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Numerical Simulation of Thermosolutal Convective Transitions in 

a Very Narrow Porous Annulus under the Influence of Lewis 

Number 

A. Ja1 and A. Cheddadi1 

Abstract: This paper reports on the natural convection within a very narrow horizontal 

annular cavity filled with a porous medium saturated by a binary fluid. The main objective 

of this study is the identification of the effect of Lewis number on the flow structure and 

on the heat and mass transfer rates, in a cavity of very small radius ratio R=1.05, in the case 

of equal buoyancy forces (N=1), for a Rayleigh number Ra=50. The dimensionless 

governing equations were solved by the centered Finite Difference method using the ADI 

scheme. Several multicellular flows appear during the variation of the Lewis number, 

resulting in a direct impact on the heat and solutal transfer rates. 

Keywords: Thermosolutal convection, Porous medium, Annular geometry, Finite 

Difference, Critical Lewis number. 

Nomenclature 
D Mass diffusivity, m2 s-1 

g Gravitational acceleration, m s-2 

K Permeability of the porous medium, m2  

r Dimensionless radial coordinate 

T, S Dimensionless temperature and concentration 

u, v Dimensionless velocity in r and φ directions 

Greek Symbols 

α Thermal diffusivity, m2 s-1 

β Expansion coefficient, K-1  

Ψ Dimensionless stream function 

ν Kinematic viscosity, m2 s-1 

φ Polar angle, rad 

ρ Density, kg m-3 

Subscripts 

0 Reference value  

i Inner cylinder 
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o Outer cylinder 

T Thermal 

S Solutal 
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n Iteration number 

C+ Counterclockwise cell 

C− Clockwise cell 

Operators 

2  2

2

2

112























rr
r

rr
 

  
 

Non-dimensional Numbers  

Le Lewis number, [α /D]  

N Buoyancy ratio, [βSΔS / βTΔT]  

R Radii ratio, [ro /ri]  

Ra Darcy-Rayleigh number, [g βTΔTKri /υα]  

1 Introduction 

Natural convection in porous media induced by a simultaneous application of temperature 

and concentration gradients, named double-diffusive or thermosolutal, has undergone less 

attention compared to the natural thermal convection, despite its importance in different 

technological and industrial fields, e.g. in dissemination of chemical particles in chemical 

reactors packed bed, the spread of radioactive substances in nuclear deposits under land, 

desalination of sea water, separation of species etc. 

The published literature on thermosolutal convection in porous media was dedicated 

mainly to the square and rectangular cavities. Among many numerical, experimental and 

analytical studies, we can cite the investigation on a square porous cavity where the 

horizontal walls are subjected to constant temperatures and concentrations by Trevisan et 

al. [Trevisan and Bejan (1985)]. The numerical solution shows that, for the purely thermal 

case (N=0), the variation of the Lewis number has no influence on the rate of thermal 

transfer. Contrariwise, the solutal transfer rate increases with increasing Le. A method of 

scale analysis was used and provided a description of the phenomenon of natural 

convection for the two important cases, namely, heat transfer driven flows and mass 

transfer driven flows, in order to predict the average heat and mass transfer rates and their 

respective domains of validity. Furthermore, the comparison between the results obtained 

for both methods has shown a good agreement. These techniques were used by the same 

authors [Trevisan and Bejan (1986)] to study the thermosolutal convection in a rectangular 

porous cavity subjected to uniform heat and mass fluxes imposed horizontally. In Bourich 
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et al. [Bourich, Amahmid and Hasnaoui (2004)] the natural convection in a square porous 

cavity subjected to cross temperature and concentration gradients was studied. The 

numerical study aimed to extract the influence of governing parameters and led to simple 

correlations between the critical Rayleigh number and the Lewis number. 

The case of vertical cylindrical cavity subjected to uniform heat and solutal fluxes on the 

side wall, was studied numerically by Marcoux et al. [Marcoux, Charrier-Mojtabi and 

Azaiez (2011)]. The influence of the governing parameters on the heat and mass transfer 

rates has been investigated. Increasing the Lewis number leads to a progressive decrease 

in the average Nusselt number, unlike, the average Sherwood number which increases with 

increasing Lewis number. The same problem was considered in Kalita et al. [Kalita and 

Dass (2011)], in the case where the side walls are subjected to constant and uniform 

temperatures and solutal concentrations. The numerical analysis was carried out in this 

study by a Higher Order Compact (HOC) method and has shown that increasing the Lewis 

number had a negligible effect on the temperature distribution in the case of cooperating 

forces. While the concentration in the center of the cavity is uniform, the solutal boundary 

layers become thinner as the Lewis number is increased. 

In the case of horizontal cylindrical annular cavity submitted to simultaneous application 

of temperature and concentration gradients, the phenomenon of convection in the presence 

of the Soret effect was investigated in Alloui et al. [Alloui and Vasseur (2011)] for constant 

values of Lewis number Le=2 and radii ratio R=2. The study proved numerically the 

existence of critical values of buoyancy ratio leading to two types of solutions. Recently, 

the study of the influence of various parameters of the thermosolutal natural convection on 

the flow structure and on the thermal and solutal transfer rates has been investigated in Ja 

et al. [Ja, Belabid and Cheddadi (2015)], for a fixed radius ratio R=2, in the case of 

cooperating volume forces. 

In such problems, the appearance of multicellular flows depends essentially on the 

geometry of the cavity and is characterized by critical values of the Rayleigh number 

initiating thermal instabilities (Rayleigh-Benard type natural convection). Much studies 

concerning purely thermal convection in porous horizontal annular cavities have shown the 

critical values of Rayleigh number associated with the appearance of multicellular flows 

and sometimes gave correlations describing the heat transfer rate as a function of Rayleigh 

number Caltagirone et al. [Caltagirone (1976); Caltagirone (1978); Charrier-Mojtabi 

(1997); Rao, Fukuda and Hasegawa (1987); Barbosa Mota and Saatdjian (1994); Barbosa 

Mota and Saatdjian (1997); Hamad and Khan (1998); Alfahaid, Sakr and Ahmed (2005); 

Belabid and Cheddadi (2014)]. On the other hand, the onset and development of 

thermosolutal multicellular flows was investigated in a rectangular cavity filled with a 

porous medium saturated by a binary fluid, by Charrier-Mojtabi et al. [Charrier-Mojtabi, 

Karimi-Fard, Azaiez et al. (1998)] for constant temperatures and concentrations on the 

vertical sides, and Amahmid et al. [Amahmid, Hasnaoui, Mamou et al. (1999)] for a cavity 

subjected to uniform heat and mass fluxes on the horizontal walls. The critical Rayleigh 

number was evaluated, in both studies, over large ranges of the thermosolutal parameters 

(Le, N). 

Recently, great interest has been shown in the experimental determination of the Soret, 

thermodiffusion and molecular diffusion coefficients of mixtures, resulting in useful 
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worldwide benchmarks (see e.g. [Bou-Ali, Ahadi, Alonso de Mezquia et al. (2015)] for 

ternary mixtures). 

In this paper, we present a numerical simulation of the effect of variation of the Lewis 

number on the thermosolutal convection, in an annular space delimited by two coaxial, 

horizontal, isotherm and impermeable cylinders. We are primarily interested in the 

appearance of multicellular flows. The annulus is filled with a porous medium saturated by 

a binary fluid. The inner and outer cylinders of radius ratio respectively ri and ro are 

maintained at constant and uniform temperatures and concentrations, Ti, Si and To, So  

respectively for the inner and outer cylinders, with Ti>To and Si>So, as shown in Figure 1. 

The binary fluid is assumed to be Newtonian, incompressible and satisfying Boussinesq 

approximation: ρ=ρ0 [1-βT (T-T0)-βS (S-S0)], where βT and βS are the thermal and solutal 

expansion coefficients, respectively. T0 and S0 are the reference temperature and 

concentration. All the results are presented for a narrow cavity of radius ratio R=1.05, in 

the case of a buoyancy ratio N=1, a Darcy-Rayleigh number Ra=50, and Lewis numbers in 

the wide range 0.1≤Le≤1000, where: 
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T being the temperature difference TiTo, and S  the concentration difference. In 

practice, the Lewis number value is much smaller than the considered range in this study. 

However, in order to understand the influence of this parameter and study the behavior of 

the binary fluid in asymptotic situations (Le→∞ and Le→0) very high theoretical Lewis 

number values are investigated. 

2 Mathematical formulation 

The dimensionless steady state equations governing the two-dimensional flow described 

in stream function formulation are given by:  
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Figure 1: Schematic diagram of the annular domain 

 

where r is the dimensionless radial coordinate and φ is the polar angle measured from the 

downward vertical, T and S are the dimensionless temperature and concentration, Ψ is the 

stream function defined by 
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, where u and v are respectively the 

radial and tangential velocities. 

The governing equations reduce to the dimensionless form by using the following reference 

system: ir  for the radial coordinate, 

ir

 for the velocity, T  for the temperature and S  for the 

concentration. 

The dimensionless boundary conditions for the above system of equation are: 
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Taking into account the symmetry of the problem, two additional boundary conditions are 

introduced: 
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The heat and mass transfer rates are evaluated on the inner cylinder. The local Nusselt and 

Sherwood numbers are defined respectively by: 
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The average Nusselt and Sherwood numbers considering the half annular space are defined 

as follows:  
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3 Numerical method 
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The governing equations are discretized using a centered Finite Difference method. An 

iterative procedure is performed with the Alternating Direction Implicit scheme (ADI). The 

process is completed when the following criterion is satisfied in each node of the grid: 
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, where χ refers to T, S and 𝛹 and n denotes the reached iteration number, 

the subscript (i,j) represents a grid node. Preliminary tests conducted to examine the effect 

of the grid size on the results showed that a 91×111 grid is sufficient. The accuracy of the 

numerical code was compared with available data in the case of pure thermal convection 

for R=2. As listed in Table 1, an extremely good agreement between our numerical and 

literature results using different numerical methods. In addition, a comparison between our 

study with the available results of Himasekhar et al. [Himasekhar and Bau (1988); 

Charrier-Mojtabi (1991)] is carried out for narrow cavities (see Table 2), and they are also 

found to be in excellent agreement.  

The numerical investigation is performed with introduction of pure conduction stream 

function, temperature and concentration fields as initial conditions: 
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Table 1: Comparison of the average Nusselt number with literature for R=2, N=0 

Study Numerical methods 
Ra 

50 100 150 

Caltagirone (1976) Galerkin 1.3278 1.8286 --- 

Bau (1984) Perturbation 1.335 1.844 2.295 

Charrier-Mojtabi (1997) Fourier-Galerkin 1.334 1.867 2.309 

Belabid and Cheddadi (2014) Samarskii-Andreev 1.3440 1.8687 --- 

This study ADI 1.3429 1.8677 2.3114 

 

Table 2: Comparison with Fourier-Galerkin method for narrow cavities for N=0 

Ra R 
Himasekhar and 

Bau (1988) 

Charrier-Mojtabi 

(1991) 

This study 

100 21/4 1.0045 1.0045 1.0045 

200  1.0177 1.0177 1.0177 

100 21/8 1.000288 1.000258 1.000259 

200  1.001063 1.001030 1.001034 

500  1.006456 1.006425 1.006428 
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4 Results and discussion 

4.1 Flow structure 

Figure 2 displays the flow pattern, isotherms and iso-concentration lines in the annular 

cavity. To give a better visualization of the multicellular flows that appear in the top of the 

cavity a section zoom 



4

3
 is used. A progressive change in the Lewis number 

shows that different types of flow develop successively. First, a unicellular flow dominates 

all values of Le≤31, with a counterclockwise cell C+  occupying the entire left half annular 

space (the flow is symmetrical with respect to the vertical plane passing through the axis 

of cylinders). A small increase of Lewis number to Le=31.1 involves a transition from 

unicellular to bicellular flow C+C−, characterized by a small clockwise cell in the upper 

part of the annulus, as shown in the subfigure 2a. This bicellular flow transits with the 

increase of Lewis number to a bicellular swirling flow C+c+C− (subfigure 2b), characterized 

by the pinching of the main C+ cell at the value Le=31.7, giving rise to a counterclockwise 

vortex C+c+ at the top of this cell. This pattern occurs in the range 31.7≤Le≤50.1. Increasing 

the Lewis number to the value Le=50.2 generates the separation of the vortex C+c+ 

becoming an independent cell, and the creation of a clockwise cell between the corotative 

cells, giving rise to a tetracellular flow C+C−C+C− over the whole range 50.2≤Le≤136 

(subfigure 2c). Beyond the last value, the system under investigation bifurcates from steady 

to unsteady state at the critical value Le=136.1. On the other hand, another bifurcation 

occurs at Le=142, where the system returns to the steady state with a bicellular structure 

C+C−, characterized by a very small clockwise cell in the upper part of the annulus, as 

illustrated in the subfigure 2d. This flow pattern persists over the whole range 142≤Le≤241. 

A second bifurcation to the unsteady flow takes place at Le=241.1 and the same behavior 

is kept in the range 241.1≤Le≤457.9. At the critical value Le=458 the unsteady flow tends 

to return to the unicellular flow C+ (subfigure 2e), occurring over the large range 458≤Le≤ 

1000.  
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Figure 2: Flow patterns for different values of Lewis number 

Streamlines (left), isotherms (center) and isoconcentration lines (right) 

4.2 Flow intensity 

Figure 3 illustrates the variation of flow intensity represented by the maximum stream 

function, max , corresponding to the counterclockwise cells and the minimum stream 

function, min , corresponding to the clockwise cells, as function of Lewis number. The 

depicted values in the figure show the critical Lewis number characterizing each transition. 

The above descriptions of the flow structure of different regimes explain clearly the 

variation of the stream function with the increase in the Lewis number. It is noted that 

whatever the nature of the flow structure obtained, the gradual increase in the Lewis 

number causes a progressive decrease in max . The physical meaning for this behavior lies 

in the thicker dynamic boundary layer for high value of Lewis number (keeping N constant), 

thereby decreasing velocity gradient near the active walls. 

Beyond the critical value Le=31.1, where the flow is unicellular C+ ( min =0), gradual 

increase of Le leads to the development of the clockwise cells (bicellular C+C−, bicellular 
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swirling C+c+C− and tetracellular flow C+C−C+C−), which causes the progressive increase 

of min . Though the transition from the unsteady flow to the bicellular flow C+C− generates 

a decrease in min , comparatively to the value obtained for the tetracellular flow at Le=136 

(−22.68%), due to the reduction of the number of clockwise cells. The development of the 

clockwise cells for 142≤Le≤148, leads to an enhancement of min . However, the 

increasing of Lewis number beyond this value (148≤Le≤241) gives a relatively small 

decrease in min  (−3.64%). When the system shifts to the steady state solution, after the 

second unsteady flow, Le=458, the flow pattern is unicellular C+ characterized by min =0.  

 

Figure 3: Variation of maximum and minimum stream function as function of Lewis 

number for Ra=50 and N=1 

4.3 Heat and mass transfer rates 

In the following section, the flow patterns discussed above are interpreted by means of the 

local heat and mass transfer rates. Figure 4 illustrates the variation of the local Nusselt 

number lNu , along the inner cylinder for the flow structures described in the previous 

section. For the unicellular flow Le≤31, the local heat transfer is identical whatever the 

Lewis number value, as illustrated in the subfigure 4a, showing that the effect of the Lewis 

number is negligible on the local heat transfer when the flow pattern is unicellular. For the 

bicellular flow C+C− and bicellular swirling flow C+c+C− (subfigure 2a-b), the variation of 

the local heat transfer is characterized by four peaks (two maximal and two minimal peaks) 

in the upper part of the cavity (see subfigure 4b), where the small clockwise cell C− occurs. 

The first minimal peak located at the top limit of the largest counterclockwise cell C+, is 

due to the transport of the binary fluid from the hot wall to the cold one, giving rise to a 

minimal local heat transfer. Conversely, at the bottom limit of the small counterclockwise 

cell c+ (first maximal peak), the flow is directed from the outer to the inner wall and 
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promotes the local heat transfer. In the contact zone of the counter-rotating cells c+C−, 

corresponding to the second minimal peak, the flow is directly transported to the cold wall, 

involving a lower local heat transfer. The last maximal peak located at   , matches the 

upper limit of the clockwise cell C−, and the flowing from the cold to the hot cylinder. For 

the tetracellular flow C+C−C+C−, depicted in subfigure 2c, the same behavior of the local 

heat transfer discussed for the bicellular flow remains valid, as shown in the subfigure 4c. 

The two minimal peaks (resp. first maximal peak) are due to the contact zone between the 

counter-rotating cells C+C− (resp. C−C+), and the second maximal peak located at the 

  , is caused by the return of the cooler fluid to the hot wall, as for the bicellular flow. 

The same principle can apply to the second bicellular flow C+C− (subfigure 4d), 

characterized by a minimal peak corresponding to the contact zone of the counter-rotating 

cells C+C−, and a maximal peak at the top limit of the clockwise cell C−. Whereas, along 

the region dominated by the first thermal cell C+, the local heat transfer remains identical 

for all values of Lewis number. The theoretical very high Lewis number values considered 

in the subfigure 4e show no significant influence of the increasing Le value on the local 

heat transfer rate for the unicellular flow.  

Figure 5 illustrates the variation of local solutal transfer rate, Shl, along the inner cylinder. 

The previous explanations of the peaks observed at the contact zone of the co-rotating and 

counter-rotating eddies remain fair for the variation of the local Sherwood number in the 

multicellular flow case (subfigure 5b-d).  

For the unicellular flow characterized by moderate Lewis number values (Le≤31), a 

fundamental difference is noted between the local heat and solutal transfer rates (subfigures 

4a–5a). It appears that the increasing of the Lewis number enhances the solutal transfer on 

the inner cylinder within the range 
2

  0


  , and a reverse effect is observed for the range 




  
2

 . Furthermore, in this situation, the solutal transfer is dominated by diffusion, as 

illustrated by the stratified isoconcentration lines (see subfigure 6a) and the linear 

dimensionless concentration distribution, shown in the subfigure 7a. An examination of the 

concentration fields for the unicellular flow obtained for very high Lewis number value 

(see subfigure 6b where Le=700) indicates that the convection regime dominates the solutal 

transfer, as can be also confirmed by the concentration distribution in the subfigure 7b. 
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                                   (a)                                                            (b)    

     
                                 (c)                                                              (d)    

           (e)   

Figure 4:  Variation of local Nusselt number along the inner cylinder 

(a, e): Unicellular flow, (b, d): Bicellular flow and (c): Tetracellular flow 
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                                    (a)                                                                   (b)    

       
                                    (c)                                                                     (d)    

 
        (e)   

Figure 5: Variation of local Sherwood number along the inner cylinder 

(a, e): Unicellular flow, (b, d): Bicellular flow and (c): Tetracellular flow 
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Figure 6:  Isocontours of the unicellular flow for Ra=50, N=1 

    
                                  (a)                                                                  (b) 

Figure 7:  Dimensionless concentration profile along the radial direction  

for Ra=50, N=1, 
2

  


   

Figure 8 shows the variation of the overall Nusselt and Sherwood numbers as a function of 

Lewis number. The values of Nusselt and Sherwood numbers presented for the unicellular 

flow are almost of the order of unity. It is therefore concluded, based on the previous results 

obtained for the local heat and solutal transfer rates, that for very narrow annular cavities 

and for values of Lewis number Le≤31, both transfer rates are dominated by conduction / 

diffusion.   

The transition to the multicellular flow characterized by the development of convective 

cells improves the solutal transfer rate, given the direct transport of particles through the 

contact zone of the counter-rotating cells. Also, a possible explanation for the average 

Sherwood number behavior is that the thin solutal boundary layers in the bottom and upper 
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part respectively near the inner and outer cylinders, promote the solutal transfer. However, 

the heat transfer rate is still dominated by the conductive mode whatever the value of the 

Lewis number. The shape of the isotherms shown in Figure 2 and Figure 6 illustrate a radial 

stratification of the isotherms, when increasing the Lewis number. This allows concluding 

that the influence of the Lewis number on the thermal distribution is negligible in the 

narrow cavity, and hence, no influence is noticed on the heat transfer rate.   

 

 
Figure 8: Variation of average Nusselt and Sherwood numbers as function of Lewis 

number 

5 Conclusion 

The present investigation is dedicated to the numerical simulation of the steady-state 

thermosolutal convection in a very narrow horizontal annular enclosure, of radii ratio 

R=1.05, filled with a porous medium saturated by a binary fluid. A finite difference ADI 

model is adopted to resolve the governing equations. In particular, the effect of the Lewis 

number is considered with the constant governing parameters Ra=50 and N=1. The 

following conclusions have been drawn:  

 Different flow patterns (uni- and multi-cellular) occur upon variation of the Lewis 

number, when initial conditions of pure conduction are used. The ranges of Le 

characterizing each structure have been determined. 

 Unsteady flow occurs in two ranges of Lewis number, i.e, 136.1≤Le≤141.9 and 

241.1≤Le≤457.9. 

 The solutal transfer rate increases progressively with increasing Lewis number. Unlike 

this, the heat transfer is dominated by the conductive regime, with negligible effect of 
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Lewis number. 
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