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Convective Instability in Annular Pools

Y.R. Li1, L. Peng1, W.Y. Shi1 and N. Imaishi2

Abstract: The convective instabilities in semiconduc-
tor or oxide melts, significantly affect the quality of
large crystals grown from the melts by the Czochralski
method. This paper reviews our recent numerical stud-
ies of thermal convection in annular pools of low-Pr sili-
con melt and moderate-Pr silicone oil. The mechanisms
of the convective instability are discussed and the critical
conditions for the onset of three-dimensional flow are de-
termined. The results show that the hydrothermal wave,
characterized by curved spokes, is dominant in a shallow
thin pool. In a thick pool of the low-Pr silicon melt, there
appears a standing wave type of oscillatory longitudinal
rolls, which moves in the azimuthal direction and looks
very similar to the hydrothermal waves. In deep pools
of moderate-Pr silicone oil, a three-dimensional steady
flow pattern, consisting of pairs of counter-rotating longi-
tudinal rolls, arises, which corresponds to the Rayleigh-
Benard instability.

keyword: Convection, Instability, Numerical simula-
tion, Annular pool.

1 Introduction

The Czochralski (Cz) method is one of the most im-
portant methods of producing the silicon single crystals
from the melt. In this method, heat and mass transfer
in the melt are strongly influenced by the melt convec-
tion driven by various forces, such as the buoyancy force,
the centrifugal and the Coriolis forces due to crystal and
crucible rotations, and the thermocapillary force related
to the temperature dependence of the surface tension at
the melt surface. In the past few decades, thermocapil-
lary flow has been of particular interest in single crystal
growth processes of the Cz method, since the melt flow
and its spatiotemporal changes cause dopant concentra-
tion inhomogeneity in the grown crystals.

Smith and Davis (1983) performed a linear stability anal-
ysis of a thin and infinitely extended fluid layer with
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a free upper surface subjected to a constant horizontal
temperature gradient. They found two types of three-
dimensional instabilities, i.e. stationary longitudinal rolls
and oblique hydrothermal waves (HTWs) depending on
the Prandtl number (Pr) and the basic flow pattern (with
or without a return flow), and determined the critical
Marangoni (Ma) number. Subsequently, the extension of
Smith and Davis’ theory to account for the influence of
the buoyancy force was done by Laure and Roux (1989)
for the low-Pr fluids and by Parmentier, Regnier and
Lebon (1993) for liquids with Pr up to 10. Further-
more, Garnier and Normand (2001) performed a linear
stability analysis of radial thermocapillary flow in an ex-
tended cylindrical geometry for liquids with Pr=10 and
predicted that the instability appeared first near the inner
cylinder.

After the linear stability analysis of Smith and
Davis (1983), many experiments of thermocapillary or
thermocapillary–buoyancy convection in liquid layers
subjected to a horizontal temperature gradient have been
performed for rectangular geometries and annular pools
(used as relevant models of the Cz technique). As an ex-
ample, Riley and Neitzel (1998) and Burguete, Mukolob-
wiez, Daviaud, Garnier, and Chiffaudel (2001) clearly
observed HTWs and obtained a stability limit diagram
for the thermocapillary flow in a rectangular channel by
plotting the critical temperature difference (ΔTcri) for the
incipience of HTWs as a function of the liquid depth.
Their results suggest that the critical Marangoni number
sensitively increases with the liquid depth. Benz, Hintz,
Riley, and Neitzel (1998) demonstrated that HTWs could
be suppressed by periodically adding heat onto a liquid
surface synchronized with the crests of the hydrothermal
waves. Kamotani (1999) conducted a large set of micro-
gravity experiments on oscillatory thermocapillary flow
in open cylindrical containers of silicone oil with depths
of 12, 20 and 30 mm, in which the liquid was heated
from the center. They observed two- or three-lobed sur-
face temperature patterns. Hoyas, Herrero, and Mancho
(2002a, 2002b) obtained a stability diagram for these



154 Copyright c© 2006 Tech Science Press FDMP, vol.2, no.3, pp.153-165, 2006

experimental systems by conducting a linear stability
analysis. Schwabe, Moller, Schneider, and Scharmann
(1992) carried out some experiments on HTWs in shal-
low annular liquid pools of ethanol (Pr=17) with thick-
ness ranging from 0.6 to 3.6 mm. They observed short-
wavelength HTWs with curved (part of spiral) arms in
liquid pools with do <1.4 mm, and long-wavelength pat-
terns in pools with d>1.4 mm. They also found that grav-
ity significantly stabilizes the basic steady radial ther-
mocapillary flow of silicone oil (Pr=6.8) in an annular
silicone oil pool heated from the outer wall, by com-
paring the results of on-ground experiments and those
of a microgravity experiment on the FOTON-12 satel-
lite [Schwabe and Benz (2002), Schwabe, Zebib and Sim
(2003)]. Garnier and Chiffaudel (2001) observed HTWs
with spiral-like arms in thin annular pools of silicone oil
between an inner cold rod with an 8mm diameter and an
outer wall with a 135mm diameter, and with a depth of
1.2 or 1.9mm. They observed pulsating, targetlike wave
patterns (i.e., coaxial circles traveling outward in the ra-
dial direction) dominant only near the cold inner wall,
as well as the curved arms of HTWs which were domi-
nant in the whole area of the liquid pool. They confirmed
this targetlike disturbance on the basis of linear stabil-
ity analysis for the geometry of their experimental ap-
paratus. Mukolobwiez, Chiffaudel and Daviaud (1998)
observed HTWs traveling in the azimuthal direction in
an annular pool of silicone oil (1.7mm in depth) heated
from the inner wall.

Up to now, few experimental reports on thermal convec-
tion in low-Pr fluids such as liquid metals are known.
Yamagishi and Fusegawa (1990) performed experiments
with thermocapillary-buoyancy flow and observed dark
lines at the surface of the melt by CCD camera during
silicon Cz growth. Since this pattern looks like the spoke
of a wheel, it is usually referred to as a ”spoke” pat-
tern. Nakamura, Eguchi, Azami and Hibiya (1999) re-
ported thermal waves due to nonaxisymmetric flow at
a Czochralski-type silicon-melt surface with a carbon-
dummy crystal during the crucible rotation. It was found
that the thermal wave number increased with increas-
ing of the crucible rotation rate and the traveling rate of
the thermal wave in the azimuthal direction was slower
than the crucible rotation rate. Recently, Azami, Naka-
mura, Eguchi and Hibiya (2001) have observed spoke
patterns on the surface of a shallow, annular pool of high-
temperature silicon melt (3 and 8mm in depth) and re-

ported that thermocapillary flow might play an impor-
tant role in the incipience of three-dimensional convec-
tion and the number of spokes.

Numerical simulations have been also extensively used
as a useful method to understand the details of ther-
mocapillary or thermocapillary–buoyancy convection.
Ben Hadid and Roux (1989, 1990, 1992) performed
two-dimensional (2-D) simulations of thermocapillary–
buoyancy and pure thermocapillary convection in pools
of low-Pr fluids (Pr=0.015) with various aspect ratios,
and showed the existence of multicellular steady flow and
of a transition to oscillatory convection. Villers and Plat-
ten (1992) carried out both experiments and 2-D simula-
tions for acetone (Pr=4), and confirmed the existence of
multicellular flow. Peltier and Biringen (1993) reported
their numerical results for 2-D oscillatory thermocapil-
lary convection in rectangular cavities of different aspect
ratios for the moderate-Pr-number fluid (Pr=6.78) and
obtained a stability diagram (critical Marangoni number
as a function of the aspect ratio).

Xu and Zebib (1998) performed 2-D and three-
dimensional (3-D) calculations for fluids with 1<Pr<10.
They determined the Hopf bifurcation neutral curves as
a function of the capillary Reynolds number and aspect
ratio. Yi, Kakimoto, Eguchi, Watanabe, Shyo and Hibiya
(1994) performed a 3-D numerical simulation of silicon
melt flow and verified asymmetric temperature profiles
similar to the spoke patterns and related asymmetric flow
in the silicon melt. They concluded that the Rayleigh–
Benard or Marangoni–Benard instability (or both) could
cause spoke patterns in the silicon melt.

Tsukada, Kobayashi, Jing and Imaishi (2005) reported
results of numerical simulation of CZ crystal growth of
oxide. They discussed mechanism of spoke pattern and
wave pattern within the framework of an unsteady three-
dimensional analysis. It has been demonstrated numeri-
cally that the spoke pattern is due to Marangoni instabil-
ity, while the wave pattern is cased by baroclinic insta-
bility.

Numerical results obtained by Bucchignani (2001) seem
implausible because of their incredibly large temperature
difference values (such as 372K over a wall distance of
30 mm) for the incipience of HTWs in a rectangular pool
of silicone oil (Pr=13.9) under zero gravity, although
they claimed that the wavelength and propagation angle
were similar to those predicted by the LSA of Smith and
Davis (1983), as well as the experimental results of Riley
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and Neitzel (1998).

Sim, Zebib and Schwabe (2003), Li, Peng, Akiyama and
Imaishi (2003) conducted numerical simulations of ther-
mocapillary flow in an annular pool of silicone oil for
the same geometry as that of Schwabe’s experiment on
FOTON-12, and compared their results with the FOTON-
12 microgravity experiments. Shi and Imaishi (2006) re-
ported 2-D and 3-D numerical simulations of thermocap-
illary flow, as well as buoyant thermocapillary flow, in a
shallow annular pool of silicone oil (Pr=6.7, depth of 1.0
mm) heated at the outer wall and cooled at the inner wall.
With this small depth, they believed that the thermocap-
illary force was dominant and the buoyant force could
be negligible because of its small dynamic Bond number
(Bod=0.125). Li, Peng, Wu, Imaishi and Zeng (2004), Li,
Imaishi, Azami and Hibiya (2004) also conducted a se-
ries of numerical simulations for annular pools of low-Pr
silicon melts (Pr=0.011) heated from the outer wall.

In the present paper, we survey our recent numerical
studies of thermal convection in annular pools. The
mechanism of convective instability in annular pools is
discussed and the critical conditions for the onset of
three-dimensional flow are determined.

2 Model formulation

2.1 Basic assumptions and governing equations

We analyze the flow in an annular pool of depth d, inner
radius ri and outer radius ro, with a free upper surface
and solid bottom wall, as shown schematically in Fig.
1. The inner and outer cylinders are maintained at con-
stant temperatures Tc and Th, (Th > Tc), respectively. The
horizontal temperature gradient varies in the radial direc-
tion. Convection is generated by both the surface tension
gradient on the top surface and thermal buoyancy. The
following assumptions are introduced in our model:

1) The fluid is an incompressible Newtonian fluid and a
constant property assumption is applicable with the ex-
ception of the surface tension and the buoyancy term. 2)
The velocity is small and the flow is laminar. 3) The
upper surface is flat and nondeformable. 4) At the free
surface, the thermocapillary force is taken into account.
At other solid-liquid boundaries, a no-slip condition is
applied. 5) Both bottom and top boundaries are assumed
to be adiabatic.

With the above assumptions, the flow and heat transfer
equations are expressed in a nondimensional form as fol-

Figure 1 : Configuration of model system

lows:

∇ ·V = 0, (1)

∂V
∂τ

+V ·∇V = −∇P +∇2V+GrΘeZ , (2)

∂Θ
∂τ

+V ·∇Θ =
1
Pr

∇2Θ. (3)

The boundary conditions at the free surface (Z = d/ro,
Ri < R < 1, 0 ≤ θ < 2π)

∂VR

∂Z
= −Ma

Pr
∂Θ
∂R

, (4a)

∂Vθ

∂Z
= −Ma

Pr
∂Θ
R∂θ

, (4b)

VZ = 0, (4c)

∂Θ
∂Z

= 0, (4d)

at the bottom (Z = 0, Ri < R < 1, 0 ≤ θ < 2π)

VR = 0, (5a)

Vθ = 0, (5b)

VZ = 0, (5c)

∂Θ
∂Z

= 0, (5d)

at the inner cylinder (R = Ri, 0 ≤ Z ≤ d/ro, 0 ≤ θ < 2π)

VR = 0, (6a)

Vθ = 0, (6b)

VZ = 0, (6c)
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Θ = Θi = 0, (6d)

and at the outer cylinder (R = 1, 0 ≤ Z ≤ d/ro, 0 ≤ θ <
2π)

VR = 0, (7a)

Vθ = 0, (7b)

VZ = 0, (7c)

Θ = Θo = 1. (7d)

The initial conditions are expressed as follows (at τ=0):

VR = 0, (8a)

Vθ = 0, (8b)

VZ = 0, (8c)

Θ = 1− lnR/ lnRi. (8d)

Where V is the velocity vector, P the pressure, Θ the tem-
perature, τ the time in nondimensional form. R, Z and θ
are the cylindrical coordinates. eZ is the Z-directional
unit vector.

The variables are nondimensionalized as

(R,Z) =
(r, z)

ro
, (VR,Vθ,VZ) =

(vr,vθ,vz)
ν/ro

,

P =
pr2

o

ρν2 , Θ =
T −Tc

Th −Tc
, τ =

tν
r2

o
.

The dimensionless parameters are defined as follows:

Grashof number:

Gr =
ρT gΔTr3

o

ν2 , (9)

Marangoni number:

Ma =
γT ΔTro

µα
, (10)

Prandtl number:

Pr =
ν
α

, (11)

Dynamic Bond number:

Bod =
ρgρT d2

γT
. (12)

Where ΔT = Th − Tc. ρ is the density, ν the kinematic
viscosity, ρT the thermal expansion coefficient, µ the dy-
namic viscosity, α the thermal diffusivity, γT the surface
tension coefficient.

2.2 Numerical method

The fundamental equations are discretized by a finite-
volume method. The modified central difference ap-
proximation is applied to the diffusion terms while the
QUICK scheme is used for the convective terms. The
HSMAC algorithm is used to correct simultaneously the
pressure and the velocities. To solve Poisson equa-
tion, the preconditioned Bi-CGSTAB algorithm is ap-
plied. In this study, nonuniform staggered grids of
62r×(22-42)z×63θ for the silicon melt and 102r×(16-
36)z×243θ for silicone oil were used with finer meshes
in the regions under the free surface and near the bottom
and sidewalls. The validation of the code and conver-
gence of grids for the thermal convection simulation were
checked. The numerical simulations were conducted on
a Fujitsu VPP5000/64 supercomputer at the Computing
and Communications Center of Kyushu University.

Table 1 : Geometric parameters and physical properties
for the silicon melt case

Geometry parameters 

Inner radius, ri=15 mm, outer radius, ro=50 mm 

Depth, d=3, 8 mm 

Physical properties 
Prandtl number Pr=0.011

Viscosity, 10-4 kg m-1s-1

Density, kg m-3

Thermal expansion coefficient,  =1.5 10-4 K-1

Surface tension coefficient, -7.0 10-5 N m-1 K-1

Table 2 : Geometric parameters and physical properties
for the silicone oil case

Geometry parameters 

Inner radius, ri=20 mm, outer radius, ro=40 mm 

Depth, d=1-11 mm 

Physical properties 

Prandtl number Pr=6.7

Kinematic viscosity, =6.5 10-7 m2s-1

Density, kg m-3

Thermal expansion coefficient,  =1.34 10-3 K-1

Surface tension coefficient, -8.0 10-5 N m-1 K-1

The geometric parameters used in this work and the ther-
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mophysical properties of silicon melt at 1683 K and sili-
cone oil at 20oC are listed in Table 1 and 2, respectively.

3 Results and discussion

3.1 Basic flow

When the radial temperature gradient (ΔT) is small, the
flow is steady and axisymmetric. This type of flow is
referred to as the “basic flow”. In the present configu-
ration, the basic flow appears as an axisymmetric steady
radial flow with a single convection roll cell. The sur-
face fluid flows from the outer cylinder wall toward the
inner cylinder wall and a return flow is established near
the bottom. The strength of the basic flow increases as
ΔT increases. A second co-rotating roll cell embedded
in the large-scale flow appears when ΔT is increased (see
the ”eye” in Fig. 2). The maximum stream function of
the basic flow (the eye) occurs near the inner cylinder
and the outer cylinder for the silicon melt and silicone
oil, respectively.

For the silicon melt, the temperature distribution in the
radial direction is almost independent of the presence of
the melt flow and tends to that of conductive heat transfer,
as shown in Fig. 3(a), because the thermal conductivity
of the silicon melt is large. In this case, isotherms are
almost composed of vertical lines.

For silicone oil, thermal boundary layers appear near the
inner and outer cylinders, because of the low thermal
conductivity. Large temperature drops occur in those
boundary layers so that the effective temperature gradient
in the middle part of the annular surface is smaller than
the superficial temperature gradient (ΔT /(ro − ri)) based
on the imposed temperature difference ΔT . When the
liquid depth is more than 6 mm, the surface temperature
gradient in the middle part of the annular pool is practi-
cally zero and the temperature drops are concentrated in
the vertical thermal boundary layers near the inner and
outer walls. Because large radial temperature drops ap-
pear near the inner and outer cylinders, the surface ve-
locity exhibits a sharp peak near the inner cold wall, as
shown in Fig. 3(b).

Figure 4 shows the radial velocity component as a func-
tion of z/d at the middle of annular pools. In both
cases, the thermal convection generates an inward ra-
dial flow for about z/d > 2/3 and a return flow for about
z/d < 2/3.

Figure 3 : Temperature (a) and radial velocity compo-
nent (b) as a function of (r− ri)/(ro − ri) on the free sur-
face. Solid line: silicon melt, d=3mm, ΔT =4K. Dot line:
silicone oil, d=1mm, ΔT =4K.

Figure 4 : Radial velocity component as a function of
z/d at the middle of the annular pools. Solid line: silicon
melt, d=3mm, ΔT =4K. Dot line: silicone oil, d=1mm,
ΔT =4K.

3.2 Critical condition for flow transition

When the temperature difference exceeds a certain
threshold value, 3-D disturbances are incubated and their
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Figure 2 : Streamlines and isotherms of the basic flow. (a) Silicon melt, d=3mm, ΔT =4K, ψmax=121mm3/s; (b)
Silicone oil, d=1mm, ΔT =4K, ψmax=328mm3/s (ψ is the stream function).

amplitudes increase with time. Finally, the flow under-
goes transition to various 3-D patterns. Present numer-
ical simulations with the large temperature difference
show that during the initial growth processes the inten-
sity X of any disturbance can be expressed by Eq. (13)
and (14) for three-dimensional oscillatory flow (3DOF)
and three-dimensional steady flow (3DSF), respectively,

X(r,θ, z, t)= X0(r,θ, z)exp[(β+ iβI)t)], (13)

X (R,θ,Z,τ) = X0 (R,θ,Z,0) sin(2πmθ)exp(βτ) . (14)

where β is the growth rate constant of the disturbance, βI

represents the time dependent oscillatory characteristics
of the disturbance and m is the wave number.

For each value of ΔT , we can determine the growth rate
constant β as the slope of a plot of the logarithm of a
local value of surface velocity as a function of time. A
plot of β vs. ΔT reveals the critical temperature differ-
ence for the incipience of 3-D flow, (ΔTcri), as the ΔT at
which β becomes zero (since the state β=0 corresponds
to a marginal stability limit). For the silicon melt pool
of d=3mm, the critical temperature is 5.32K. For the sil-
icone oil pool of d=1-11mm, the simulation results of
the critical temperature difference are shown in Fig. 5. It
can be seen that the critical values obtained in the present
simulation show a good agreement with the experimental
ones obtained by Schwabe (2002) at d>5mm. For shal-
low pools, the simulation results are slightly larger than
the experiments. For the pool of d=1mm, ΔTcri obtained
by Shi and Imaishi (2006) with grids of 202r×16z×603θ

is also shown in Fig. 5.

Figure 5 : Comparison of simulation results and exper-
imental results (critical temperature difference for sili-
cone oil). : Experimental results [Schwabe (2002)]; :
Simulation results; : Simulation results [Shi and Imaishi
(2006)].

3.3 Three-dimensional flow

3.3.1 Results of silicon melt

Figure 6 shows the simulation results for d=3 mm, in-
cluding the snapshots of the surface temperature fluctua-
tion δT (left side) and a space-time diagram (STD) of the
surface temperature along a circumference at r=20 mm
(right side). The surface temperature fluctuation δT is
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Figure 6 : Snapshots of surface temperature fluctuation and space-time diagram of surface temperature distribution
for the layer of d=3 mm at r=20 mm. (a) ΔT =12K. (b) ΔT =21K. (c) Experimental result of Azami, Nakamura,
Eguchi and Hibiya (2001).

introduced in order to extract the 3-D disturbances:

δT (r,θ,d, t) = T (r,θ,d, t)− 1
2π

2πZ

0

T (r,θ,d, t)dθ. (15)

When the temperature difference exceeds the critical
value, many traveling curved spoke patterns are observed
on the entire surface. These correspond to the “hy-

drothermal wave” instability. When the radial temper-
ature difference is small but above the critical condition,
for example, ΔT =12 K, as shown in Fig. 6(a), the trav-
eling waves originate from around θ=0 and travel to-
ward θ=π via two paths. One wave group is propagat-
ing in the clockwise direction and the other in the coun-
terclockwise one. The angles (φ) between wave prop-
agation and the radial direction, measured atr=20 mm,
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Figure 7 : Snapshots of surface temperature fluctuation and space-time diagram of surface temperature distribution
for the layer of d=8 mm atr=20 mm. (a) ΔT=21K. (b) Experimental result of Azami, Nakamura, Eguchi and Hibiya
(2001).

are about 75o-80o and 100o-105o, respectively. Under
a much larger radial temperature gradient, as shown in
Fig. 6(b) for ΔT =21 K, the hydrothermal waves prop-
agate along the counter-clockwise direction and the an-
gle φ is approximately 78o at r=20 mm, which is close
to the angle of 80o predicted by the linear stability the-
ory for the infinite rectangular layer. However, as seen
from Figs. 6(a) and 6(b), the spokes are not straight but
bent. Because the temperature at the free surface is al-
ways higher than that at the bottom surface, therefore,
the instability is induced by the hydrothermal wave in-
stability. These traveling waves appear as many parallel
tilted straight lines on the STD taken at r=20 mm. The
present result at ΔT=12 K in Fig. 6(a) is very close to
the experimental result of Azami, Nakamura, Eguchi and
Hibiya (2001) (shown in Fig. 6(c)) in an annular pool
with ri=15mm and ro=63.5 mm. The surface patterns
look similar. However the number of spoke patterns and
the traveling speeds in the azimuthal direction (i.e. slope

of the STD lines) in the present simulation are higher
than those of experiments. Differences in the size, un-
certainties in the thermal boundary conditions in the ex-
periments and also the uncertainty related to the temper-
ature coefficient of surface tension of silicon melt may be
thought of as the causes at the basis of the discrepancy.

In layers of d=8 mm (seethe snapshots in Fig. 7(a)), the
spoke patterns become straight and broad. These spoke
patterns also move in the azimuthal direction. But, they
exhibit combined a standing wave type oscillation, i.e.,
periodic growth and decay of temperature disturbances,
with the azimuthal propagation. Then, the STD is com-
posed of inclined lines slightly fluctuating in amplitude
and direction. Obviously, it is not the “hydrothermal
wave” instability. Perhaps, in this case the buoyancy
force interacts with the Marangoni effect to generate a
quasi stable traveling 3-D disturbance moving in the az-
imuthal direction like the hydrothermal wave.
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Figure 8 : Snapshots of surface temperature fluctuation and space-time diagram of surface temperature distribution
at r=25mm. (a) d=1mm, ΔT =8K; (b) d=1mm, ΔT =12K; (c) Experimental results [Garnier and Chiffaudel (2001)],
left: d=1.9mm, ΔT =14.25K, right: d=1.2mm, ΔT =20K.

3.3.2 Results of silicone oil

Figure 8 shows the characteristics of 3-D oscillatory flow
in a very thin annular pool of d=1mm, including the
snapshots of the surface temperature fluctuation distri-
bution and the space-time diagram (STD) of the sur-
face temperature distribution along a circumference at
r=25mm. In this case, the Bod number is about 0.125,
and the thermocapillary force is dominant. Therefore,

traveling curved spoke patterns on the free surface also
correspond to the “hydrothermal wave” instability.

Under a small temperature difference (ΔT ) number, for
example, ΔT=8K, the hydrothermal waves propagate in
the counterclockwise direction, as shown in Fig. 8(a). In
this case, the HTW patterns are clearly observable only in
the inner part of the pool, being faded in the outer region.
The angle (φ) between the wave propagation and the ra-
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Figure 9 : Snapshots of surface temperature fluctuation and space–time diagram of surface temperature distribution
at r=25mm for the 3DSF. d=6mm, ΔT =10K.

dial direction, measured at r=25mm, is about 155o-160o,
which is close to those predicted by the linear stability
theory for the infinite rectangular layer for Pr=10 [Smith
and Davis (1983)] and the experimental result (0.83π)
obtained in a rectangular pool of silicone oil (Pr=10.3)
[Burguete, Mukolobwiez, Daviaud, Garnier, and Chif-
faudel (2001)]. As ΔT increases, HTWs become domi-
nant over the whole area of the liquid surface and the
azimuthal wave number will decrease.

The simulation with a larger ΔT , such as ΔT =12K, in-
dicates two groups of HTWs coexisting in the pool with
different wave numbers and different traveling directions,
as shown in Fig. 8(b). Interferences between two groups
of HTWs occur throughout almost the entire volume of
the pool. The coexistence of two groups of HTWs was
also reported by Garnier and Chiffaudel (2001), as shown
in Fig. 8(c), although their pool geometry is different
from that of the present system. However, we do not ob-
serve the “target-like (coaxial) waves” propagating out-
ward in the radial direction, which were reported by Gar-
nier and Chiffaudel (2001) near the inner wall of their an-
nular pool which had much larger outer wall and smaller
inner wall radiuses. The larger inner wall radius in the
present system can produce a surface temperature gradi-
ent near the inner wall that is less than the critical value,
which is necessary for the incipience of the targetlike
waves.

For the deep layers with d ≥5mm, the simulation results
are different from those with d=1mm and from those dis-
cussed before for silicon melt with d=8mm. Fig. 9 shows
the snapshot of the surface temperature fluctuation dis-
tribution and the STD of the surface temperature along

a circumference at r=25mm for the layer of d=6mm at
ΔT =10K. In this case, many straight spoke patterns are
observed over the entire surface area, but they do not
move. As a result, the STD appears as many vertical
lines. The number of the spoke patterns is about 16 and
independent on the temperature difference and the pool
depth. This flow pattern belongs to a three-dimensional
steady flow. The mechanism is explained as follows.

The Marangoni effect generates an inward radial flow
(Hereafter we denote this as the Ma-driven flow) near
the free surface. Therefore, the temperature at the free
surface is always higher than that at the bottom. Because
the radial temperature drops are mainly concentrated in
the vertical thermal boundary layers near the inner and
outer walls, the flow driven by the buoyancy force (the
B-driven flow) near the hotter wall carries low tempera-
ture liquid to the area below the free surface, as shown
in Fig. 10(a). At the same time, there is a return flow
carrying high temperature liquid to the area below the
B-driven flow. Therefore, there exists a region with a
counter temperature gradient near the hot wall (its depth
is assumed to be dc, as shown in Fig. 10(b)). In the
counter temperature gradient layer, Rayleigh-Benard in-
stability can be produced when the Rayleigh (Ra) num-
ber exceeds a certain threshold value. Figure 10(c) sug-
gests that the 3DSF consists of pairs of counter-rotating
longitudinal rolls (whose axes are oriented parallel to
the applied temperature gradient) that are superimposed
on the basic flow, and this result has a good agreement
with the experiment of Benz and Schwabe (2001). In or-
der to prove that the 3DSF corresponds to the Rayleigh-
Benard instability, the local Ra number is estimated.
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Figure 10 : The mechanism of the 3DSF. d=6mm,
ΔT =10K. (a) Isotherms and pseudo-streamlines at the
plane of θ=0. (b) Temperature as a function of Z at θ=0.
(c) Counter-rotating longitudinal rolls at r=37mm at the
plane of Z-θ.

When d=6mm and ΔT =6K, the maximum depth dc of
the counter temperature gradient layer is found to be
about 2.32 mm and the maximum vertical temperature
difference δTc is estimated to be 0.28K from the sim-
ulated results. In this case, the local Rayleigh num-
ber defined as Ra=gρT δTd3

c /(να), is about 728. It im-
plies that the local Ra number will exceed the critical Ra
number value, Racri=657.5, which is obtained by the lin-
ear stability analysis [Zeng (1999)] for the incipience of

the Rayleigh-Benard instability in an infinitely extended
fluid layer with the free upper and nether surfaces subject
to a constant vertical temperature gradient. This indicates
that the 3DSF is the result of the Rayleigh-Benard insta-
bility within the counter temperature gradient layer.

When 2≤ d ≤4, combined hydrothermal waves and 3-D
oscillatory flow appear on the free surface, as shown in
Fig. 11(a). The present results are similar with results
of 2-D non linear numerical simulations for a rectangular
liquid layer with Pr=14 and aspect ratio A=25 performed
by Shevtsova, Nepomnyashchy and Legros (2003). In
this case, the vertical temperature gradient near the inner
wall is large enough to form the “hydrothermal wave” in-
stability. Therefore, HTW patterns are clearly observable
in the inner part of the pool. But, the counter temperature
gradient layer near the hotter wall also exists, as shown in
Fig. 11(b). Accordingly, pairs of counter-rotating longi-
tudinal rolls are dominant in this region. These rolls will
propagate in the azimuthal direction driven by HTWs
(and owing to such a rotation the axes of rolls are not par-
allel to the temperature gradient). In this case, the wave
number of the 3DOF is the same as that of HTWs.

4 Conclusions

A series of 3-D numerical simulations of the thermal con-
vections in annular pools have been conducted by means
of a finite volume method. From the simulation results,
the following conclusions have been obtained.

1. For the low-Pr silicon melt, in a shallow annular
pool of d=3 mm, hydrothermal waves appear and
travel in the azimuthal direction when the tempera-
ture difference exceeds the critical value. In a thick
pool of d=8 mm, there appears a standing wave type
of oscillatory longitudinal rolls, which moves in the
azimuthal direction and looks very similar to the hy-
drothermal waves.

2. For the moderate-Pr silicone oil, in a shallow pool
(d=1mm), a hydrothermal wave characterized by
curved spokes is dominant. Under small ΔT number,
there is only one group of HTWs. The azimuthal
wave number decreases and oscillation frequency
increases as ΔT increases. Under larger ΔT , two
groups of HTWs with different wave numbers and
different traveling directions coexist in the pool.
When 2≤ d ≤4mm, the HTW and a 3DOF (3D os-
cillatory flow) with radial rolls coexist in the pool



164 Copyright c© 2006 Tech Science Press FDMP, vol.2, no.3, pp.153-165, 2006

Figure 11 : Combined hydrothermal waves and 3-D oscillatory flow at d=2mm and ΔT =10K. (a) Snapshots of
surface temperature fluctuation. (b) Temperature as a function of Z at θ=0.

and travel in the same azimuthal direction with
the same angular velocity. In this case, the wave
number of the 3DOF is the same as that of the
HTW. In deep pools (d ≥5mm) a 3DSF (3D steady
flow) appears. This flow pattern corresponds to the
Rayleigh-Benard instability, which consists of pairs
of counter-rotating longitudinal rolls. The number
of the spoke patterns is independent on ΔTand the
pool depth d.
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