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Finite Element Modeling of Thin Layers

Dan Givoli1

Abstract: Very thin layers with material properties
which significantly differ from those of the surrounding
medium appear in a variety of applications. Tradition-
ally there are two extreme ways of handling such lay-
ers in finite element analysis: either they are fully mod-
elled or they are totally ignored. The former option is
often very expensive computationally, while the latter
may lead to significant inaccuracies. Here a special tech-
nique of modeling thin layers is devised within the frame-
work of the finite element method. This technique con-
stitutes a prudent compromise between the two extremes
mentioned above. The layer is replaced by an interface,
namely a line or a surface (with zero thickness) in two- or
three-dimensional analyses, respectively. Special jump
conditions are imposed on this interface to model the
effect of the layer. The method is presented in various
configurations and variants, and its performance in one
representative two-dimensional case is demonstrated via
numerical experiments.

keyword: Thin layer, Thin Film, Finite Element, In-
terface, Coating.

1 Introduction

Very thin layers with distinct material properties fre-
quently appear in Finite Element (FE) computations. Ex-
amples include exterior coating of structures, glue be-
tween two parts of a structure, the “mushy zone” be-
tween a liquid phase and a solid phase in contact, thin
films on substrates in electromagnetic devices, and coat-
ing of fibers in composite materials. See, e.g., [Achen-
bach and Zhu (1989), Achenbach and Zhu (1990), Mas-
ters and Salamon (1994), Cai and Bangert (1996), Sham
and Tichy (1997), Boutry, Bosseboeuf, Grandchamp and
Coffignal (1997), Body, Reyne and Meunier (1997),
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Sung, Choi and Yoo (1999), Zhang, Bower, Xia and Shih
(1999), Yue, Eggeler and Stockhert (2001), Hoppe and
Nash (2002), Suess, Tsiantos, Schrefl, Scholz and Fidler
(2002), Genna, Paganelli, Salgarello and Sapelli (2003),
Subramaniam and Ramakrishnan (2003)] for recent ap-
plications. In such cases the thickness of the layer is at
least an order of magnitude smaller than the global di-
mensions of the structure, and often two or three orders
of magnitude smaller. The layer may have a structural
role (as in the case of glue), a thermal role (as in the case
of a thin thermal insulator), an electromagnetic or optical
role, etc., depending on the application. Methods other
than FE have also been used for the analysis of thin lay-
ers [Zhang and Yao (2002), Chen and Liu (2001)].

Traditionally there are two extreme ways of handling
very thin layers in FE computations. One option is sim-
ply to totally ignore the layer, under the assumption that
its effect on the solution of the problem at hand is negli-
gible. This assumption may sometimes be inappropriate,
especially if the material properties of the layer deviate
significantly from those of the media around it. At the
other extreme, the layer can be fully included in the FE
model. In this case, the mesh inside the layer must be suf-
ficiently fine to resolve the solution there. More impor-
tantly, one needs to keep the element aspect-ratio close
to one for well-conditioning purposes, implying that the
mesh must be fine in the direction parallel to the layer,
not only normal to it. It is well known that needle-like el-
ements may lead to severe ill-conditioning. In addition,
one needs to coarsen the mesh gradually away from the
layer, which means that the mesh must be fine in a much
larger region than the layer itself.

In this paper we propose a method of modeling thin lay-
ers in FE computations, which constitutes a compromise
between the two extremes mentioned above. The layer is
modelled here as an interface, namely a line or a surface
(with zero thickness) in two- or three-dimensional analy-
ses, respectively. The effect of the layer on the solution is
modeled by means of jump conditions across this inter-
face, which are incorporated into the FE formulation. In-
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dependent degrees of freedom are defined on both sides
of the interface. In this way, the layer is taken into ac-
count in the computation, but it does not occupy a region
in the geometrical model and no special mesh refinement
is needed. The method is thus only slightly less efficient
than the procedure of ignoring the layer altogether but is
significantly more accurate. On the other hand, it is more
efficient than the method of modeling by FEs the entire
region of the layer. The setup is illustrated in Fig. 1.
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Figure 1 : Replacing a thin layer by an interface.

The idea to replace a layer by an interface is borrowed
from a recent work by Hashin [Hashin (2001), Hashin
(2002)]. Hashin considered a thin layer (an “interphase”)
which separates two phases; each of the three phases may
have its own material properties. The layer is then re-
placed by an interface, and jump conditions are derived
on it which approximately replace the original continuity
conditions that have to be satisfied on both sides of the
layer. In [Hashin (2001)] this was done for conductivity
problems governed by Laplace’s equation in each phase.
In [Hashin (2002)] the same procedure, although much
more complicated technically, was applied to linear elas-
ticity. Hashin’s jump conditions were proposed as a tool
for deriving approximate analytic solutions to problems
involving embedded thin layers, such as the problem of
determining the effective properties of composites with
coated inclusions. Unfortunately Hashin’s conditions are
not convenient for FE computation; their form is incom-
patible with the standard variational form of the problem,
and thus they are not easily incorporated into a FE formu-
lation.

Here we develop other interface conditions which are
highly compatible with the standard FE formulation. We
derive two types of such interface conditions: exact non-
local conditions, and approximate local conditions. The
derivation of the former shows that it is sometimes possi-

ble to replace the layered problem with an exactly equiv-
alent interface problem. The exact nonlocal conditions
may also serve as a starting point for deriving the approx-
imate local conditions in a systematic manner. However,
they are not very practical for actual computation; the
nonlocality carries with it a computational burden that
does not always justify the replacement of the layer with
an interface. On the other hand, the local conditions pro-
posed here are practical and useful.

Following is the outline of the rest of the paper. In Sec-
tion 2 we start with a simple one-dimensional configura-
tion, and show how a layer can be replaced by an inter-
face in an exact manner. This development bears theo-
retical interest but is associated with some clear deficien-
cies. Therefore in Section 3 we approximate the repre-
sentation of the layer, still in one dimension. In Section
4 we consider a two-dimensional scalar (e.g., heat con-
duction) problem. Again we show how a layer can be re-
placed by an interface exactly. As in the one-dimensional
case, this technique is of theoretical interest but is not
practical in the general case. In Section 5, we consider
an alternative approximate modeling procedure. We dis-
cuss both low-order and higher-order schemes. In Sec-
tion 6 we show how the scheme can be extended in var-
ious ways. In particular we discuss the elastic case. Nu-
merical experiments for the representative case of con-
ductivity in two dimensions are presented in Section 7.
We conclude in Section 8 with some remarks.

2 The 1D-Layer Formulation: Exact Treatment

We consider a one-dimensional (1D) problem in the in-
terval r1 ≤ r ≤ r2, where r1 < 0 and r2 > 0. This in-
terval may represent for example a 1D rod or the radial
direction in an annular domain under axi-symmetric con-
ditions. The interval Ω ≡ (r1, r2) is divided into three
subintervals: Ω1 ≡ (r1,−t), ΩL ≡ (−t, t) (the layer, with
thickness 2t) and Ω2 ≡ (t, r2). A second-order differ-
ential equation governs in each of the regions Ω j ( j =
1,L,2). To fix ideas we consider the equation

Lj u j ≡ −κ j u′′j + s j u j = 0 (1)

(no sum over j) where κ j is constant and s j is a non-
negative function. We take the external boundary condi-
tions

u1(r1) = 0 , κ2u′2(r2) = f , (2)
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where f is a given number. On the two ends of the layer
we have the continuity conditions

u1(−t) = uL(−t) , uL(t) = u2(t) , (3)

κ1u′1(−t) = κL u′L(−t) , κL u′L(t)= κ2u′2(t) . (4)

The conditions in (3) enforce the continuity of the pri-
mary variable u (e.g., temperature), whereas the condi-
tions in (4) require the continuity of the ‘flux’ κ u ′.
In the layer we solve the problem analytically. Suppose
the general solution in the layer is of the form

uL(r) = A F(r)+B G(r). (5)

Here F and G are known functions, and A and B are un-
known constants. From (5) we can write[

F(−t) G(−t)

F(t) G(t)

]{
A
B

}
=
{

uL(−t)
uL(t)

}
. (6)

By solving this set of equations we express A and B in
terms of uL(−t) and uL(t). Then we have:

κL u′L(−t) = κL(AF ′(−t)+BG′(−t))
≡ αu1(−t)+βu2(t) , (7)

κL u′L(t) = κL(AF ′(t)+BG′(t))
≡ γu1(−t)+δu2(t) . (8)

We have replaced the subscript L on the right side of (7)
and (8) owing to the condition (3). In (7) and (8), α, β, γ
and δ are constants given by

α =
κL

D

[
G(t)F ′(−t)−G′(−t)F(t)

]
,

β =
κL

D

[
G′(−t)F(−t)−G(−t)F ′(−t)

]
, (9)

γ=
κL

D

[
G(t)F ′(t)−G′(t)F(t)

]
,

δ=
κL

D

[
G′(t)F(−t)−G(−t)F ′(t)

]
, (10)

where

D = G(t)F(−t)−G(−t)F(t) . (11)

From (4), (7) and (8) we finally obtain

κ1u′1(−t) = αu1(−t)+βu2(t) ,

κ2u′2(t) = γu1(−t)+δu2(t) . (12)

These two conditions are equivalent to the original con-
ditions (3) and (4).

We remark that the boundary conditions (12) have the
form of Dirichlet-to-Neumann (DtN) boundary condi-
tions. See the recent reviews [Givoli (1999a), Givoli
(1999b)] on the subject. DtN conditions have been in-
corporated in a FE formulation in order to eliminate an
infinite domain [Keller and Givoli (1989)], a singular do-
main [Givoli, Rivkin and Keller (1992)], or a substruc-
ture [Barbone, Givoli and Patlashenko (2003)] from com-
putational domains, to mention the most important appli-
cations. Here the DtN condition is used to eliminate a
thin layer from the computation.

Now we derive the weak form of the problem consisting
of (1), (2) and (12). In Ω1 we obtain the weak equation
for u ∈ S1 ≡ H1(Ω1),

a1(w,u)−αw(−t)u(−t)−βw(−t)u(t)= 0 , (13)

for any w ∈ S1. In Ω2 we obtain the equation for u∈ S2 ≡
H1(Ω2),

a2(w,u)+γw(t)u(−t)+δw(t)u(t)= w(r2) f , (14)

for any w ∈ S2. In (13) and (14),

a j(w,u) =
∫

Ω j

(w′κ ju
′+ws ju)dΩ . (15)

To obtain a symmetric formulation, we multiply (13) by
(−γ) and (14) by β and add the two equations to obtain

a(w,u)+b(w,u)+c(w,u)= w(r2)β f . (16)

Here

a(w,u) = −γa1(w,u)+βa2(w,u) , (17)

b(w,u) = αγw(−t)u(−t)+βδw(t)u(t) , (18)

c(w,u) = βγ (w(−t)u(t)+w(t)u(−t)) . (19)

This leads to the symmetric FE matrix problem

KKKddd = FFF , (20)
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where

KAB = a(φA,φB)+b(φA,φB)+c(φA,φB) , (21)

FA = φA(r2)β f . (22)

Here φA is the shape function associated with node A.
Of course, in practice the FE array construction is imple-
mented on the element level.

The above amounts to the exact elimination of the layer.
If the layer is sufficiently thin, we can neglect the thick-
ness of the layer in the geometrical sense. Namely we
replace the layer with a single interface in the middle of
the layer, i.e., at r = 0, and allow the discontinuity of u
and w across it. Consequently we have two values of u at
r=0: u−(0) and u+(0). The same applies to w at r = 0.
Thus, we approximate

u(−t)� u−(0) , u(t)� u+(0) ,

w(−t)� w−(0) , w(t) � w+(0) . (23)

With this approximation the boundary conditions (12)
become the jump conditions

κ1(u−)′(0) = αu−(0)+βu+(0) ,

κ2(u+)′(0) = γu−(0)+δu+(0) , (24)

and the bilinear forms (17)–(19) are replaced by

a(w,u) = −γâ1(w,u)+β â2(w,u) , (25)

b(w,u) = αγw−(0)u−(0)+βδw+(0)u+(0) , (26)

c(w,u) = βγ (w−(0)u+(0)+w+(0)u−(0)) . (27)

Here

â1(w,u) =
∫

Ω̂1

(w′κ1u′ +ws1u)dΩ ,

â2(w,u) =
∫

Ω̂2

(w′κ2u′ +ws2u)dΩ . (28)

The “extended domains” Ω̂1 and Ω̂2 are defined by

Ω̂1 = Ω1 ∪ (−t,0) , Ω̂2 = Ω2 ∪ (0, t) , (29)

namely each subdomain includes half of the layer. The
FE matrix formulation remains (20)–(22), with these new
definitions.

3 The 1D-Layer Formulation: Approximation

The formulation above suffers from two deficiencies:

1. It requires the knowledge of the exact solution in the
layer, namely the functions F and G in (5), since the
coefficients α, β, γ and δ depend on them. These
functions are not always easy to obtain in the gen-
eral case.

2. The analogous treatment in the multi-dimensional
case results in interface conditions which are non-
local, as we shall see later. Such nonlocal condi-
tions are relatively hard to work with computation-
ally, and may render the whole construction non-
practical. (In 1D the “interface” is a single point
and so the issue of non-locality does not arise.)

Therefore, we shall consider now an approximation for
the interface conditions derived in the previous section,
which will become especially useful when we consider
the multi-dimensional case.

We assume that the solution inside the layer has the form
(5). However, rather than considering F and G to be
the exact elementary solutions of the differential equa-
tion (1), we take F and G to be the linear functions:

F(r) =
1
2

(
1− r

t

)
, G(r) =

1
2

(
1+

r
t

)
. (30)

Note that these are in fact the FE shape functions of a
1D linear element. With these functions the linear com-
bination on the right side of (5) can represent any lin-
ear function in the layer. The approximation in the layer
given by (5) and (30) is justified since the layer is thin
by assumption and every smooth function can be locally
approximated by a linear function. Another way to jus-
tify (30) is to write the solution in the layer as a Taylor
expansion up to the linear term. This approximation is
expected to be excellent unless the exact solution inside
the layer changes sharply.

With F and G given by (30) the matrix appearing in (6)
becomes the identity, and thus we obtain from (6)

A = uL(−t) , B = uL(t) . (31)

Then (9)–(11) reduce to D = 1 and

α = γ= −κL/(2t) , β = δ = κL/(2t) . (32)
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Hence the boundary conditions (12) become

κ1u′1(−t) =
κL

2t
(u(t)−u(−t))≡ κL

2t
[u] , (33)

κ2u′2(t) =
κL

2t
(u(t)−u(−t))≡ κL

2t
[u] . (34)

Here

[u]≡ u(t)−u(−t) (35)

is the jump of u across the layer. Thus, the boundary
conditions become simple jump conditions. We also note
that the two approximate jump conditions (33) and (34)
on the two sides of the layer turn out to have the same
right hand side. Thus, we can replace either (33) or (34)
by the flux continuity condition

κ1u′1(−t) = κ2u′2(t) . (36)

The physical meaning of the conditions (33)–(36) is
clear. Since [u]/(2t) is an approximation of du/dr in
the layer, then (κL/(2t))[u] approximates the flux in the
layer. Thus conditions (33)–(36) dictate that the flux
across the layer remains constant.

If the layer is very thin we can represent it by a single
interface. In this case the boundary conditions (33) and
(34) become the interface jump conditions

κ1(u−)′(0) =
κL

2t
[u] , (37)

κ2(u+)′(0) =
κL

2t
[u] , (38)

where [u] is the jump across the interface,

[u]≡ u+(0)−u−(0) . (39)

The weak and FE formulations given in the previous sec-
tion remain the same; simply the expressions (32) are
used for the coefficients α, β, γ and δ appearing in the
definitions of the bilinear forms (17)–(19) and (25)–(27).
After dividing throughout by the common factor κ L/(2t),
and denoting b∗(w,u)= b(w,u)+c(w,u) we get the weak
equation

a(w,u)+b∗(w,u) = w(r2) f , (40)

where

a(w,u) = â1(w,u)+ â2(w,u) , (41)

b∗(w,u) =
κL

2t
(w+(0)−w−(0))(u+(0)−u−(0))

≡ κL

2t
[w][u] . (42)

The product [w][u] is the product of the jump of w and
of u across the interface. This leads to the symmetric FE
matrix problem KKKddd = FFF where

KAB = a(φA,φB)+b∗(φA,φB) , (43)

FA = φA(r2) f . (44)

It is easy to check that the stiffness matrix KKK is not only
symmetric but also positive definite. However, we defer
the discussion on this issue to Section 5, where we con-
sider the multi-dimensional case.

4 The 2D-Layer Formulation: An Exact Treatment

Now we consider the two-dimensional (2D) case, where
the interface replacing the layer is represented by a curve
in the plane. In this case an exact treatment of the layer
analogous to the one applied in Section 2 leads to nonlo-
cal interface conditions. To see this, we consider the case
of an annular layer, namely a layer bounded by two con-
centric circles with radii R1 and R2. Thus, the thickness
of the layer is 2t = R2 −R1 (see Fig. 1). We use a po-
lar coordinate system (r,θ) whose origin is in the center
of the two circles. The region occupied by the layer, de-
noted ΩL, separates between two regions, Ω1 and Ω2. In
each of the Ω j ( j = 1,L,2), a second-order elliptic partial
differential equation governs, say,

Lju j ≡ −κ j∇ 2u j + s ju j = f j (45)

(no sum on j) where κ j is constant and s j is a non-
negative function. The source f j may be a general func-
tion in Ω1 and Ω2 but is assumed to be zero in the layer,
i.e., fL ≡ 0. Some boundary conditions are given along
the external boundary Γ; for simplicity we take

u = 0 on Γ . (46)

The continuity conditions given on the two sides of the
layer are

u1(R1,θ) = uL(R1,θ) , uL(R2,θ) = u2(R2,θ) , (47)

κ1u1,n(R1,θ) = κLuL,n(R1,θ) ,

κLuL,n(R2,θ) = κ2u2,n(R2,θ) . (48)



502 Copyright c© 2004 Tech Science Press cmes, vol.5, no.6, pp.497-514, 2004

Here u j,n means the normal derivative of u j. See Fig. 1
for the definition of the normal direction n. In the present
case ∂/∂n = ∂/∂r.

The problem just described may represent various phys-
ical situations. One major example is that of linear heat
conduction. In this case the κ j are the thermal conduc-
tivities of the different phases.

We start as in Section 2 by considering the exact solution
inside the layer. Suppose the radial eigenfunctions are
Fn(r) and Gn(r) and the angular functions are T c

n (θ) and
T s

n (θ). Typically T c
n = cos(nθ) and T s

n = sin(nθ). The
angular functions are orthogonal in [0,2π], and yield (no
sum on n)

< T c
m,T c

n >= δmn/bn , < T s
m,T s

n >= δmn/bn ,

< T c
m,T s

n >= 0 . (49)

Here δmn is the Kronecker delta, bn is an integration fac-
tor (bn = 1 if the angular functions are normalized to be
orthonormal) and

< Tm,Tn >≡
∫ 2π

0
TmTn dθ . (50)

In the layer we have the expansion

uL(r,θ) =
∞

∑
m=0

(Fm(r) (AmT c
m(θ)+BmT s

m(θ))

+ Gm(r) (CmT c
m(θ)+DmT s

m(θ))) . (51)

Now we substitute r = R1 in (51), apply the functional
< T c

m, · > to both sides of the equation, and use the or-
thogonality (49). Then we repeat this calculation with
r = R2 instead of r = R1 and with T s

m instead of T c
m. This

yields the matrix relations[
Fm(R1) Gm(R1)
Fm(R2) Gm(R2)

]{
Am

Cm

}

=
1

bm

{
< uL(R1),Tc

m >
< uL(R2),Tc

m >

}
, (52)

[
Fm(R1) Gm(R1)
Fm(R2) Gm(R2)

]{
Bm

Dm

}

=
1

bm

{
< uL(R1),Ts

m >
< uL(R2),Ts

m >

}
, (53)

By solving these two systems of equations we express
Am, Bm, Cm and Dm in terms of uL(R1,θ) and uL(R2,θ).

The exact solution (51) also gives

uL,n(r,θ) =
∞

∑
m=0

(
F ′

m(r) (AmT c
m(θ)+BmT s

m(θ))

+ G′
m(r) (CmT c

m(θ)+DmT s
m(θ))

)
. (54)

Using (52), (53) and (54), we get from the original con-
tinuity conditions (47) and (48) the following boundary
conditions:

κ1u1,n(R1,θ) = κL (M11u(R1,θ)+M12u(R2,θ)) , (55)

κ2u2,n(R2,θ) = κL (M21u(R1,θ)+M22u(R2,θ)) . (56)

Here the Mi j are integral operators (DtN maps; see
[Givoli (1999a), Givoli (1999b)]) that can be derived
from the equations above. Their action on a function u(θ)
can be found to be of the form

Mi ju(θ) =
∞

∑
m=0

αi jm < T c
m(θ)Tc

m(·)+T s
m(θ)Ts

m(·),u(·)> ,

(57)

where the α i jm are constants that can be deduced from
(52)–(54).

The FE formulation incorporating the boundary condi-
tions (55) and (56) is nonlocal; it involves the bilinear
forms

bi j(w,u)≡ κL

∫
B

wMi judB . (58)

Here B is one of the boundaries r = R1 or r = R2. In
fact, we can take advantage of the thinness of the layer
and take B to be a single interface located on the middle
curve of the layer, as we have done in the 1D case and as
shown in Fig. 1.

5 The 2D Layer Formulation: Approximation

We shall consider here the 2D case, although the same
methodology applies in 3D.

As was already implied in the 1D case, the exact replace-
ment of the layer with an interface suffers from two seri-
ous deficiencies:

1. It requires the knowledge of the exact solution in the
layer, which depends on the geometry of the layer.
In the previous section we considered the example
of an annular layer; obviously we would rarely have
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such a simple geometry. In the general case it may
be hard or even impossible to obtain the exact solu-
tion in the layer analytically.

2. The interface condition and hence the FE formula-
tion is nonlocal. In other situations, like the solution
of a problem with an infinite domain, the nonlocal-
ity may definitely be something that one is willing
to accept to ensure very accurate results; see [Givoli
(1999a), Givoli (1999b)]. However, in the case of a
thin layer, we should bear in mind that the straight-
forward (although inefficient) option to simply in-
clude the whole layer in the FE model always ex-
ists. Thus, the replacement of the layer with an in-
terface would be justified only if this replacement
is sufficiently simple and computationally inexpen-
sive. Under these circumstances, it seems that the
use of nonlocal interface conditions is generally un-
justified in this context.

In this light, we wish to obtain simple approximate inter-
face conditions for the multi-dimensional problem. With
this goal in mind, we first pose a few requirements that
these conditions have to satisfy:

1. They should be compatible with the standard C 0 FE
formulation.

2. They should be local.

3. They should not depend on the geometry of the
layer.

4. They should not ruin the symmetry and positivity of
the FE stiffness matrix KKK if KKK has these properties
in the standard formulation.

5. They should not introduce new degrees of freedom
(DOF) on the interface in addition to the double u-
DOF (one on each side of the interface).

Requirements 1, 2, 4 and 5 together imply (among other
things) that the interface conditions on B should have the
general form

κ1u−,n = α−u− +β−u+ +γ−u−,ss +δ−u+
,ss , (59)

κ2u+
,n = α+u− +β+u+ +γ+u−,ss +δ+u+

,ss . (60)

Here s is the direction tangent to the interface, and u ,ss is
the second tangential derivative. Note that the first tan-
gential derivative does not appear in this form since it

would lead to non-symmetric terms in the FE formula-
tion. One way to obtain conditions of the form (59) and
(60) is to first obtain nonlocal exact conditions and then
to localize them, as in [Givoli and Patlashenko (2002)];
however, this procedure is geometry dependent and thus
would violate requirement 3 above. Hence we will use
direct ways to derive interface conditions of the form (59)
and (60).

Locally in the layer we use an orthogonal coordinate sys-
tem (r, s), as shown in Fig. 2. The layer is bounded by the
curves r =−t and r = t. The interface B that replaces the
layer is the middle curve r = 0.

s

   r  

n

2t

B

Figure 2 : A layer in a two-dimensional configuration.

5.1 Interface Conditions Involving Only Function
Values

In the simplest interface conditions that have the form
(59) and (60), γ− = γ+ = δ− = δ+ = 0, namely no s-
derivatives appear but only function values. Such a con-
dition is obtained if we assume that the solution in the
layer, uL, depends only on r and not on s. Momentarily
we shall relate to the validity of this simplification. In
this case we can write uL as in (5), with F(r) and G(r)
given by (30), as we did in 1D. Following the 1D calcu-
lation, this immediately leads to boundary conditions of
the form (33) and (34), or, if the layer is replaced by an
interface, to interface conditions on B of the form (37)
and (38), i.e.,

κ1u−,n =
κL

2t
[u] , (61)

κ2u+
,n =

κL

2t
[u] , (62)

where [u]≡ u+(0, s)−u−(0, s).
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The physical interpretation of these conditions is as fol-
lows. Since the quantities appearing on either side of
(61) and (62) are normal fluxes, these equations imply
that the normal flux remains constant across the layer or
interface. In other words, flux loss due to “flow” in the
tangential direction s is ignored. One can argue that if the
layer is very thin it makes sense to ignore the tangential
flux in the interface conditions. To see this, assume that
the thickness of the layer is vanishingly small, so that it is
indeed an interface rather than a layer. Then a tangential
flux can only mean the flux “flowing” along the inter-
face, which has no effect over the coupling between the
two media on both sides of the interface. Only the nor-
mal flux is responsible to the passage of “information”
from one medium to another across the interface. Thus
the tangential component of the flux is not relevant in the
interface condition. If the layer has a finite thickness the
tangential flux does have some effect on the coupling be-
tween the two media, but arguably a small one.

Now we derive the weak form of the problem. In Ω̂1 (see
(29) for the definition) we obtain the weak equation (for
any w in the weighting space)

a1(w,u)− κL

2t

∫
B

w1(u2 −u1)dB = (w, f )1 . (63)

In Ω̂2 we obtain the equation

a2(w,u)+
κL

2t

∫
B

w2(u2 −u1)dB = (w, f )2 . (64)

Here

a j(w,u) =
∫

Ω̂ j

(∇ w ·κ j ∇ u+ws ju)dΩ , (65)

(w, f ) j =
∫

Ω̂ j

w f dΩ . (66)

The different signs of the interface B terms in (63) and
(64) originate from the fact that the normal n is pointing
out of Ω̂1 but into Ω̂2 (see Fig. 1). By adding the two
weak equations we obtain the single equation

a(w,u)+b(w,u) = (w, f ) . (67)

Here

a(w,u) = a1(w,u)+a2(w,u) , (68)

b(w,u) =
κL

2t

∫
B
(w2 −w1)(u2−u1)dB

≡ κL

2t

∫
B
(w+−w−)(u+−u−)dB

≡ κL

2t

∫
B
[w][u]dB , (69)

(w, f ) = (w, f )1 +(w, f )2 . (70)

This leads to the symmetric FE matrix problem KKKddd = FFF
where

KKK = KKKa +KKKb , (71)

Ka
AB = a(φA,φB) , (72)

Kb
AB = b(φA,φB) , (73)

FA = (φA, f ) . (74)

Here the φA are the shape functions.

It is easy to show that the interface stiffness matrix KKKb is
not only symmetric but also positive semi-definite. The
following calculation proves this:

vvvTKKKbvvv = ∑
A,B

vAKb
ABvB = ∑

A,B

vAb(φA,φB)vB

= b

(
∑
A

vAφA,∑
B

vBφB

)
(75)

= b(vh,vh) =
κL

2t

∫
B
(vh

2−vh
1)

2 dB ≥ 0 . (76)

Since KKKb is positive semi-definite, and since KKKa (the stan-
dard stiffness matrix) is known to be positive definite,
their sum, which is the total stiffness matrix KKK, is positive
definite. This shows that requirement 4 above is indeed
satisfied.

Of course, as in the 1D case, in practice the FE formula-
tion is implemented on the element level. Since the vol-

ume stiffness matrix KKKa =
Nel

A
e=1

(kkka)e and the load vector

FFF =
Nel

A
e=1

fff e are standard, it only remains to consider how

the matrix KKKb =
Nel

A
e=1

(kkkb)e should be constructed. (Here

Nel is the total number of elements and
Nel

A
e=1

is the FE

assembly operator.) For simplicity we assume that the
meshes of 2D elements in Ω̂1 and Ω̂2 are compatible at
the interface B (despite the fact that owing to the jump in
u they do not have to be compatible).
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One convenient way to construct KKKb is by thinking of the
interface B as a collection of 1D interface elements, sit-
ting on top of the sides of the 2D elements that constitute
the meshes in Ω̂1 and Ω̂2. Such an interface element oc-
cupies the domain B e and has Nen nodes and 2Nen DOFs,
one DOF on each side of the interface. At node a of in-
terface element e, the DOF on the side of the interface
adjacent to the region Ω̂ j is called “DOF j at node a of
element e.” Then it is easy to infer from (69) and (73)
that

(kkkb)e = [(kb)e
(ai)(b j)] , (77)

(kb)e
(ai)(b j) =

κL

2t
µi j

∫
Be

φaφb dB , (78)

µi j =
{

1 , i = j
−1 , i 
= j

. (79)

Here the indices i and j are the DOF numbers at nodes a
and b of element e, and φa is the element shape function
associated with node a.

For example, we consider the simplest case of a linear
interface element, namely linear shape functions φa. A
simple calculation (note that (78) is reminiscent of a 1D
mass matrix) yields the following element stiffness ma-
trix:

(kkkb)e =
κLhe

12t




2 −2 1 −1

−2 2 −1 1

1 −1 2 −2

−1 1 −2 2


 . (80)

See Fig. 3 for the identification of the four element DOFs
associated with the four row and columns of this matrix.

a=2

a=1

B

i=2
i=1

i=1
i=2

1

e

e

DOF 4

DOF 2

DOF 1

DOF 3

2

eh

Figure 3 : A 1D interface element.

An alternative convenient way to construct KKKb is to think
of the interface element as a degenerated rectangular el-
ement, as shown in Fig. 4. Geometrically, the thickness

2

1 e 3

eh B

4

Figure 4 : A degenerated rectangular interface element.

of this element is zero (and not the thickness of the layer),
namely the nodes 1 and 4 possess the same coordinates,
and so do the nodes 2 and 3. The thickness of the layer
2t appears only in the factor multiplying the stiffness ma-
trix. The stiffness matrix of the degenerated rectangle is
the same as (80) up to changes in the row and column
numbers, i.e.,

(kkkb)e =
κLhe

12t




2 1 −1 −2

1 2 −2 −1

1 −2 2 1

−2 −1 1 2


 . (81)

Of course, the two elements just described are essentially
identical; they simply provide two different ways of look-
ing at the same implementation. It should be emphasized
that although the basic assumption of linear variation in
the r direction is common to the degenerated rectangular
interface element and to the standard bilinear four-node
quadrilateral element, these two elements are totally dif-
ferent. To see this note that the expression for the stiff-
ness matrix (78) of the interface element has no similarity
to that of a standard bilinear element.

5.2 Higher-Order Interface Conditions

Now we wish to construct interface conditions of the
form (59) and (60), which are more accurate than (61)
and (62) in that they take into account the variation of the
solution inside the layer in the tangential direction s.

We focus our attention on the vicinity of a certain posi-
tion along the layer, that we take as s = 0 without loss of
generality. We consider a slice of the layer of tangential
length 2t around this position, as shown in Fig. 5. On
the edges of the resulting 2t×2t square we identify the 8
points u j, ∗u j, u∗j ,

∗u and u∗, and the central point u.
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Figure 5 : Setup for constructing the higher-order inter-
face conditions in 2D.

We assume a parabolic variation of the solution in the
tangential direction inside the slice. Thus, on the two
edges r = −t and r = t we have

u(−t, s) = C− +D−s+E−s2 ,

u(+t, s) = C+ +D+s+E+s2 . (82)

From this we easily deduce:

C± = u(±t,0) , D± = u,s(±t,0) ,

E± =
1
2

u,ss(±t,0) . (83)

From (82) and (83) we get (see Fig. 5)

∗u1 = u(−t,−t) = u1− tu1,s +
t2

2
u1,ss , (84)

u∗1 = u(−t, t) = u1 + tu1,s +
t2

2
u1,ss , (85)

∗u2 = u(t,−t) = u2 − tu2,s +
t2

2
u2,ss , (86)

u∗2 = u(t, t) = u2 + tu2,s +
t2

2
u2,ss . (87)

Assuming a linear variation in r in the tangential posi-
tions s = ±t, we can calculate ∗u and u∗ as the averages

of the quantities given above, i.e.,

∗u =
1
2
(∗u1 + ∗u2)

=
1
2

(
u1 +u2 − t(u1,s +u2,s)+

t2

2
(u1,ss +u2,ss)

)
, (88)

u∗ =
1
2
(u∗1 +u∗2)

=
1
2

(
u1 +u2 + t(u1,s +u2,s)+

t2

2
(u1,ss +u2,ss)

)
. (89)

Now we wish to estimate the value of u, at the central
point. Of course we may take u = (1/2)(u1+u2), but this
approximation will not make use of the variation of u in s
and will lead us back to the interface condition obtained
in Section 5.1. A better approximation is based on the
average of the four values at the points neighboring to
the central point, i.e.,

u =
1
4
(u1 +u2 + ∗u+u∗) . (90)

The weights of the four values in this formula are the
same since the four points are equally distanced from the
central point. Substituting (88) and (89) in (90) results in

u =
1
8
(4u1 +4u2 + t2u1,ss + t2u2,ss) . (91)

Now, based on the values u1, u and u2 we can estimate the
normal derivatives u,n(−t,0) and u,n(t,0) by assuming a
piecewise-linear variation of u in the thickness direction:

u,n(−t,0) =
u−u1

t

=
1
8t

(−4u1 +4u2 + t2u1,ss + t2u2,ss) , (92)

u,n(t,0) =
u2−u

t

=
1
8t

(−4u1 +4u2 − t2u1,ss − t2u2,ss) . (93)

From this and from the original continuity conditions (cf.
(47) and (48)) we get the boundary conditions

κ1u−,n =
κL

8t
(−4u− +4u+ + t2u−,ss + t2u+

,ss) , (94)

κ2u+
,n =

κL

8t
(−4u− +4u+− t2u−,ss − t2u+

,ss) . (95)
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These are the desired interface conditions, which have
exactly the form (59) and (60).

These interface conditions can be incorporated in the
weak form of the problem, and lead (after integration by
parts along B) to a symmetric C0 FE formulation. How-
ever, we note that for typical layers the last two terms on
the right side of (94) and (95) are negligible compared
to the first two terms, since they are of order t 2. If we
neglect them we get the simpler interface conditions

κ1u−,n � κ2u+
,n �

κL

2t
[u] , (96)

which are in fact (61) and (62). We thus conclude that
usually the higher-order terms in the interface conditions,
which turn out to be O(t 2), do not increase the accuracy
significantly.

6 Extensions

6.1 Three Dimensions

In 3D the layer occupies a volume, and is replaced by
an interface which is a surface. The extension of the in-
terface conditions (61) and (62) and the FE formulation
(68)–(74) to the 3D case is immediate; they essentially
remain the same. The higher-order conditions (94) and
(95) can also easily be extended by adding the appropri-
ate terms in the second tangential direction. They are
obtained by considering a 2t×2t ×2t cube analogous to
the square in Fig. 5. However, as in 2D, the higher-order
terms are O(t2) and are thus typically negligible.

6.2 External Coating

If the layer is external, as in the case of a structure which
is externally coated, then the problem involves only two
phases: the layer and the medium it rests upon. In this
case the “interface” B is an external boundary. Still it
is necessary to consider two sets of DOFs on the inter-
face, i.e., u1 = u− which is inward and u2 = u+ which is
outward, as in Fig. 3.

For example, we consider a simply-connected 2D do-
main Ω occupied by material with conductivity κ 1 encap-
sulated by thin coating with conductivity κ L. The exter-
nal boundary of the coating is Γ. We consider the differ-
ential equation (45) in Ω, and the flux-transfer boundary
condition

κLu,n = α(u∞−u) on Γ . (97)

Here α and u∞ are the given coefficient of flux transfer
and the environment field, respectively. We replace the
layer by a boundary B which coincides with Γ. (Whether
B passes in the middle of the layer or lies on its outer
boundary Γ is not important as long as the layer is thin.)
The approximate interface conditions are then

κ1u−,n =
κL

2t
[u] , (98)

α(u∞−u+) =
κL

2t
[u] . (99)

These conditions can easily be incorporated in a FE for-
mulation. The weak equation is (67), with the bilinear
forms

a(w,u) = a1(w,u) , (100)

b(w,u) =
κL

2t

∫
B
[w][u]dB +

∫
B

w+αu+ dB , (101)

(w, f ) = (w, f )1 +
∫

B
w+αu∞ dB . (102)

By comparing this to (68)–(74), we see that the terms
pertaining to Ω2 have been dropped here, and instead
some new terms appear that are associated with the flux-
transfer condition (97). The FE formulation remains
symmetric and positive definite.

6.3 Elasticity

The analogous treatment of layers in linear elastic me-
dia is technically more complicated than the scalar case
considered so far. We consider a linear elastic solid com-
posed of three phases, k = 1,L,2, as shown in Fig. 1. The
given continuity conditions on each side of the layer are
the continuity of displacements and tractions:

u(1)
i = u(L)

i , T (1)
i = T (L)

i ,

u(2)
i = u(L)

i , T (2)
i = T (L)

i . (103)

We assume each phase to be isotropic. In particular, in-
side the layer, in the directions normal and tangential to
the layer, the following stress-strain relations hold:

σ(L)
rr = (λ(L) +2G(L))ε(L)

rr +λ(L)ε(L)
ss , (104)

σ(L)
ss = (λ(L) +2G(L))ε(L)

ss +λ(L)ε(L)
rr , (105)

σ(L)
rs = 2G(L)ε(L)

rs . (106)
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Here λ(L) and G(L) are the Lamé constants of the layer
material. From the relations between tractions Ti and
stresses σi j, and from the relations between strains ε i j

and displacements ui, i.e.,

Ti = σi jn j , εi j =
1
2
(ui, j +u j,i) , (107)

we can write (104) and (106) as

T (L)
r = (λ(L) +2G(L))u(L)

r,r +λ(L)u(L)
s,s , (108)

T (L)
s = G(L)(u(L)

s,r +u(L)
r,s ) . (109)

In order to be able to replace the layer with an inter-
face, we need to express the continuity conditions (103)

in terms of u
(1)
i and u(2)

i only. From (108) and (109) we
get, by assuming a linear variation of the displacement in
the thickness direction of the layer,

T (1)
r = (λ(L) +2G(L))

u(2)
r −u(1)

r

2t
+λ(L)u(1)

s,s , (110)

T (2)
r = (λ(L) +2G(L))

u(2)
r −u(1)

r

2t
+λ(L)u(2)

s,s , (111)

T (1)
s = G(L) u(2)

s −u(1)
s

2t
+G(L)u(1)

r,s , (112)

T (2)
s = G(L) u(2)

s −u(1)
s

2t
+G(L)u(2)

r,s . (113)

In deriving these relations we have used the original con-
tinuity conditions (103) as well as the fact that if a quan-
tity is continuous across an interface so is its tangential
derivative. Now the layer may be replaced by the inter-
face B , and (110)–(113) become the interface conditions

T−
r =

λ(L) +2G(L)

2t
[ur]+λ(L)u−s,s , (114)

T +
r =

λ(L) +2G(L)

2t
[ur]+λ(L)u+

s,s , (115)

T−
s =

G(L)

2t
[us]+G(L)u−r,s , (116)

T +
s =

G(L)

2t
[us]+G(L)u+

r,s . (117)

These interface conditions are now incorporated in a FE
formulation. The weak form of the problem is governed
by the equation

a(w,u)+b(w,u) = z(w) . (118)

The bilinear form a(w,u) and the linear form z(w) are the
standard ones while b(w,u) originates from the interface
conditions. A straight forward derivation using (114)–
(117) leads to

b(w,u)

=
∫

B

{
λ(L) +2G(L)

2t
[wr][ur]+

G(L)

2t
[ws][us]

− λ(L)(w−
r u−s,s +w+

r u+
s,s)−G(L)(w−

s u−r,s +w+
s u+

r,s)
}

dB .

(119)

Note that the terms on the second line of (119) make this
bilinear form non-symmetric.

One way to render the formulation symmetric is to sim-
ply ignore the non-symmetric terms in (119). This
amounts to neglecting the s-derivative terms in the inter-
face conditions (114)–(117) compared to the other terms,
i.e.,

T−
r = T +

r =
λ(L) +2G(L)

2t
[ur] , (120)

T−
s = T +

s =
G(L)

2t
[us] . (121)

Neglecting the s-derivative terms in (114)–(117) can be
justified by using arguments similar to those made is Sec-
tion 5.1.

Another option for rendering the bilinear form b(·, ·)
symmetric is to scale the weighting functions w r and ws

differently, namely to define

Wr = λLwr , Ws = −GLws . (122)

With the new weighting functions Wr and Ws, and after
applying integration by parts to (119), the formulation
becomes symmetric. However, the disadvantage of this
procedure is that the standard terms (and element matri-
ces) are also affected by this scaling. Thus, using (122)
means that one has to modify the entire FE formulation,
not just to add an interface term to it.

7 Numerical Experiments

In this section we test the proposed methodology, and in
particular the FE formulation (68)–(74). To this end we
consider the relatively simple two-dimensional setup de-
scribed in Fig. 6. Linear heat conduction may be thought
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of as the underlying physical model, although any other
phenomenon governed by Laplace’s equation would be
appropriate as well. A layer of length a and thickness
2t, made of a weakly-conducting material, is situated
between two rectangular blocks of well-conducting ma-
terial. The origin of the system of coordinates lies on
the left edge in the middle of the layer such that the do-
main ΩL which the layer occupies is given by 0 ≤ x ≤ a,
−t ≤ y≤ t. The widths of the two rectangular conducting
blocks, occupying the domains Ω1 and Ω2, are b1 and b2,
as indicated in the figure. The entire domain is denoted
Ω and its exterior boundary is denoted Γ.

b

a

bPhase 2

Phase 1

Layer

2

1

2t

y
x

Figure 6 : Example model of a thin weakly-conducting
layer between two phases of conducting material.

The conductivities of the three phases are denoted κ 1, κL

and κ2, and are taken to be constant. In each of the three
open domains Laplace’s equation holds:

∇ 2u ≡ ∂2u
∂x2 +

∂2u
∂y2 = 0 in Ω1, ΩL ,Ω2 . (123)

We consider two specific solutions, piecewise linear and
piecewise parabolic, which satisfy (123). In each case
we design the boundary conditions on Γ to satisfy this
solution. Thus, the exact solution is known by construc-
tion, which is useful for calculating the error generated

by the computational scheme. Neumann boundary con-
ditions are calculated from the exact solution and are im-
posed along Γ, except at the lower left corner (x = 0,
y = −(b1 + t)) where a Dirichlet condition is imposed to
make the solution unique. In addition to (123) and the ex-
terior boundary conditions, the original problem includes
continuity conditions on the two faces of the layer (see
(47) and (48)), i.e.,

u1(x,−t) = uL(x,−t) ,

uL(x, t) = u2(x, t) , (124)

κ1
∂u1

∂y
(x,−t) = κL

∂uL

∂y
(x,−t) ,

κL
∂uL

∂y
(x, t) = κ2

∂u2

∂y
(x, t) . (125)

We take κ1 = κ2 = 1, and leave κL < 1 a free parameter.
The case κL > 1 is less interesting since in the case of
a well-conducting layer one may often ignore the layer
without generating significant errors. The opposite case,
of an ill-conducting layer, is both physically more inter-
esting and computationally more difficult.

Throughout this experiment we use meshes of rectangu-
lar FEs with bilinear shape functions. We set a = 10 and
b1 = b2 = 5, and we leave the half-thickness of the layer
t to be a second free parameter. In each of phases 1 and
2 we use 20 elements in the x direction and 15 elements
in the y direction. As to the treatment of the layer we
consider three schemes:

• S1: Fully modeling the layer by standard FEs. We
use five bilinear elements in the thickness direction
(namely an overall number of 100 elements) to rep-
resent the layer.

• S2: Using the new interface scheme proposed in the
paper, based on the FE formulation (68)–(74).

• S3: Ignoring the layer. There are a number of ways
that this can be done. We do this by thinking of the
layer as belonging to phase 1 in all respects. Thus,
in this model we only have two phases with two con-
ductivities: κ 1 and κ2.

Our first experiment concerns a problem whose solution
is a piecewise linear function. This serves as a sort of a
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Table 1 : Summarizes the errors generated by schemes S1, S2 and S3 for various values of the layer thickness 2t
and the layer conductivity κ L.

2t κL ‘Layer’ model S1 ‘Interface’ model S2 ‘Ignore’ model S3
EΩ EB EΩ EB EΩ EB

0.5 0.1 0.12E-04 0.11E-04 0.54E-02 0.87E-02 0.44E-01 0.64E-01
0.5 0.01 0.12E-04 0.11E-04 0.55E-03 0.87E-03 0.44E-01 0.64E-01
0.5 0.001 0.69E-07 0.37E-10 0.54E-04 0.87E-04 0.48E-01 0.71E-01
0.5 0.0001 0.61E-05 0.54E-05 0.53E-05 0.83E-05 0.49E-01 0.71E-0
0.05 0.1 0.91E-05 0.81E-05 0.54E-03 0.86E-03 0.48E-02 0.76E-02
0.05 0.01 0.30E-05 0.27E-05 0.56E-04 0.88E-04 0.53E-02 0.83E-02
0.05 0.001 0.30E-05 0.27E-05 0.44E-05 0.79E-05 0.53E-02 0.84E-02
0.05 0.0001 0.42E-04 0.37E-04 0.42E-04 0.38E-04 0.53E-02 0.84E-02

0.005 0.1 0.11E-04 0.10E-04 0.48E-04 0.83E-04 0.49E-03 0.78E-03
0.005 0.01 0.14E-04 0.12E-04 0.17E-04 0.17E-04 0.53E-03 0.85E-03
0.005 0.001 0.81E-04 0.72E-04 0.81E-04 0.72E-04 0.54E-03 0.86E-03
0.005 0.0001 0.86E-03 0.76E-03 0.86E-03 0.76E-03 0.54E-03 0.86E-03

“patch test” to validate the new interface scheme. The
exact solution is

u1 =
κL

κ1
(y+ t)− t , (126)

u2 =
κL

κ2
(y− t)+ t , (127)

uL = y . (128)

It is easy to check that this solution satisfies (123)–(125).
We have solved the problem with various values of t
and 0 < κL < 1. In all cases both schemes S1 and S2
yielded the exact solution to within machine precision.
The fact that S1 generates zero error is obvious; it fol-
lows from the ability of the shape functions to exactly
represent global piecewise-linear functions. (This can
be regarded as a consequence of the Best Approxima-
tion property; see Hughes [Hughes (1987)].) The fact
that our new interface scheme S2 also generates zero er-
ror for such problems shows that this scheme indirectly
possesses the piecewise-linear representation property as
well. Needless to say, S3 (which ignores the layer) gen-
erates nonzero errors.

Next, we consider a problem whose solution is
piecewise-parabolic. The solution is given by

u1 = x2 +B1(y+ t)−y2 , (129)

u2 = x2 −B2(y− t)−y2 , (130)

uL = x2 −y2 , (131)

B1 = 2t

(
κL

κ1
−1

)
, B2 = 2t

(
κL

κ2
−1

)
. (132)

Again, it is easy to check that this solution satisfies
(123)–(125). Obviously, for such a problem none of the
schemes S1, S2 or S3 would yield the exact solution as
long as bilinear shape functions are used.

To measure the numerical error, we define two global er-
ror measures:

E2
Ω ≡ ∑A∈ηΩ(uA−uh

A)2

∑A∈ηΩ u2
A

, (133)

E2
B ≡ ∑A∈ηB (uA−uh

A)2

∑A∈ηB u2
A

. (134)

Here u is the exact solution, uh is the FE solution, the
index A stands for a node number, ηΩ is the set of all
the mesh nodes and ηB is the set of all the nodes on the
boundary B . Thus, EΩ and EB are, respectively, the rela-
tive discrete l2 (Euclidian) norm of the error in the entire
mesh and on B .

The following can be concluded from Table 1:

• In general, the full layer model S1 generates the
least error (maximum of 0.086% in the cases re-
ported in the table), and the model S3 ignoring the
layer yields the largest error (maximum of 7.1%).
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The new interface model S2 generates an intermedi-
ate level of errors (maximum of 0.87%). This result
is expected and demonstrates that the goal associ-
ated with the interface scheme S2 is achieved.

• The S2 and S3 errors are almost linear with the layer
thickness 2t. The increase of the error with 2t is also
expected: for a thicker layer the error associated
with the interface model or with the model which
ignores the layer becomes larger.

• The S3 error hardly depends on the layer conductiv-
ity κL, whereas the S2 error is almost linear with κ L,
except for very small layer thicknesses. To under-
stand the decrease of the S2 error with the decrease
of κL, note that in the limit κ L → 0 the conditions
(125) become

κ1
∂u1

∂y
(x,−t) = 0 , κ2

∂u2

∂y
(x, t)= 0 , (135)

which are the same as the approximate interface
conditions (61) and (62) in the same limit.

• For very small layer thickness 2t, the S2 error be-
comes close to the S1 error, namely recovers the ex-
act solution up to the unavoidable FE approximation
errors. On the other hand, the S3 error remain an or-
der of magnitude larger, except for very small values
of κL.

• When both 2t and κL are very small, the problem be-
comes “hard”: the errors in the S1 and S2 schemes
increase and approach the S3 error. This is the
regime where round-off errors become significant
and the solution starts to lose its stability.

We remark that the linear behavior of the errors with 2t
and κL is related to the approximation error of a parabolic
function by a linear function, and is probably problem
dependent.

For the specific case 2t = 0.5 and κL = 0.1, Fig. 7 com-
pares the exact solution to the S2 and S3 solutions. (The
S1 solution practically coincides with the exact solution.)
It is clear that whereas the S2 solution (‘interface’ model)
remains very close to the exact solution (Fig. 7(a)), the S3
solution (‘ignore’ model) is significantly off (Fig. 7(b)).
Note especially the spurious divergence of the contour
lines on the left side of the figure as well as the ‘wiggle’
on the right side.

(a)

(b)

Figure 7 : Contour lines of the solution for the case 2t =
0.5, κL = 0.1. The solid lines in each figure are those
of the exact solution. The dashed lines correspond to the
(a) S2 solution (‘interface’ model) and (b) S3 solution
(‘ignore’ model).
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To further examine the layer representation error we
consider another error measure, namely the relative
maximum-norm error defined by

emax ≡ maxA∈ηΩ |uA−uh
A|

maxA∈ηΩ |uA| . (136)

Fig. 8 shows, on a log-log scale, the error emax generated
by the three schemes as a function of the layer thickness
2t, with the fixed layer conductivity value κ L = 0.1. The
linearity of the S2 and S3 errors with the layer thickness
is clear. For this value of κL the S2 scheme is more accu-
rate by an order of magnitude than the S3 scheme for the
entire range of thickness values.

Fig. 9 shows the same error as a function of the layer con-
ductivity κL, with the fixed layer thickness value 2t = 0.5.
For this value of thickness and for sufficiently small κ L

the S2 error is much smaller than the S3 error. However,
the S3 error remains constant while the S2 error increases
with κL as the figure shows. For κL � κ1 = 1 the S3 so-
lution is more accurate, provided that the layer is suffi-
ciently thick. However, this is not a particularly interest-
ing case for two reasons: (a) thick layers indeed should
not be treated by the interface approximation proposed
here or any other method of approximating the layer; (b)
when κL � κ1 = 1 the layer can indeed be ignored with-
out major consequences.
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Figure 8 : The relative maximum error generated by the
three schemes as a function of the layer thickness 2t, for
κL = 0.1.
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Figure 9 : The relative maximum error generated by the
three schemes as a function of the layer conductivity κ L,
for 2t = 0.5.

8 Concluding Remarks

We have proposed a simple technique to model thin lay-
ers within the finite element methodology. The layer is
modelled as an interface and appropriate jump conditions
are imposed on it. This method constitutes a prudent
compromise between the two traditional ways of han-
dling a thin layer: fully modeling it using standard finite
elements or simply ignoring it. The proposed method is
less expensive computationally than the former and much
more accurate than the latter.

The method was presented in various configurations and
variants. Its good performance was demonstrated here
via numerical experiments in the two dimensional scalar
case, like that of heat conduction. The example cho-
sen here is very simple in its geometry and governing
equations, but succeeds to illuminate the main proper-
ties of the proposed method. Further development of the
method should include implementation and thorough in-
vestigation in more complicated situations, such as the
elastic case and the three-dimensional case. In addition,
theoretical error analysis is needed to support the find-
ings reported in the previous section (and in particular
to explain the linear dependencies seen in Table 1) and
to predict the convergence rate in general. We hope to
report on these matters in a future publication.
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