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Abstract: This paper investigates the problem of oblique hydro magnetic stagnation 
point flow of an electrically conducting Casson fluid over stretching sheet embedded in a 
doubly stratified medium in the presence of thermal radiation and heat source/absorption 
with first order chemical reaction. It is assumed that the fluid impinges on the wall 
obliquely. Similarity variables were used to convert the partial differential equations to 
ordinary differential equations. The transformed ordinary differential equations are 
solved numerically using Runge-Kutta-Fehlberg method with shooting technique. It is 
observed that a boundary layer is formed when the stretching velocity of the surface is 
less than the in viscid free stream velocity at a point decreases with increase in the non-
Newtonian rheology parameter. The augmentation of the temperature is observed with 
the magnetic parameter, heat source parameter and thermal radiation parameter while a 
reverse effect with thermal stratification number, Prandtl number and the velocity ratio 
parameter. Influence of Skin friction coefficient, Nusselt number and Sherwood number 
on the flow configurations for different values of pertinent parameters are portrayed 
graphically and discussed. Numerical results are compared with the published results and 
are found to be in good agreement with previously published results as special cases of 
present problem. The mass concentration is seen to be decrease with Schmidt number, 
chemical reaction parameter and solutal stratification number.  
 
Keywords: Magnetic parameter, heat source, prandtl number, chemical reaction, casson 
fluid, free stream stagnation flow parameters. 
 
1 Introduction 
The study of stagnation-point flows has gained considerable attention of several 
researches in view of their importance in many engineering applications. These 
applications include rapid spray cooling and quenching in metal foundries, emergency 
core cooling systems, and glass blowing, etc. In some situation flow is stagnated by a 
solid wall, while in others a free stagnation point or line exists interior to the fluid domain. 
In stagnation point flow, a rigid wall or a stretching surface occupies the entire horizontal 
x-axis. The fluid domain is y>0 and the flow strikes on the stretching surface either 
orthogonally or at some angle of incidence. Hiemenz [Hiemenz (1911)] became first 
investigated the steady two-dimensional boundary-layer flow near the forward 
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stagnation-point on an infinite wall. Subsequently Howarth [Howrath (1935)] improved 
this solution. Further, various aspects of stagnation flow and heat transfer over a 
stretching sheet are investigated by many authors. Chiam [Chiam (1994)] analyzed the 
steady two-dimensional and the axisymmetric stagnation-point flow of a viscous 
Newtonian incompressible fluid towards a stretching surface and they observed that no 
boundary layer is formed, that is, the effect of the stretching plate exactly cancels the 
tendency to form the boundary layer. Chamkha [Chamkha (1998)] studied forced 
convection flow of an electrically-conducting fluid at the stagnation point of an 
axisymmetric body in the presence of a uniform applied magnetic field. Mahapatra et al. 
[Mahapatra and Gupta (2002)] investigated the heat transfer in a stagnation-point flow 
towards a stretching sheet. They concluded that the boundary layer is formed near the 
stretching surface. They observed that the structure of this boundary layer depends on the 
ratio of the velocity of the stretching surface to that of the frictionless potential flow in 
the neighborhood of the stagnation point. In a subsequent study, Gupta et al. [Gupta and 
Mahapatra (2003)] discussed the stagnation-point flow of an incompressible viscous fluid 
over a flat deformable surface when the surface is stretched axis symmetrically in its own 
plane with a velocity proportional to the distance from the stagnation-point. They have 
shown that a boundary layer is formed when the stretching velocity is less than the free 
stream velocity and an inverted boundary layer is formed when the stretching velocity 
exceeds the free stream velocity. Pop et al. [Pop, Grosan and Pop (2004)] studied the 
effect of thermal radiation on the stagnation point flow over a flat plate. They found that 
boundary layer thickness increases with radiation. Attia [Attia (2007)] studied MHD 
three dimensional axisymmetric stagnation point flow of an incompressible viscous fluid 
impinging on a permeable stretching surface with heat generation or absorption. They 
observed that the velocity components increase as the stretching velocity increases but 
velocity boundary layer thickness is seen to reduce. Zhu et al. [Zhu, Zheng and Zhang 
(2010)] made a study on the MHD stagnation point flow over a power-law stretching 
sheet considering the slip effect at the boundary. Zhu et al. [Zhu, Zheng and Zhang 
(2011)] analyzed the axisymmetric stagnation point flow towards a stretching sheet with 
velocity slip and temperature jump. They concluded that the flow and shear stresses 
depend heavily on the velocity slip parameter and the temperature gradient at the wall 
increases with velocity slip parameter and thermal slip factor. Tilley et al. [Tilley and 
Weidman (1998)] studied interaction between two planar oblique stagnation-point flows 
of different immiscible fluids. Reza et al. [Reza and Gupta (2005)] examined the steady 
two-dimensional oblique stagnation-point flow of a Newtonian fluid towards a stretching 
surface. They found that for very small shear in the free stream, the flow has a boundary 
layer structure and the thickness of the boundary layer decreases with increase in 
straining motion near the stagnation point. Further, they concluded that the flow has an 
inverted boundary layer structure when the stretching velocity of the surface exceeds the 
stagnation velocity of the free stream. In this case, the surface shear stress is found to 
decrease for an increase in the free-stream stagnation velocity. Lok et al. [Lok, Amin and 
Pop (2006)] made a numerical study of the non-orthogonal stagnation-point for 
Newtonian and non-Newtonian flows towards a stretching sheet. They found that the 
position of stagnation point depends on stretching parameter and angle of incidence. 
Labropulu et al. [Labropulu, Li and Pop (2010)] analyzed oblique stagnation point flow 



Non-Aligned Stagnation Point Flow of a Casson Fluid Past                                          235           

                                                                

of an incompressible visco-elastic fluid towards a stretching sheet. Rosali et al. [Rosali, 
Ishak and Pop (2011)] studied the stagnation point flow and heat transfer over a 
stretching/shrinking sheet in a porous medium. They showed that dual solutions exist for 
the shrinking case. Nadeem et al. [Nadeem and Lee (2012)] performed a numerical 
investigation of the non-orthogonal stagnation point flow of a non-Newtonian nanofluid 
towards a stretching surface and concluded that heat transfer decreases with an increase 
in Brownian motion and thermo-phoresis parameters. Nadeem et al. [Nadeem, Rashid 
Mehmood and Noreen Sher Akbar (2015)] studied the partial slip effect on the non-
orthogonal stagnation point nanofluid over a convective stretching surface. Khan et al. 
[Khan, Makinde and Khan (2016)] studied the effect of variable viscosity on the non-
aligned hydromagnetic stagnation point flow of an electrically conducting viscous 
incompressible nanofluid over a convectively heated stretching sheet taking into account 
of the thermal radiation. They observed that non-alignment of the re-attachment point on 
the sheet surface decreases with an increase in magnetic field intensity. Mustafa et al. 
[Mustafa, Mushtaq, Hayat et al. (2016)] examined MHD non-aligned stagnation point 
flow of an upper convicted Maxwell fluid over a continuously deforming surface under 
the influence on non-linear thermal radiation. Mehmood et al. [Mehmood, Nadeem and 
Sher Akbar (2016)] analyzed the non-aligned stagnation point flow and heat transfer of a 
Nano fluid towards a stretching surface. Zaffar et al. [Zaffar, Mehmood and Iqbal (2017)] 
investigated numerical solution of micropolar Casson fluid over a stretching sheet with 
internal heating. Rana et al. [Rana, Rashid Mehmood and Noreen Sher (2016)] analyzed 
mixed convective oblique flow of a Casson fluid with partial slip, internal heating and 
homogeneous-heterogeneous reactions. Iqbal et al. [Iqbal, Mehmood, Ehtsham et al. 
(2017)] explored the Impact of inclined magnetic field on micropolar Casson fluid using 
Keller box algorithm. Tabassum et al. [Tabassum, Mehmood and Nadeem (2017)] 
studied impact of viscosity variation and micro rotation on oblique transport of cu-water 
fluid. Nadeema et al. [Nadeema, Rashid Mehmood and Masooda (2016)] identified the 
effects of transverse magnetic field on a rotating micro polar fluid between parallel plates 
with heat transfer. Rehmana et al. [Aziz Ur Rehmana, Rashid Mehmood, Nadeem et al. 
(2017)] analyzed Entropy of radioactive rotating nanofluid with thermal slip. Ganesh 
Kumar et al. [Ganesh Kumar, Gireesha and Gorla (2018)] studied flow and heat transfer 
of dusty hyperbolic tangent fluid over a stretching sheet in the presence of thermal 
radiation and magnetic field. Ganesh Kumar et al. [Ganesh Kumar, Gireesha, Manjunatha 
et al. (2017)] explored the effect of nonlinear thermal radiation on double-diffusive 
mixed convection boundary layer flow of viscoelastic nanofluid over a stretching sheet. 
Ganesh Kumar et al. [Ganesh Kumar, Rudraswamy, Gireesha et al. (2017)] performed the 
experiment to find effects of mass transfer on MHD three dimensional flow of a Prandtl 
liquid over a flat plate in the presence of chemical reaction. Ganesh Kumar et al. [Ganesh 
Kumar, Gireesha, Prasannakumara et al. (2017)] studied phenomenon of radiation and 
viscous dissipation on Casson nano liquid flow past a moving melting surface. Eldabe et 
al. [Eldabe and Salwa (1995)] studied heat transfer of MHD non-Newtonian Casson fluid 
flow between two rotating cylinders. Labropulu et al. [Labropulu, Li and Pop (2010)] 
analysed Non-orthogonal stagnation-point flow towards a stretching surface in a non-
Newtonian fluid with heat transfer. Nadeem et al. [Nadeem, Mehmood and Akbar (2013)] 
explored Non-orthogonal stagnation point flow of a nano non-Newtonian fluid towards a 
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stretching surface with heat transfer. Khan et al. [Khan, Makinde and Khan (2016)] 
studied Non-aligned MHD stagnation point flow of variable viscosity nanofluid past a 
stretching sheet with radiative heat. 

2 Mathematical formulation 
We consider the two dimensional incompressible boundary layer flow of a Casson fluid over 
a stretching sheet located at 0y =  (see Fig. 1). The sheet is stretched through two equal and 
opposite forces along x-axis by keeping the origin fixed with the velocity wu bx= , b is a 
positive constant with dimension per time. Let eu ax cy= +  be the fluid’s velocity outside the 
boundary layer, where a  and c  are positive constants with dimension per time. 

 

Figure 1: Physical model and coordinate system 

The surface has temperature 𝑇𝑇𝑤𝑤  and concentration 𝐶𝐶𝑤𝑤  and further 𝑇𝑇∞  and 𝐶𝐶∞  are 
respectively the temperature and concentration of the ambient fluid. Thermal and 
concentration stratifications are taken into account in the presence of thermal radiation 
and heat source/sink. A uniform magnetic field of strength 𝐵𝐵0 is assumed to be applied 
normal to the stretching surface. The magnetic Reynolds number is taken to be small and 
therefore the induced magnetic field and electric field are neglected. 
The constitutive equation of the isotropic and incompressible Casson fluid can be written 
as [Eldabe and Salwa (1995)]: 

  τij  = �
 2 �µB + Py

√2π
� eij ,   π >  πc ,  

2 �µB + Py
�2πc

� eij ,   π <  πc  
               (1) 

where τij  is the (i, j):th component of the stress tensor,  µB  is the plastic dynamic 
viscosity of the non-Newtonian fluid, Py is the yield stress of the fluid,   is the product 
of the component of  deformation rate with itself, namely,  π = eijeij, and eij is the (i, 
j):th  component of deformation rate,  and πc is  critical value of  based on  the non-
Newtonian model. Therefore, when the shear stress is smaller than the yield stressPy, the 
fluid exhibits no motion, i.e., it behaves like a solid, but when the shear stress is greater 
than Py, it demonstrates flow characteristics.       
The governing partial differential equations under boundary layer assumptions of the flow 
are given below: 
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𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 +  𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 =  0                  (2) 

𝑢𝑢 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑣𝑣 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=  𝜈𝜈 �1 + 1
𝛽𝛽
� 𝜕𝜕

2𝑢𝑢
𝜕𝜕𝑦𝑦2

+ 𝑢𝑢𝑒𝑒
𝜕𝜕𝑢𝑢𝑒𝑒
𝜕𝜕𝜕𝜕

− 𝜎𝜎𝐵𝐵02

𝜌𝜌
(𝑢𝑢 − 𝑢𝑢𝑒𝑒)             (3) 

𝑢𝑢 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑣𝑣 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑘𝑘
𝜌𝜌𝑐𝑐𝑝𝑝

𝜕𝜕2𝑇𝑇
𝜕𝜕𝑦𝑦2

+ 16𝜎𝜎∗𝑇𝑇∞3

3𝑘𝑘∗𝜌𝜌𝑐𝑐𝑝𝑝

𝜕𝜕2𝑇𝑇
𝜕𝜕𝑦𝑦2

+ Q0
𝜌𝜌𝑐𝑐𝑝𝑝

(T − 𝑇𝑇∞)             (4) 

𝑢𝑢 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑣𝑣 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝐷𝐷 𝜕𝜕2𝐶𝐶
𝜕𝜕𝑦𝑦2

− 𝑘𝑘0(𝐶𝐶 − 𝐶𝐶∞)               (5) 

where u and v are fluid velocity components along x and y-axes, respectively, 𝜈𝜈  is 
kinematic viscosity, 
β =  µB�2πc /Py  is the Casson parameter,  𝜌𝜌  is density of the fluid, 𝜎𝜎  is electrical 
conductivity, T is fluid temperature, C is fluid concentration, k is thermal conductivity of 
the fluid, 𝑐𝑐𝑝𝑝 is specific heat at constant pressure, 𝜎𝜎∗ is Stefen-Boltzman constant, 𝑘𝑘∗ is 
absorption coefficient, Q0 is heat generation (Q0 > 0) or absorption (Q0 < 0) coefficient, 
D is mass diffusivity and 𝑘𝑘0 is the chemical reaction. 
The appropriate boundary conditions for the problem are 
𝑢𝑢 = 𝑢𝑢𝑤𝑤, v = , 𝑇𝑇 = 𝑇𝑇𝑤𝑤 = 𝑇𝑇0 + 𝑚𝑚1𝑥𝑥, 𝐶𝐶 = 𝐶𝐶𝑤𝑤 = 𝐶𝐶0 + 𝑛𝑛1𝑥𝑥at y = 0                            (6) 
u→ 𝑢𝑢𝑒𝑒,   T→ 𝑇𝑇∞ = 𝑇𝑇0 + 𝑚𝑚2𝑥𝑥,  C→ 𝐶𝐶∞𝐶𝐶0 + 𝑛𝑛2𝑥𝑥as y→ ∞                         (7) 
where  𝑚𝑚1,𝑚𝑚2,𝑛𝑛1,𝑛𝑛2 are dimensional constants and 𝑇𝑇0, 𝐶𝐶0 are the reference temperature 
and reference concentration, respectively. 

3 Method of solution 
Equations and mathematical expressions must be inserted into the main text. Two 
different types of styles can be used for equations and mathematical expressions. They 
are: in-line style, and display style. 
The governing partial differential Eqs. (3)-(5) can be reduced to a set of ordinary 
differential equations by introducing the following similarity variables 
𝜂𝜂 = �𝑏𝑏/𝜈𝜈  𝑦𝑦,   𝑋𝑋 = �𝑏𝑏/𝜈𝜈  𝑥𝑥                (8) 
From the continuity Eq. (1), we can define the stream function  
𝜓𝜓(𝑋𝑋, 𝜂𝜂) = 𝜈𝜈[𝑋𝑋𝑋𝑋(𝜂𝜂) + 𝑔𝑔(𝜂𝜂)]                (9)    
where, 𝑓𝑓(𝜂𝜂)  and 𝑔𝑔(𝜂𝜂)  represent the normal and tangential components of flow 
respectively, such that                                                                                                                                                                                                                                                                                             

𝑢𝑢 = �𝑏𝑏
𝜈𝜈
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

,                                  𝑣𝑣 = −�𝑏𝑏
𝜈𝜈
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

     (10) 

which automatically satisfy the continuity Eq. (1): 

𝑢𝑢 = √𝑏𝑏𝑏𝑏(𝑋𝑋𝑓𝑓′(𝜂𝜂) + 𝑔𝑔′(𝜂𝜂)),       𝑣𝑣 = −√𝑏𝑏𝑏𝑏𝑓𝑓(𝜂𝜂) ,    𝜃𝜃(𝜂𝜂) = 𝑇𝑇−𝑇𝑇∞
𝑇𝑇𝑤𝑤−𝑇𝑇0

,𝜙𝜙(𝜂𝜂) = 𝐶𝐶−𝐶𝐶∞
𝐶𝐶𝑤𝑤−𝐶𝐶0

       (11) 

Substituting Eq. (10): into (3): - (5):, we obtain 

�1 + 1
𝛽𝛽
� 𝑓𝑓′′′ + 𝑓𝑓𝑓𝑓′′ − 𝑓𝑓′2 −𝑀𝑀(𝑓𝑓′ − 𝐴𝐴) + 𝐴𝐴2 = 0    (12) 
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�1 + 1
𝛽𝛽
�𝑔𝑔′′′ + 𝑓𝑓𝑔𝑔′′ − 𝑓𝑓′𝑔𝑔′ − 𝑀𝑀(𝑔𝑔′ − 𝐵𝐵𝐵𝐵) + 𝑅𝑅𝑅𝑅 = 0                                   (13) 

�1 + 4
3
𝑁𝑁𝑁𝑁� 𝜃𝜃′′ + 𝑃𝑃𝑃𝑃(𝑓𝑓𝜃𝜃′ − 𝑓𝑓′𝜃𝜃 − 𝜀𝜀1𝑓𝑓′ + 𝑄𝑄𝑄𝑄) = 0                       (14) 

𝜙𝜙′′ + 𝑆𝑆𝑆𝑆(𝑓𝑓𝜙𝜙′ − 𝑓𝑓′𝜙𝜙 − 𝜀𝜀2𝑓𝑓′ − 𝛾𝛾𝛾𝛾) =  0                                                             (15) 
The associated boundary conditions are  
𝑓𝑓(0) =  0,𝑓𝑓′(0) =  1,𝑔𝑔′(0) =  0, 𝜃𝜃(0) = 1 − 𝜀𝜀1, 𝜙𝜙(0) = 1 − 𝜀𝜀2         (16) 
𝑓𝑓′(∞) → 𝐴𝐴, 𝑔𝑔′′(∞) → 𝐵𝐵,𝜃𝜃(∞) → 0, 𝜙𝜙(∞) → 0                                                (17) 
From Eq. (17), it can be easily seen that 𝑓𝑓(𝜂𝜂) = 𝐴𝐴 𝜂𝜂 + 𝑅𝑅  as𝜂𝜂 → ∞ , where R is the 
boundary layer displacement constant to be determined.  
Let𝑔𝑔′(𝜂𝜂) = 𝐵𝐵 𝐺𝐺(𝜂𝜂)                            (18) 
 Substituting Eq. (18) into Eq. (13) we obtain 

�1 + 1
𝛽𝛽
�𝐺𝐺′′ + 𝑓𝑓𝐺𝐺′ − 𝐺𝐺𝑓𝑓′ − 𝑀𝑀(𝐺𝐺 − 𝜂𝜂) + 𝑅𝑅 = 0                        (19) 

𝑓𝑓(0) =  0,𝑓𝑓′(0) =  1, 𝐺𝐺(0) =  0, 𝜃𝜃(0) = 1 − 𝜀𝜀1, 𝜙𝜙(0) = 1 − 𝜀𝜀2                     (20) 
𝑓𝑓′(∞) → 𝐴𝐴, 𝐺𝐺′(∞) → 1,𝜃𝜃(∞) → 0, 𝜙𝜙(∞) → 0            (21) 
where,  

𝑀𝑀 = 𝜎𝜎𝐵𝐵02

𝜌𝜌𝜌𝜌
                            (Magnetic field parameter):  

𝐴𝐴 = 𝑎𝑎
𝑏𝑏

;𝐵𝐵 = 𝑐𝑐
𝑏𝑏
                   (Free stream stagnation flow parameters):   

𝑃𝑃𝑃𝑃 =  𝜌𝜌𝑐𝑐𝑝𝑝𝜈𝜈
𝑘𝑘

                         (Prandtl number): 

𝑁𝑁𝑁𝑁 =  4𝜎𝜎
∗𝑇𝑇∞3

𝑘𝑘𝑘𝑘∗
                      (Thermal radiation parameter): 

𝑄𝑄 = 𝑄𝑄0
𝜌𝜌𝑐𝑐𝑝𝑝𝑏𝑏

                           (Heat source/sink parameter):  

𝑆𝑆𝑆𝑆 = 𝜈𝜈
𝐷𝐷

                              (Schmidt number): 

𝜀𝜀1 = 𝑚𝑚2
𝑚𝑚1

                             (Thermally stratified parameter):  

𝜀𝜀2 = 𝑛𝑛2
𝑛𝑛1

                              (Solutal stratified parameter): 

𝛾𝛾 = 𝑘𝑘0
𝑏𝑏

                               (Chemical reaction parameter) 

The surface skin friction coefficient 𝐶𝐶𝑓𝑓 , local Nusselt number 𝑁𝑁𝑁𝑁 and local Sherwood 
number 𝑆𝑆ℎ which have a significant role in engineering and are defined by 
𝐶𝐶𝑓𝑓 =  𝜏𝜏𝑤𝑤

𝜌𝜌𝑢𝑢𝑒𝑒2
,  𝑁𝑁𝑁𝑁 = 𝑥𝑥𝑞𝑞𝑤𝑤

𝑘𝑘(𝑇𝑇𝑤𝑤−𝑇𝑇∞)
, 𝑆𝑆ℎ = 𝑥𝑥𝑚𝑚𝑤𝑤

𝐷𝐷(𝐶𝐶𝑤𝑤−𝐶𝐶∞)
                        (22) 

where the wall shear stress 𝜏𝜏𝑤𝑤, the surface heat flux 𝑞𝑞𝑤𝑤 and mass flux 𝑚𝑚𝑤𝑤 are given by 

𝜏𝜏𝑤𝑤 = 𝜇𝜇 �1 + 1
𝛽𝛽
� �𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
�
𝑦𝑦=0

,   𝑞𝑞𝑤𝑤 = −𝑘𝑘 �1 + 16𝜎𝜎∗𝑇𝑇3

3𝑘𝑘𝑘𝑘∗
� �𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
�
𝑦𝑦=0

,𝑚𝑚𝑤𝑤 = −𝐷𝐷 �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝑦𝑦=0

 ,       (23) 

and µ is dynamic viscosity of the fluid. 
Using Eq. (23) in Eq. (22), we obtain 
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𝐶𝐶𝑓𝑓 = �1 +
1
𝛽𝛽
� �𝑋𝑋𝑓𝑓′′(0) + 𝐵𝐵𝐵𝐵′(0)� 

𝑁𝑁𝑁𝑁 = −�1 +
4
3
𝑁𝑁𝑁𝑁�𝜃𝜃′(0) 

Sh= −𝜙𝜙′(0) 
The ordinary differential Eqs. (12), (14), (15) and (19) are coupled and highly non-linear. 
These equations with the boundary conditions (20) and (21) are solved using Runge-
Kutta-Fehlberg method with shooting technique and obtained numerical solutions. The 
numerical scheme is validated by comparing the values of 𝑓𝑓′′(0)  and 𝐺𝐺′(0)  of the 
investigation under discussion with those calculated by Labropulu et al. [Labropulu, Li 
and Pop (2010); Nadeem, Rashid Mehmood and Noreen Sher Akbar (2015); Khan, 
Makinde and Khan (2016)] in the absence of magnetic field and for the case of a 
Newtonian fluid for different values of A.  

4 Results and discussion 
The influence of free stream stagnation flow parameter A for fixed values of ‘b’ on flow 
pattern is depicted in the Fig. 2. When A>1 straining motion in the neighborhood of the 
stagnation point increases. As a result, the external stream velocity accelerates and 
increases boundary layer thickness. This physical phenomena is the reason for boundary 
layer structure of the fluid motion. When 𝐴𝐴 < 1, the flow has an inverted boundary layer 
structure. This arises from the fact that when  𝐴𝐴 < 1 , the stretching velocity of the 
surfaces exceeds the stagnation velocity of the external stream. The oblique velocity 
profiles for different values in Fig. 3. It is clearly seen from Fig. 4 that the non-
dimensional temperature decreases for an increase in A with a reduction in the thickness 
of the thermal boundary layer. The variation of the stretching parameter on concentration 
is illustrated in Fig. 5. It is observed that concentration distribution is a decreasing 
function of the stretching ratio.    

 
Figure 2: Axial velocity profiles for different values A 
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Figure 3: Obliquevelocity gradient profiles for different values of A 

 
Figure 4: Temperature profiles for different values of A 

 
Figure 5: Concentration profiles for different values of A 
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concentration for a variation of Casson parameter. It is seen that temperature and 
concentration are increasing functions of 𝛽𝛽. 

 
Figure 6: Axial velocity profiles for different values 𝛽𝛽 

 
Figure 7: Obliquevelocity gradient profiles fordifferent values of 𝛽𝛽 

 
Figure 8: Temperature profiles for different values of 𝛽𝛽 
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Figure 9: Concentration profiles for different values of  𝛽𝛽 

The axial velocity diminishes with increase in magnetic field M strength as shown in Fig. 
10. This is in conformity of the fact that the stronger Lorentz force generated as a result 
of application of M opposes the fluid motion. From Fig. 11, it is found that as 𝑀𝑀 takes 
higher values the oblique velocity gradient 𝐺𝐺′(𝜂𝜂)  increases near the wall and 
subsequently it reduces. Fig. 12 shows that increase in the magnetic field strength 
facilitates the augmentation of temperature distribution. Thus the thickness of the thermal 
boundary layer enhances. The effect of M on concentration is seen to be the same as that 
on temperature and this can be observed from Fig. 13. 

 
Figure 10: Axial velocity profiles for different values M 

   
Figure 11: Obliquevelocity gradient profiles for different values of M 
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Figure 12: Temperature profiles for different values of M 

 
Figure 13: Concentration profiles for different values of M 

It is evident from Fig. 14 that higher values of Prandtl number (Pr) tend to decrease the 
temperature due to the lower thermal conductivity of the fluid. Fig. 15 shows that the 
temperature is enhanced significantly for increasing values of thermal radiation parameter 
Nr as thermal radiation facilitates more heat to the fluid leading to an increase in the 
energy transport to the fluid. The associated thermal boundary layers become thicker for 
increasing values of Nr. 

 
Figure 14: Temperature profiles for different values of Pr 
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Figure15: Temperature profiles for different values of Nr 

 
Figure 16: Temperature profiles for different values of Q 

 
Figure 17: Temperature profiles for different values of 𝜀𝜀1 
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region temperature steadily increases and eventually approaches the free stream value. 
Further increasing values of 𝜀𝜀1 have a reducing influence on temperature.  

 
Figure 18: Concentration profiles for different values of Sc 

 
Figure 19: Concentration profiles for different values of 𝛾𝛾 

 
Figure 20: Concentration profiles for different values of 𝜀𝜀2 

Influence of Schmidt number Sc on species concentration is seen to reduce species it 
significantly for increasing values of Sc as illustrated in Fig. 18. From Fig. 19, it is 
observed that for a fixed value of chemical reaction parameter 𝛾𝛾 species concentration 
decreases along 𝜂𝜂 in the region 0 ≤ 𝜂𝜂 ≤ 5 and is seen to be a decreasing function of 

0 1 2 3 4 5 6 7 8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

  η

 φ(
η)

 

 

  M = 0.5; β  = 0.5; A = 0.1; Pr = 0.7;   
  Nr = 0.5; Q = 0.1; γ = 0.1; ε1 = 0.1; ε2 = 0.1  
  M = 0.5; β  = 0.5; A = 0.1; Pr = 0.7;   
  Nr = 0.5; Q = 0.1; γ = 0.1; ε1 = 0.1; ε2 = 0.1  
  M = 0.5; β  = 0.5; A = 0.1; Pr = 0.7;   
  Nr = 0.5; Q = 0.1; γ = 0.1; ε1 = 0.1; ε2 = 0.1  
  M = 0.5; β  = 0.5; A = 0.1; Pr = 0.7;   
  Nr = 0.5; Q = 0.1; γ = 0.1; ε1 = 0.1; ε2 = 0.1  
  M = 0.5; β  = 0.5; A = 0.1; Pr = 0.7;   
  Nr = 0.5; Q = 0.1; γ = 0.1; ε1 = 0.1; ε2 = 0.1  
  M = 0.5; β  = 0.5; A = 0.1; Pr = 0.7;   
  Nr = 0.5; Q = 0.1; γ = 0.1; ε1 = 0.1; ε2 = 0.1  
  M = 0.5; β  = 0.5; A = 0.1; Pr = 0.7;   
  Nr = 0.5; Q = 0.1; γ = 0.1; ε1 = 0.1; ε2 = 0.1  
  M = 0.5; β  = 0.5; A = 0.1; Pr = 0.7;   
  Nr = 0.5; Q = 0.1; γ = 0.1; ε1 = 0.1; ε2 = 0.1  

 Sc = 0.5
 Sc = 0.8
 Sc = 1.0
 Sc = 1.2

0 1 2 3 4 5 6 7 8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

  η

 φ(
η)

 

 

  M = 0.5; β  = 0.5; A = 0.1; Pr = 0.7;   
  Nr = 0.5; Q = 0.1; Sc = 0.5; ε1 = 0.1; ε2 = 0.1  
  M = 0.5; β  = 0.5; A = 0.1; Pr = 0.7;   
  Nr = 0.5; Q = 0.1; Sc = 0.5; ε1 = 0.1; ε2 = 0.1  
  M = 0.5; β  = 0.5; A = 0.1; Pr = 0.7;   
  Nr = 0.5; Q = 0.1; Sc = 0.5; ε1 = 0.1; ε2 = 0.1  
  M = 0.5; β  = 0.5; A = 0.1; Pr = 0.7;   
  Nr = 0.5; Q = 0.1; Sc = 0.5; ε1 = 0.1; ε2 = 0.1  

 γ = 0.1
 γ = 0.4
 γ = 0.7
 γ = 1.0

0 2 4 6 8 10 12
-0.2

0

0.2

0.4

0.6

0.8

  η

 φ(
η)

 

 

  M = 0.5; β  = 0.5; A = 0.1; Pr = 0.7;   
  Nr = 0.5; Q = 0.1; Sc = 0.5; γ = 0.1; ε1 = 0.1  
  M = 0.5; β  = 0.5; A = 0.1; Pr = 0.7;   
  Nr = 0.5; Q = 0.1; Sc = 0.5; γ = 0.1; ε1 = 0.1  
  M = 0.5; β  = 0.5; A = 0.1; Pr = 0.7;   
  Nr = 0.5; Q = 0.1; Sc = 0.5; γ = 0.1; ε1 = 0.1  
  M = 0.5; β  = 0.5; A = 0.1; Pr = 0.7;   
  Nr = 0.5; Q = 0.1; Sc = 0.5; γ = 0.1; ε1 = 0.1  

 ε2 = 0.1

 ε2 = 0.2

 ε2 = 0.3

 ε2 = 0.4



246                                                                           FDMP, vol.15, no.3, pp.233-251, 2019 

                                      

chemical reaction parameter. Effect of solutal stratification parameter 𝜀𝜀2 is seen only on 
species concentration and it can be seen from Fig. 20 that species concentration decreases 
with increasing values of 𝜀𝜀2. 
From Fig. 21, it is seen that the normal component of skin friction coefficient on the wall 
decreases with increase in Casson parameter as well as magnetic field parameter. The 
combined effect of Casson parameter and magnetic field is to decrease skin friction 
coefficient predominantly. It is observed that reduction in the skin friction coefficient 
when 𝑀𝑀 = 4.0,𝛽𝛽 = 1.0 is almost fourfold to that of the case when 𝑀𝑀 = 1 and𝛽𝛽 = 0.1.  

 
Figure 21: Variation of normal component of skin friction coefficient with 𝛽𝛽  for 
different values of M 

The local Nusselt number versus velocity ratio parameter A for different values of 
Prandtl number is plotted in Fig. 22. It is found that Nusselt number increases almost 
linearly with A. Increasing values of Prandtl number also enhance Nusselt number. 
Variation of thermal stratification parameter and thermal radiation parameter on Nusselt 
number is plotted in Fig. 23. Nusselt number is seen to be a decreasing function of 𝜀𝜀1 and 
Nr when 𝑁𝑁𝑁𝑁 = 0.5 as 𝜀𝜀1 changes from 0.1 to 1.0 the Nusselt number reduces in the range 
0.6 to 0.55. For the same range of 𝜀𝜀1, when 𝑁𝑁𝑁𝑁 = 2.0, the Nusselt number reduces in the 
range 0.36 to 0.26. Fig. 24 shows the plot of Sherwood number versus solutal 
stratification number for a variation of Schmidt number. It is seen that the Sherwood 
number reduces with increase in 𝜀𝜀2 while it increases as Schmidt number increases.  

 
Figure 22: Variation of Nusselt number with Afor different values of Pr 
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Figure 23: Variation of Nusselt number with  𝜀𝜀1 for different values of Nr 

 
Figure 24: Variation of Sherwood number with  𝜀𝜀2 for different values of Sc 

 
Figure 25: Streamline patterns for the oblique flow. (a) non-aligned pattern for 𝑩𝑩 =
−𝟐𝟐.𝟓𝟓; (b) aligned pattern for 𝑩𝑩 = 𝟎𝟎; (c) non-aligned pattern for 𝑩𝑩 = 𝟐𝟐.𝟓𝟓 
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The streamlines of the flow for different values of B are illustrated in Fig. 25. For 𝐵𝐵 < 0 the 
streamlines are skewed towards right of the stagnation point and towards left for 𝐵𝐵 > 0 as 
expected and when 𝐵𝐵 = 0 the streamlines are seen to be normal to the surface. Fig. 26 
shows that the stream lines are more and more skewed towards the right (left) of the 
stagnation point for an increase in 𝐵𝐵 > 0 (𝐵𝐵 < 0) due to the increase in the straining motion. 

 
Figure 26: Streamline patterns for oblique flow. (a) non-aligned pattern for 𝑩𝑩 = −𝟏𝟏𝟏𝟏; (b) 
Non-aligned pattern for 𝑩𝑩 = 𝟏𝟏𝟏𝟏 

Tab. 1 shows the comparison of present results with that of previous results of Labropulu 
et al. [Labropulu, Li and Pop (2010); Nadeem, Rashid Mehmood and Noreen Sher Akbar 
(2015); Khan, Makinde and Khan (2016)]. 
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5 Conclusions 
Non-aligned hydro magnetic stagnation point flow of a Casson fluid over a stretching 
surface in a doubly stratified medium with radioactive heat source and internal heat 
generation has been analyzed numerically. The results of this analysis can be summarized 
as follows: 
 Combined effect of Casson parameter and magnetic field is to reduce velocities heavily. 
 Velocity ratio parameter decreases the temperature and concentration. 
 Boundary layer thickness is reduced by velocity ratio parameter. 
 The non-dimensional temperature distribution is enhanced by thermal radiation 

while the thermal stratification parameter has a reducing influence on temperature. 
 The dimensionless concentration decreases with Schmidt number, solutal 

stratification parameter and chemical reaction parameter. 
 The normal component of skin friction decreases with magnetic field as well as 

Casson parameter. 
 Nusselt number increase with Prandtl number and velocity ratio parameter. 
 Schmidt number tends to increase Sherwood number while solutal stratification 

parameter decreases the same. 
 Streamlines are oblique towards the left of the stagnation point for 𝐵𝐵 > 0 as a result 

of straining motion and a reversal trend is noticed for 𝐵𝐵 < 0. 
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