer mesh will lead to correct
finer intervals and high accuracy results. Thus, if we could have large amounts of data with
forces applied on a large variety of different locations, which is equivalent to dividing the
cantilever beam to large numbers of sections, the predicted results will still be in the correct
interval. The accuracy will achieve almost 100% if we have unlimited amount of data.



strain distributions one can uniquely (practically) determine the applied load conditions
inversely with high accuracy for most engineering purposes.
For dynamic loading problems, the current version of our machine learning algorithms can
also predict both the location and amplitude of applied loads with high accuracy, whereas
the accuracy of the prediction on the duration of the loads is not high, even though it
still have good accuracy i.e. the error is within 5% to 10%. These results are very much
promising for both static and dynamic inverse problems. Results herein demonstrate that
the ML or AI based approaches can solve many previously intractable problems. We
shall soon report our machine learning algorithm for inverse failure analysis of three-
dimensional structures with more complex geometries and loading conditions, including
crashworthiness analysis and seismic or other extreme hazardous event induced structure
failure forensic analysis.
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