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A Hybrid Atomistic—Continuum Formulation for Unsteady, Viscous,
Incompressible Flows

H.S. Wijesinghé" and N.G. Hadjiconstantinou?

Abstract:  We present an implicit hybrid atomisticphysics is appropriately compressible, are inefficient
continuum formulation for unsteady, viscous, inconwhen applied to incompressible flow fields [Wijesinghe
pressible flows. The coupling procedure is derived froand Hadjiconstantinou (2004)].

a domain decomposition method known as the Schwarz

alternating method. A dilute gas impulsive Couette flow

test problem is used to verify the hybrid scheme. Final§;1 Challenges in Unsteady Incompressible Hybrid

a method to reduce computational costs through limited ~Formulations

ensemble averaging is presented. The implicit formulgs \vell known that unless special measures are taken,

tion proposed here is expected to be significantly fastg{ch as pre—conditioning, a compressible continuum for-

than a time explicit approach based on a compressiglg|ation should in general be avoided for the solution

formulation for the simulation of low speed flows suclyt incompressible flow fields [Wesseling (2001)]. The

as those found in micro- and nano-scale devices.  imestep for explicit integration of a compressible con-
tinuum formulation,At., scales with the physical time

1 Introduction and Background step,Atp, = Ax;/U (which, in continuum applications, is

Hybrid atomistic—continuum formulations allow thdn Palance with the physical time scdl¢U), according

simulation of complex hydrodynamic phenomena 4 [Wesseling (2001)],

the nano and micro scales without the prohibitive cost

of a fully atomistic approach. Hybrid formulation fe < 1+M

typically employ a domain decomposition strate , : . :
L L : hereAx; is the continuum grid spacing, andU are
whereby the atomistic model is limited to regions o X g pacing,

. : ) characteristic length and velocity scales avidis the
the flow field where required and the continuum mod
) . . o . ach number. As the Mach number decreadss pe-
is used in the remainder of the domain within a single

. . comes increasingly smaller thaty, and the well-known
computational framework. Over the years a fair number. . .
saffness problem arises whereby the computational

of unsteady hybrid formulations have been propose iciency of the numerical scheme dearades due to
for gases [Eggers and Beylich (1994); Garcia, Beg y 9

Aty (1)

Crutchfield, and Alder (1999); Hash and Hassan (199 1spar_|ty of time scales in the system of governing
) N uations. Moreover the accuracy of the compressible
Roveda, Goldstein, and Varghese (2000); O'Connell’" . : .
) ) olution degrades because the magnitude of fluxes in
and Thompson (1995); Wadsworth and Erwin (199 - . .
o e original equations approach the corresponding terms
1992)] and recently for liquids [Delgado and Covene : e . )
, ue to numerically added artificial viscosity [Wong,
(2003); Flekkoy, Wagner, and Feder (2000)]. Thesge .
. ; , : ._Darmofal, and Peraire (2001)].
hybrid formulations are typically based on time explici
flux matching techniques which are natural extensions _ o o
of control volume integration. In this paper we shodn the hybrid case, the atomistic integration time step,

that these approaches, while successful when the fbte: /SO needs to be consideredty is at most of the
order ofAt; (for some cases in gases whiax < A) and

Department of Aeronautics/Astronautics, in most cases significantly smaller (especially in liquids).
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2Department of Mechanical Engineering, Massachusetts Institl]t-gese considerations make unsteady incompressible
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USA. the separation betweeht, and At, makes the explicit
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integration of the atomistic subdomain to the time dfon on dilute gas systems where the Navier-Stokes
interest increasingly expensive and eventually infeasibtiescription fails as the characteristic length scale of
These issues have been addressedéady incompress- interest decreases [Hadjiconstantinou and Simek (2002);
ible problems [Hadjiconstantinou and Patera (199Madjiconstantinou (2002, 2003); Hadjiconstantinou
Hadjiconstantinou (1999)] with the use of iterativeand Simek (2003)]. The hybrid formulation introduced
methods that lead to convergence to the global stedure is nonetheless equally applicable to liquids. As
state solution without the need for explicit integratioexplained in [Wijesinghe and Hadjiconstantinou (2004)],
of the atomistic subdomain to this solution. Timén the case of liquids the only significant modification
explicit coupling schemes should therefore be avoideequired is a reliable boundary condition imposition
for steady problems. In unsteady flows however, sinoeethod in the atomistic subdomain for which progress
the interest lies in the transient solution, iterative steathas been made recently [Delgado and Coveney (2003);
state methods cannot be used. Innovative integratiekkoy, Wagner, and Feder (2000); Li, Liao, and Yip
frameworks which can coarse grain the time integratigf999)].

of the atomistic subdomain may alleviate some of these

problems in the future. The Schwarz method offers two advantages compared
to time explicit coupling approaches based on flux
In this paper we assume thais sufficiently small such matching. First, the time scale decoupling properties of
that explicit integration of the atomistic subdomain tthe approach are manifested by the ability to couple only
the global time of interest is possible. Under these conéit the time where solutions are required. This not only
tions, explicit and implicit coupling techniques based oallows the use of optimal time steps in each subdomain
incompressible formulations offer advantages compareat also the use of acceleration methods such as the
to the commonly used time explicit flux matching basdimited ensemble approach developed here to gain an
on the compressible continuum (control volume) formefficiency advantage.
lation. An example of an implicit technique is introduced

next and is the subject of the remainder of this paper. Ahe second advantage arises from the fact that Schwarz
explicit technique based on the incompressible formulgoup”ng using state variables provides cost savings over
tion was presented in [0’Connell and Thompson (1995}gditional flux based coupling schemes. Flux based for-
mulations suffer from adverse signal to noise ratios in
connection with the averaging required for imposition of
1.2 An Implicit Coupling Technique boundary conditions from the atomistic subdomain to the

Here we explore the use of a coupling method moggntinuum subdomain. In the case of an ideal gas and

in tune with the physics of the incompressible flodPw s_peed flows it has been shown [Hadjiconstantinou,
field. The approach considered is an extension Gf'¢ia, Bazant, and He (2003)] that, for the same num-
the Schwarz alternating method [Han and Atluri (2009€" Of samples, flux (shear stress, heat flux) averaging
2003); Lions (1988)] used to provide hybrid descriptiorXNiPits relative noisé s which scales as
of steady state liquid systems [Hadjiconstantinouand Fa- _ Es 5
tera (1997)] and demonstrated more recently for a §1N Kn @)
dimensional driven cavity gas flow [Wijesinghe and Hadyhere Eg, is the relative noise in the corresponding
jiconstantinou (2002)] and for microfluidic design [Ak-tate variable (velocity, temperature) which varies
tas and Aluru (2002)]. In the Schwarz method, couplings 1/, fnumber of samples). Hern = A/L is the

is achieved in an implicit sense through the successi@ydsen number based on the characteristic length scale
exchange of state variables (Dirichlet boundary congf the transport gradientk, andA is the mean free path
tions) across an overlap region. The Schwarz procedifsich is expected to be much smaller tharsince, by

is guaranteed to converge for elliptic problems [Liongssumption, a continuum subdomain is present. It thus
(1988)], and has recently been shown to converge foraﬁbpears that coupling using fluxes will be significantly
nite Reynolds numbers [Liu (2001)]. disadvantaged in this case sing&h? times the number

In the current paper we choose to focus our atteof samples required by state—variable averaging is
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required to achieve comparable variance reduction in flbe.. Note that the steady Schwarz method can be consid-
matching region (wherkn < 1). ered as the special case of the unsteady Schwarz method
fort" — o in the presence of a steady state.

The disadvantage of the Schwarz method is the need for
O(10) iterations for convergence. This computational

cost can however easily be recuperated through t Atornistic

efficiency gained from the above advantages, especic Fontinuum Solution

in higher dimensions; the number of iterations require o 2Naten Boundary for

is fairly insensitive to the dimensionality of the problem ﬁontinuum solution
—

[1] [2] [3] tni 2
The outline of the paper is as follows. First, the unstear Boundary for / Overlap
Schwarz coupling approach is described and evalua #t°mistic solution Region
using a continuum—continuum test problem. A strate( C—  ee——— —
for reducing the computational cost of unsteady scherr
using a limited ensemble averaging technique is th ————— ey

presented. Finally a hybrid atomistic—continuum formt vt
lation for an unsteady impulsively driven Couette flow

test problem is presented. Figure 1 : lllustration of the unsteady Schwarz coupling

method in one spatial dimension.

2 Unsteady Schwarz Coupling

The Schwarz alternating method can be extended to ciiPlementation of the unsteady Schwarz method re-
ple time unsteady flows to some tiri& by exchanging duires 2 additional constructs not present in the steady

boundary condition information similar to steady flowcheme; the first is ensemble averaging of the unsteady

coupling [Lions (1988)]. As shown schematically irjatomistic_subdomain_ solution and the s_ecpnd is time
Figure 1, an overlap region between the subdomains lll_glt_erpolatlon of spluﬂons betweerj atomls_tlc and con-
cilitates information exchange in the form of Dirichlefinuum subdomains to allow for different time steps in
boundary conditions. A continuum solution based df€s€ subdomains.

the unsteady equations of motion is first obtained using

boundary conditions taken from the atomistic subdomai :

solution. At the first iteration this latter solution can bae{EL Particle Ensembles

a guess. An atomistic solution is then found by integrategration of the continuum subdomain in hybrid
ing the atomistic subdomain to tintd using boundary methods is achieved by receiving boundary data (state
conditions taken from the continuum subdomain. Th@ flux variables) from the atomistic subdomain. This
exchange of boundary conditions corresponds to a s@fata is typically obtained by averaging the atomistic
gle Schwarz iteration. This process is repeated to ca@olution field over a number of realizations (time or
vergence. The converged solutiort &forms the initial ensemble members). In unsteady flows, unless the flow
condition for subsequent Schwarz iterations to advaniseevolving very slowly, time averaging has the result
the solution to time level™1. The unsteady Schwarzof smearing the solution and is thus avoided; ensemble
scheme still allows for time scale decoupling; each sulveraging is therefore used instead. Additionally, due
domain can be advanced at the local most favorable titoetheir low characteristic speeds, incompressible flows
step and the choice aft! is arbitrary. The computa-suffer from high relative statistical error (defined here as
tional cost of performing multiple Schwarz iterations pehe one standard deviation of the statistical fluctuation in
time level is thus partially offset by the ability to implic-estimating the mean value of a quantity over the mean
itly advance to the time of interest without the need foralue of the same quantity [Hadjiconstantinou, Garcia,
explicit coupling at previous times. This also allows foBazant, and He (2003)]). For this reason ensemble
acceleration techniques such as the one we describedw@raging and large numbers of particles per cell are an
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integral part of atomistic simulations of unsteady lo®.3 Method Verification Using a Continuum—
speed flows. Continuum Problem

The impulsive Couette flow shown in Figure 3 is used as
a test problem. The wall at= L moves with velocity,

at timet = 0 while the wall atx = 0 is held stationary.

A distinctive advantage of steady Schwarz coupling The hybrid scheme consists of 2 continuum subdomains
its ability to decouple time scales [Wijesinghe and Had-andll extending between€ x <band froma<x<L
jiconstantinou (2002)]; the time step for the continuurrespectively with overlap width.
subdomaimt. is often larger than the time step for the

atomistic subdomaint,. Similar time scale decoupling

is also possible using unsteady Schwarz coupling. F

the case wherat; > Aty, the boundary values from the

continuum solutions must be interpolated to the atomisi

subdomqln_as shown S(_:hematl_cally in Figure 2, t0 enst gionary iy subbmabis ki
the atomistic subdomain solution has the most accur: wall 5 wall

-

boundary conditions during advance to any time lev - re
overlap h

t"™1 Note that during time advance of the continuur —» |
subdomain, direct imposition of the atomistic subdoma _ s

boundary condition is possible provided the continuui x—g\ s, ;
subdomain time step is an integer multiple of the aton SLER

. e = =L
istic subdomain time step. il 2 .

2.2 Time Interpolation

Figure 3 : Computational domain for the impulsively
started Couette flow test problem.

Direct Imposition Interpolation
t t t t
F'y F Y e F 3
et 1 o The resulting flow is obtained by solution of a diffusion
0 «--- E% | | equation for y-momentum,
1|
M<---0 — - 3 2
i v 0V
nffle-—- ot . *Eﬁfstp Vo5 =0xe (OL),te (0.T) €)
« r « »  wherev = p/p is the kinematic viscosity. This equation
Continuum  Atomistic Continuum  Atomistic

can be solved numerically using an implicit backward
difference scheme (i.e. Backward Euler),
Figure 2: Interpolation of boundary conditions.

AoV — 0 pM =0 4)
The effectiveness of linear time interpolation of th\éVhere’
continuum boundary condition is assessed next using
a hybrid (unsteady Schwarz) continuum—continuum V(X,t) — V(X t — At)
scheme. The continuum-continuum test problem heIB‘sAtV(X’t) - At (5)
evaluate the time interpolation routines independently V(X— DX, 1) — 2v(X,t) 4 V(X + A, t)
of the ensemble averaging required for an atomisti V(X 1) = AX2 (6)
continuum formulation and hence in the absence of
statistical fluctuations which make quantitative compari-
son difficult. HereAt is the time step andx is the spatial discretiza-
tion. Equation (4) is used in both subdomadirandli|l. In
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Property Value
Domain length_ 2.00x10°®m
Kinematic viscosity 1.1688665< 10~°m? /s
Characteristic timey L?/v =3.4221188< 10~ 's
Wall velocity Vo 30 m/s
Non—dimensional overlap widthy L 0.03
Non—dimensional boundagy/L 0.47
Non-dimensional boundaky/L 0.50
Subdomair non—dimensional time step Aty =2.922x 1074
Subdomairi non—dimensional grid size| Ax; =0.01
Subdomair| non—-dimensional time step At} = 2.922x 10°°
Subdomair | non—dimensional grid size Ax; =0.01
Schwarz iterations/t;, 10

Table 1: Properties of hybrid continuum—continuum scheme used for the impulsive Couette flow test problem.

this test problem, subdomadlihis advanced at/110ththe The convergence of the velocity profile at tiréo =
time step of subdomaih The LHS boundary condition0.11688 to the exact solution as a function of Schwarz
for subdomainll, v (a,t) is linearly interpolated from iterations and interpolation scheme is plotted in Fig-
the subdomaimh solution as follows, ure 5. The linearly interpolated boundary condition so-
lution converges after approximately 5 Schwarz itera-
tions. The velocity solution using stepwise boundary

viil(at = v, (a,ti)+M (vi(a,t™) —v (at)) condition interpolation (i.e. v (a,tX) = v (a,t'*1) for
S i F|J< " pi < k < p(i+ 1)) also converges but with larger devi-
wherei is given byt <t* <t (7) ation. The use of equal time stefi'to = 2.922x 1055

in both subdomains, i.e. where direct boundary condi-
tion imposition is possible between subdomdins |1
andll — | shows the best performance. This final re-
sult verifies consistency of the unsteady Schwarz cou-
pling when no time step difference between the sub-
domains is exists. While use of equal time steps in
Vi (b,t') = v (b, t) wherek = pi 8 both s_ubdoma_ins results in_ greater accuracy, th_is must
be weighed with the benefit of reduced hybrid simula-
Additional parameters for the impulsive Couette flow teliPn cost through time step decoupling. Linear interpola-
are listed in Table 1. tion of the boundary condition provides a reasonable bal-
ance between the two constraints in this case. Applica-
The velocity profiles predicted by the hybrid scheme ati@n of unsteady Schwarz coupling to hybrid atomistic—
plotted in Figure 4 together with a solution obtained byontinuum schemes is demonstrated next.
numerical integration of Equation (3) in a single domain
with Ax/L = 0.01 andAt/to = 2.922x 10~° (referred to 5
here as the exact solution). The hybrid scheme velocity
profiles are in good agreement with the exact solutioe now proceed to apply the unsteady Schwarz method
The number of Schwarz iterations for convergence variesatomistic—continuum systems. The atomistic model
between 3 and 8 as/L varies between 0.02 and 0.04in this paper is the direct simulation Monte Carlo
with larger number of iterations required for smallemethod [Bird (1994)]. The DSMC method is based on
overlaps. the assumption that a small number of representative
“computational particles” can accurately capture the

Here p = At /Atyy, andi,k are the indices of the time
step used in subdomaihsndll respectively. The RHS
boundary condition for subdomainv; (b, t) is obtained
by direct imposition of the subdomalih solution as fol-
lows,

Application to Atomistic—Continuum Systems
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bulk hydrodynamics of a complete system of gas atoms
or molecules. In DSMC the particle positions and
velocities ¢;,vi,i = 1...N) are advanced in time by
a two—step process of advection and collision which
corresponds to a splitting method of solution for the
underlying Boltzmann equation. Particle advection is
ballistic with time stepAt, chosen to be a fraction of
the mean collision time [Hadjiconstantinou (2000)].
Collisions are performed between randomly chosen
particle pairs within small cells of siz&x, [Alexander,
Garcia, and Alder (2000)]. This approach has been
shown to produce correct solutions to the Boltzmann
equation in the limitAx,, At, — 0 [Wagner (1992)].
Argon gas (atomic mass = 6.63x 10-2%g and hard
sphere diameteo = 3.66 x 10-1%m) was used for all
simulations.

Comparison of the hybrid continuum-—

continuum solution for the impulsively driven Couette.1 Acceleration Using a Limited Number of Ensem-

test problem with the exact solution. Overlafi. = 0.03.
Profiles are shown for non-dimensional timg$y =

0.02922 tot /to = 0.11688 in steps of 02922.

10

[
o

2
s exact) )

Z sqrt((v _-v

10 '

I
N
T

-6

10

10

h/L =0.03

—— Linear interpolation
- — Stepwise interpolation
- - Equal timesteps in subdomains

Schwarz Iterations

bles

In this Section we develop an acceleration scheme that
takes advantage of the time scale decoupling properties
of the Schwarz method to reduce the computational cost
associated with ensemble averaging the atomistic subdo-
main solution. The idea behind this method is that a large
number of ensemble members is only needed for noise
reduction purposes whereas the hydrodynamic behavior
of the system is present amy of the ensemble members
albeit in a noisy form. Thus, since the coupling proce-
dure used here allows for a large gap between sampling
times (sampling is required only when matching occurs,
which can be as infrequent as only once in the calcu-
lation) it is natural to attempt to use a large number of
ensembles only during the sampling phase. This can be
achieved by noting that the decorrelation time between
different calculations is small compared to the hydrody-
namic time scale (especially for large problems). Thus
if a small number of ensemble members are used for the
majority of the time integration and from these systems
a larger amount of systems are generated by perturbation

Figure 5 : Convergence of the hybrid continuum2ta time which allows for decorrelation, a full decorre-
continuum velocity profile at/to = 0.11688 as a function lated sample will exist when required without integrating
of number of Schwarz iterations and boundary conditiéfis full ensemble throughtime. In the case of our DSMC
interpolation scheme. The summation is taken over tR@lculation sufficiently perturbed systems can be gener-
complete domain.

ated by simply changing the random number seed while
using the same initial configuration.

In our nomenclature, in the standard non—accelerated
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unsteady Schwarz coupling approddf® particle en-

semble members are created and advanced through each

time intervalt” — t"1, On the other hand, according
to the approach proposed here we split the ensem
creation within a single time interval® — t"1 into

2 stages, i.e. NI® ensemble members for simulatior
time t" — t"% and NI¥* ensemble members for time
™0 _ t"*1 such that,

NEEX(¢MHL g0 /AL, 4 NEEX(170 —t7) /At
< NF=X (¢ ") /At
NEEX < NEEX

viV o
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whereAt,, is the time step of the atomistic subdomaiRigure 6 : Comparison of limited ensemble accelera-
simulation and B< 8 < 1. Note thatNT¥* can equaNT®* tion using varying number dliff* ensembles. The fig-
to allow the same degree of error reduction in the finafe shows the velocity profile at= 53.9t for a fixed
solution at timet"*! as we had in the implementation ifNT® = 2000. T = 1.8559x 10~ 1% is the characteristic

the previous Section.

The computation cost reduction of the unsteady Schwarz
method using limited ensembles in this manner is depen-

dent on the values &fandNZ™ required to maintain ac-

curacy. Results from an initial analysis of the method us-

ing a fully atomistic simulation of an impulsive Couette
flow are shown in Figure 6. For these telSE* = 2000
and 8 is chosen such thet"! — t"+9) /At, = (1™ —
t") /At, = 500 DSMC time steps. This provides a.26

decorrelation time before sampling of the atomistic st~

lution. Good comparison is obtained for tNg2 = 100

simulation. The reductionin error as a functionNg¥™ is

further plotted in Figure 7 which shows a slow decay wit
NE which indicates that a small number of ensemble
is required to carry the dynamics forward in time, i.e
NE?* should be kept as small as possible. The choice
parameters for this test using limited ensemble accele
tion results in a speed—up of 1.95 over a non-accelera

—~
—~

-V
N exact

2 sqrt((v

fully atomistic unsteady simulation. Clearly, the longer

t"t1 _t" the larger the savings sinéds associated with
the decorrelation time which does not depend on the s
tem size or time of interest. The limited ensemble a

applied to an impulsive Couette flow test problem next.

10"

1,

10+

collision time.

3| RN

2

10°

1
10 Nmax
EL

10

Figure 7 : Error reduction of limited ensemble accelera-
ye . max o
ion as a function oNZY™. The summation is taken over

proach is incorporated within an unsteady hybrid schemee complete domain
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Property Value
Total domain widtH_ 4x10°°%m
Wall velocity Vo 30 m/s
Kinematic viscosity 1.1688665< 10?2 /s
Characteristic collision time 1.8559x 10105
Continuum subdomain width. /L 0.9275
Continuum nodes ih ¢ 186
Continuum time steptc/1 0.5388
Atomistic subdomain width /L 0.075
DSMC cells inL, 15
No. of particles in each cell 2000
DSMC time stepht, 0.05388
No. of ensemblebI|T?* 100
No. of ensembleblT* 2000
DSMC time steps per ensemble | 500 for bothNZ®* andNZE
Non—dimensional reservoir region width 0.01
Overlap region widthn/L 0.0025
Schwarz iterations per time step 10

Table 2 : Simulation parameters for the hybrid impulsive Couette flow test problem using accelerated unsteady
Schwarz coupling.

3.2 Impulsive Couette Flow Test Problem ters. Direct imposition is possible here as the continuum

time step is chosen to be an integer multiple of the DSMC

A hybrid atomistic-continuum scheme using unsteagy,e step. Parameters for the unsteady simulation are
Schwarz coupling is verified in this section for thciaqin Table 2.

1-dimensional impulsive Couette flow test problem

shown in Figure 3. The subdomaihandll correspond | jmited ensemble acceleration can be incorporated
to the continuum and atomistic subdomains respectivelyithin the hybrid scheme with minor modifications.
The continuum solution is obtained by solving Equarhe ensemble creation loop is split into 2 stages during
tion (3) for the y-momentum diffusion using the implicigdvance of the atomistic solution calculated by DSMC;
backward difference scheme detailed in Equation (4e utilize two families of particle ensembles that
The atomistic subdomain is solved using DSMC. consist of N™ and N™ members respectively where
NI > NI, TheNT®* members are created by splitting
The imposition of continuum boundary conditions on theff an additional NZ2* — NE2X) members with different
atomistic subdomain is facilitated by a particle reservaiandom number seeds at tinf&d from theN{? original
extending fromx/L = 0.915 tox/L = 0.925. Particles ensembles as shown graphically in Figure 8. Ensemble
are created in the reservoir with a uniform spatial distigreation in this manner is repeated fWf™ Schwarz
bution in the x—coordinate direction and a velocity drawiterations in the time interval tot"*1. At each Schwarz
from a Chapman—Enskog distribution [Garcia and Aldé&eration, updated boundary conditions are exchanged
(1998)]. The mean and gradient of velocitydv/dx) between the atomistic and continuum subdomains to
used to generate the Chapman—Enskog distribution is aelshieve a converged solution at time lev®I!. At the fi-
tained by linear time interpolation according to Equaral Schwarz iteratioh™®, theNZs* ensemble members
tion (7) followed by linear spatial interpolation betweeiare averaged to yield the time lewéf? flow solution. A
the continuum nodes. Imposition of the atomistic bountimited subset of theN®* ensemble members are then
ary conditions on the continuum subdomain follows thaedvanced forward as the ndWX* ensemble family for
use of overlapping continuum nodes and DSMC cell cetire next time interval. The velocities of these nig\##>
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Ensemble family 2 s .
members created using Coupling time

o Ensemble family 1 i+ tin+1)
members de-correlation

B time — t
Ne=1 Ne=1
At the Nmax
Schwarz iteration,
_ create the new
¥ Ensemble family 1
members using a
limited set of the
Ensemble family 2
N, Max T Neg™e" members.
Ensemble family 1 Ensemble family 2

Figure 8: Graphical illustration of the limited ensemble acceleration approach.

members are initialized to thé! ensemble—averagedrhe results from the accelerated unsteady hybrid scheme

solution. The ensemble creation process is then repeatesl shown in Figure 9. Good comparison is obtained

for the next time interval. with a fully atomistic solution. The simulation cost of
this scheme is compared to a fully atomistic scheme and

In this simulation 10 Schwarz iterations are used to cof-Non-accelerated unsteady Schwarz scheme in Table
ple the solution at every 53r. While this choice is 3- The use of limited ensemble acceleration has helped

driven by the need to provide sufficient decorrelatigig¢duce the total simulation cost of the unsteady hybrid
time before sampling of the™X ensembles, it also high-scheme to a total of more than a factor of 2 despite the

lights the versatility of the hybrid Schwarz coupling tdact that the parameter choices ®andNg;™ have not
match solutions at arbitrary times. been optimized in any way. Of course hybrid methods
are capable of significantly larger speed—ups. The rea-
son for the modest speed—up observed here is two fold.
First, the problem is one—dimensional. Second, the prob-
— Hybrid: Continuum lem was chosen small enough such that a fully atomistic
I Atomistic solution would be feasible for comparison purposes. For
0.8 H problems of practical interest we expect the volume of
the continuum region to be larger thus leading to sig-
nificantly larger savings. Larger continuum domain vol-
umes may result from larger systems or simply higher di-
mensionality. The importance of dimensionality can be
demonstrated by considering that the speed—up in a two—
dimensional problem of the same approximate linear di-
1 mensions as the above test problem would b©®@0);
1 for a three—dimensional problem it would be@§200).
| These savings are possible since the number of iterations
05 0.6 0.7 08 0.9 1 to convergence for the Schwarz method is insensitive to
W the dimensionality of the problem. Larger linear system
dimensions bring additional savings because the decorre-

Figure 9: Comparison of limited ensemble acceleratqgyion timescale becomes a smaller fraction of the char-
unsteady hybrid scheme for impulsive Couette flow Withyteristic system timescale.

fully atomistic solutiont = 1.8559x 10~ 1% is the mean
collision time.

0.7F

Continuum

o

viV
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Property Atomistic | Hybrid Hybrid (accelerated)
Atomistic subdomain width, | 4.00um | 0.3um 0.3um
EnsembleNT™ 2000 2000 | Nf2=100,Nf5* = 2000
DSMC time stepdN&* 1000 1000 | 500 for bothNg®* andNZEx
Schwarz iterationslg™ 0 10 10
Cost La x N o NIBX 5 Ng) | 8x 10° | 6x 1C° 3.15x 10°
Speed—-up - 1.33 2.54

Table 3: Comparison of simulation cost.
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