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Atomistic Simulations of Dislocation-Void Interactions using Green’s Function
Boundary Relaxation

Xiangli Liu 1, S. I. Golubov1, C. H. Woo1,2 and Hanchen Huang3

Abstract: A Green’s function technique is developed
for the relaxation of simulation cell boundaries in the
modelling of dislocation interactions using molecular dy-
namics. This method allows the replacement of fixed
or periodical boundary conditions with flexible bound-
ary conditions, thus minimizing the artificial effects due
to images forces introduced by the fixed boundary con-
dition, or the periodic repetition of simulation cells. The
effectiveness of the Green’s function in the removal of
the fixed boundary image forces is first checked in the
atomistic simulation involving the glide of thea/2<110>
dislocation in bcc tungsten. This method is then applied
to study the reaction of an edge dislocation with voids
in tungsten. The simulation results are compared with
predictions from the continuum model.

keyword: Crystal, Green’s function, atomistic simula-
tions, dislocation dynamics

1 Introduction

Computer modeling has been widely used to study crys-
tal properties, particularly those of the crystal defects,
such as the core structure and energetics of dislocations,
and their role in the mechanical properties of crystals
(Ghoniem and Cho, 2002, Srivastava and Atluri, 2002).
Thus, calculations of the Peierls stress of dislocations,
their mobility, and their interactions with various other
crystal defects, are of special interest in understanding
the plasticity of materials through the dynamics of dis-
location. Some of the pioneering work in this area in-
volves the calculation of the lattice friction stress in the
late sixties and seventies [Gehlen, Rosenfield and Hahn
(1968); Granzer, Wagner and Eisenblatter (1968); Basin-
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ski, Duesbery and Taylor (1972); Hoagland, Hirth and
Gehlen (1976); Woo and Puls (1976); Puls and Nor-
gett (1976)]. These calculations are mostly for infinite
straight dislocations, due to the restriction imposed by
the treatment of the simulation cell boundaries available
at that time. Three types of boundary conditions are gen-
erally used. The rigid (fixed) boundary [Gehlenet.al.,
(1968); Granzeret.al (1968); Basinskiet.al. (1972); Puls
and Norgett (1976)], the periodic boundary [Daw, Baskes
and Wolfer (1986); Moncevicz, Clapp and Rifkin (1990);
Daw, Foiles and Baskes (1993); Chang, Bulatov and Yip
(1999); Rodney and Martin (1999); Rodney and Martin
(2000); Diaz de la Rubia, Zbib, Khraishi, Wirth, Victoria
and Caturia (2000)], and the flexible boundary employ-
ing the line Green function [Hoaglandet.al (1976); Woo
and Puls (1976)]. More recently, the Molecular Dynam-
ics (MD) technique is used to study the mobility of non-
straight dislocations, such as joggeda/2<110> edge dis-
location and their interactions with interstitial clusters in
fcc Ni [Rodney and Martin (1999, 2000)], anda/2<110>
edge dislocation interacting with stacking fault tetrahedra
in fcc Cu [Diaz de la Rubia, Zbib, Khraishi, Wirth, Victo-
ria and Caturia (2000)]. Liu, Shi, Woo and Huang (2002)
studied the nucleation of dislocations in thin films. In
these calculations, basically, the periodic boundaries, or
a mixture of periodic and fixed boundaries are assumed.

It is well known that the results of the MD simulation
of a moving dislocation in a finite computational cell are
strongly affected by the conditions assumed at the cell
boundaries (see Olmsted, Hardikar and Phillips (2001);
Ohsawa and Kuramoto (1999) for overviews). Assuming
periodicity in all three orthogonal directions is the sim-
plest methodology. However, since this boundary condi-
tion is not consistent with the existence of a net Burgers
vector in a simulation cell, only dislocation dipoles or
quadruples can be treated this way with any rigor. Other-
wise, images forces produced by the periodic repetition
of simulation cells, may produce unrealistic results. An-
other method assumes periodicity in two directions only
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(in the glide direction and the line direction), but fixed
boundaries (or partially fixed) on each side in the third
direction. Such a method allows the simulation of a sin-
gle dislocation in the computation cell, but the forces
between the dislocation and its images across the fixed
boundaries may considerably distort the dislocation core,
and directly affect its motion. This also happens similarly
to the case where pure periodic boundary conditions are
applied.

It is worthwhile noting that the results obtained this way
are, rigorously speaking, only relevant to a system of dis-
locations situated periodically at a fixed distance along
the direction of the Burger’s vector. Thus, one has to
be careful when comparing the simulation results with
those from macro-models based on the “single disloca-
tion in an infinite medium” approach. Moreover, these
methods are not suitable for application to dislocations
with a screw component. A satisfactory method for the
simulation of 3D dislocation dynamics, for dislocations
of both the screw and edge type, is very much in need.
This is the subject of investigation of the present paper.

Several attempts to solve the image-force problem have
been made via the so-called flexible boundary method,
the earliest works of which has been reviewed by Vitek
(1974) and Perrin (1974). Subsequently, making use of
the periodicity along the dislocation line in a scheme
called Flex-II, Hoaglandet.al. (1976) apply the line-
force Green’s function (GF) of Hirth, and Lothe (1973)
to re-arrange the atoms after relaxation of the primary
atomistic region (Region I) to achieve relaxation of the
boundary forces. The effectiveness of this scheme suf-
fers because the elastic GF diverges when the field point,
at which the displacement is evaluated, is close to the
source point. In a separate attempt, Sinclair, Gehlen,
Hoagland and Hirth (1978) achieve relaxation of the
boundary region by solving the anisotropic linear elastic
problem outside the atomistic region to high order terms
(Flex-HT). Woo and Puls (1976, 1977) modify the Flex-
II scheme to calculate the Peierl’s barrier, configuration
and energy of ana/2<l10> edge dislocations in MgO,
by employing a ”lattice” GF for very close separations
between the source and field points. Iterative alternate
applications of the atomistic and GF relaxations reduce
the forces below tolerance quickly and effectively in all
regions. This turns out to be the most efficient scheme
for single dislocations, according to Sinclairet.al. (1978)
and Puls and Woo (1975).

The 3D GF boundary relaxation method (GFBR)
recently proposed by Rao, Hernandez, Simmons,
Parthasarathy and Woodward (1998), further extends the
earlier flexible boundary methods to applications beyond
the single straight dislocation. Instead of using the GF
for infinite lines of atoms in the earlier flexible boundary
methods, the GFBR method calculates the relaxation of
body forces acting on individualatoms, using the 3D-GF.
The GFBR method has been introduced for the study of
static dislocation properties only. Despite the successful
application of the line-force GF to problems involving
moving dislocations by Woo and Puls (1976), the exten-
sion of GFBR to studies involving moving dislocations
has yet to be considered.

The GFBR method employs an iterative procedure, in
which complete relaxation in the atomistic region is fol-
lowed by GF relaxation of the cell boundaries and contin-
uum regions. Under static conditions, the iterative pro-
cess results in a minimum-energy, zero force, configu-
ration of the system of atoms. Under dynamic condi-
tions, however, it is more complex because in general a
minimum-energy configuration does not necessarily ex-
ist. Yet, in this case, with each relaxation in the atom-
istic region, which is essentially a MD calculation in a
crystal with fixed-boundaries, a quasi-minimum-energy
configuration can be reached due to the development of
the image forces. It is then unclear whether the GFBR
technique is capable of relaxing the lattice configuration
of the cell boundaries, to sufficiently reduce the build
up of image forces that may disturb the iteration pro-
cess. In this regard, it has been shown by Liu, Golubov,
Huang and Woo (2003) that a single application of the
3D-GF may produce an energy reduction of about 80%
through the relaxation. Under such a deep level of relax-
ation provided by the GF application, it is hopeful that
a large build-up of image forces, sufficient to seriously
interfere with the iteration process, can be avoided. We
will test the method in this regard, in some detail, through
an atomistic simulation study of the mobility of an edge
a/2<111>(110) dislocation under the action of a pure
shear stress.

The present paper is organized as follows. Sec. 2 de-
scribes the method and the computational details. The
simulation results for a moving dislocation are presented
and analyzed in Sec.3. In Sec. 4, the application of the
present method to the interaction of an edge dislocation
with a void is presented and the results compared with
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the continuum model. A short summary is given in Sec.
5.

2 Methodology and computational details

The 3D GFBR method used in the present calculation is
essentially similar to the earlier modified Flex-II method,
a comprehensive description of which has already been
given by Raoet. al. (1998), and will not be repeated
here. In general, the flexible boundary condition can be
mixed with other types of boundary conditions, periodic
or fixed. Simulation cells, in which all boundaries are
flexible, have been used in static simulations (see e.g.
[Rao et.al. (1998)]). However, this is not suitable for
studies involving moving dislocations, because, due to
the static nature of our 3D GF, the GFBR method can-
not describe the time-dependent field of a moving dis-
location. Furthermore, displacements of atoms near the
dislocation core may be more than 10% of the lattice pa-
rameter, while for atoms in a perfect crystal environment,
the displacements caused by stresses of a similar magni-
tude, being linear elastic in origin, are one- to two- or-
ders of magnitude smaller. Even in the static simulations
of a dislocation with an isolated kink in an unstressed
crystal [Raoet.al. (1998)], it has already been noted
that, ”some of the forces that develop as the dislocation
threads through the GF region at the end of the 3D cell
cannot be optimized”. This result reflects the different
characteristics of atoms near the dislocation core com-
pared to those in the perfect crystal, in their response to
body forces. Although this effect may not be significant
in static simulations, the situation may be much more se-
rious under dynamic conditions, since “unrelaxed” forces
may accumulate in the boundary region and eventually
lead to the complete failure of the simulation.

Thus, the 3D GF technique can be used for simulation
studies involving moving dislocations, only if the dislo-
cation does not thread through the GF region. This con-
dition may be satisfied by using periodic boundary con-
ditions in the direction along the dislocation line. In the
present paper this type of simulation cell is used.

The calculation in the present paper follows a procedure
similar to that used in static calculations. After each com-
plete MD relaxation in the atomistic region, a GF relax-
ation in all regions (atomistic, GF and continuum) is per-
formed. The MD relaxation process in the atomistic re-
gion is achieved as usual by moving atoms according to
Newton’s equations of motion, and setting velocity com-

ponents of those atoms to zero for each time step, if its
sign is opposite to the corresponding force component
acting on the atom. The Newton’s equations of motion
are integrated, with respect to time, with a time step of
∆t = 10−14 sec. Relaxation of the atomic configuration
in the MD region causes forces on atoms in the GF and
continuum regions, which are fixed during the MD cal-
culation. We note that it is the action of these forces that
collectively produce the image forces on the dislocation
in the MD region.

During the subsequent GF relaxation, forces on each
atom in the GF region are relaxed by displacing all atoms
around it in the entire crystal according to the 3D GF,
which has been modified to take into account periodic
boundary condition along the dislocation line. In this
calculation, we use GFCUHEX [Golubov, Liu, Huang
and Woo (2001)], which has been written to calculate the
displacements according to the elastic GF in cubic and
hexagonal crystals. An advantage of GFCUHEX lies in
the use of a matrix method that improves the computa-
tion efficiency by two orders of magnitude, compared to
conventional methods based on the integral calculations.
Indeed, this is a major factor that makes the present 3D
flexible boundary method feasible at all.

The lattice GFs for the region close to the source of the
point force, where linear elasticity fails, is calculated us-
ing the method described in Raoet.al. (1998). Displace-
ments due to the lattice and elastic GFs agree with each
other beyond a certain distance between the “source and
field atoms”. This is illustrated in Fig.1 where the ra-
tio of the G11 components of the lattice and elastic GFs
are calculated for the first nine shells is plotted. Similar
behavior was also observed for other components of the
GFs. This comparison shows that atoms are displaced ac-
cording to the elastic GF, if its distance from the source
of the point force is larger than 2.5a, a being the lattice
parameter, i.e. within the first nine shells. The lattice GF
is used for smaller distance.

3 Quasi-dynamic simulation of a moving dislocation

To ensure that the accumulation of body forces in the
boundary regions will not produce image forces on de-
fects and their structures, which may excessively in-
terfere with the evolution of the defect in the present
scheme, the development of such forces during the mo-
tion of an(a/2) [111](101) edge dislocation under an ap-
plied shear, is monitored. The many-body potential for
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tungsten [Ackland and Thetford (1987)] is used. An ideal
bcc lattice with a lattice constant of 0.31652nm is first
constructed with the lattice vectors [111] (x-direction),
[121] (y-direction) and[101] (z-direction). The compu-
tation cell is in the form of a cylinder with the cylin-
drical axis measured 12.4 nm in they-direction (about
45b), where b is length of the Burgers vector (b =
(
√

3/2)a =0.27411nm). Periodic boundary condition is

Figure 1 : Ratio of the lattice and elastic point force GF
components,G11, for the first nine coordinate shells in
bcc tungsten as a function of distance R.

assumed along the dislocation line in they-direction. The
cylindrical computation cell is elliptical in thex−z plane,
being elongated in thex-direction [111], i.e., the slip di-
rection. The elliptical semi-axes are 7.22 nm (about 26b)
along thex-direction and 4.75 nm (about 17b) along the
z-direction. The lengths of the semi-axes in MD region
along thex− andz− directions are 6.05 nm (about 22b)
and 2.99 nm about 11b), respectively. The total number
of atoms in the MD region is 44631.

The (a/2) [111](101)dislocation in the atomistic region
is introduced at the center of the simulation cell, with the
line along cylindrical axis, i.e., they-direction, by dis-
placing all atoms according to the isotropic linear elastic-
ity theory, and then relaxing the system with the method
described. The number of units for proper relaxation of
the boundary forces is found to be seven (k = 3 in the
Eq. 14 of Raoet.al. (1998)]). A homogeneous pure
shear stress,σzx, in the x−direction on thex− y plane,
is applied by displacing atoms in all regions according to
the corresponding homogeneous linear elastic strain. The
calculations are performed with applied stresses in the
range between 0.4 and 1.0 GPa, corresponding to 0.25%
to 0.625 % of the shear modulus,µ.

Since our dislocation is moving very slowly, the config-
uration of the dislocation during the glide process can be
clearly recognized, its glide plane being a known con-
stant in the calculation. Indeed, the “extra half plane”
for the edge dislocation in a bcc crystal consists of three
(111) planes. Atoms that belong to these planes near
the slip plane, can be easily identified on the{121}plane
(i.e., x− z−plane), from which the location of the dislo-
cation core along the dislocation line can be obtained.
Noting that the “extra plane” consists of three (111)
planes and the slip plane consists of two(101) planes,
the core of the dislocation has a width ofb in <111>
(x-direction) and

√
2/3b in < 101 > (z-direction). This

method is simple and straightforward, and is consistent
with the centro-symmetric parameter method, and the
disregistry method.

To monitor the accumulation of sources forces on atoms
in the boundary region as the relaxation takes place in the
MD region, we define the quantity<FGF>:

< FGF >=

√
1

NGF

NGF

∑
i=1

(
F2

ix +F2
iy +F2

iz

)
, (1)

where Fix, Fiy,Fiz are the Cartesian components of the
force acting on the atomi, andNGF is the total number of
atoms in the GF region. We note that<FGF> so defined
in equation (1) neglects the contributions from the small
forces in the continuum region. Nevertheless, we antici-
pate<FGF> to give a good measure of the image forces
on the dislocation.

The dislocation is allowed to relax in the absence of an
applied stress for 0.16 ns, during which the GF relaxation
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is repeated at 0.02 ns intervals. After that, a pure glide
shear stress is applied, at about ten times the magnitude
of the Peierls stress [Liuet.al. (2003)]. The simulation
was carried on for about 0.5 ns, with the GF relaxation
applied at 0.05 ns intervals.

The dislocation position,<FGF>, and energy change
as functions of time are shown in Fig. 2a-2c, respec-
tively. The dotted line marks the application of the ap-
plied shear. In addition,<FGF> is also plotted in Fig.2d,
as a function of the displacement of the dislocation. In
Figs. 2a and 2c it can be seen that both<FGF> and
the energy of the system tends to saturate during the re-
laxation in the unstressed crystal. Note that the value
of <FGF> at equilibrium is non-zero (about 3×10−2

eV/nm), but is just sufficiently small to have negligible
effects on the stability and the final atomistic configura-
tion of the dislocation.

In Fig. 2a,<FGF> increases significantly when the ap-
plied stress is turned on and the dislocation starts to glide
away from the starting position during the relaxation of
the atomistic region (see Fig. 2b). In Fig. 2d, it is
clear that<FGF> increases linearly with the displace-
mentx. At the end of each relaxation cycle of the atom-
istic region, the dislocation slows down and the magni-
tude of<FGF> tends to saturate. The saturation occurs
in response to the image-forces buildup under the fixed
boundary conditions, which acts to oppose further ad-
vance of the dislocation under the applied shear [Woo
and Puls (1976); Hull and Bacon (2001)]. Thus, in the
present case, the total image force opposing the dislo-
cation motion mainly comes from the two (111) fixed
boundaries. For an edge dislocation at a distancex from
the mid-point between fixed boundaries separated at a
distance of 2b apart, the image force on the dislocation
Fim can be easily calculated [Hull and Bacon (2001)] and
put in the formFim = −Ax, where

A =
µ

2π(1−ν)

(
b
d

)2(
1− x2

d2

)−1

,

is a weak function ofx, for x < d/2. Fim increases approx-
imately linearly withx as the dislocation moves towards
the cell boundary. For a separation of 40b, A has a value
of ∼ 0.7×10−3µ eV/b3, and at a distance of less than 8b,
this image force would already be sufficiently large to
completely cancel a sizable applied shear of up to 10−2µ
on the dislocation. This slowing down of the disloca-
tion motion during each fixed boundary relaxation cycle

Figure 2 : (a) Time dependence of the mean force in GF
region,<FGF>, (b) displacement of the dislocation, (c)
energy change of the crystal, unstressed, and during glide
of the dislocation and (d) displacement vs<FGF> under
pure shear stress 0.005µ, relation between<FGF> and
displacement.

is indeed reflected in the displacement-time curve of the
dislocation in Fig.2b.

Comparison with Fig. 2d reveals thatFimis directly pro-
portional to<FGF>, the magnitude of which then re-
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flects the magnitude ofFim (Fim ∼ 0.8<FGF>). Each ap-
plication of the GF reduces<FGF> and the image force
against dislocation motion, thus rejuvenating the dislo-
cation glide and allowing dislocation motion to continue
during the entire simulation process.

The foregoing calculation shows that boundary relax-
ation achieved by the application of the GF is very effec-
tive in reducing the image force opposing the dislocation
motion in its attempt to attain a lower energy configura-
tion. This is particularly true when the dislocation is near
the center of the simulation cell. In Fig. 2a the GF relax-
ation, though effective, does not completely reduce the
mean force in the GF region to zero. In this regard, we
note that with each GF application, not only the positions
of the atoms in the GF region are adjusted, those in the
atomistic region are also adjusted. The errors involved in
the use of the perfect crystal GF in the defected atomistic
region, and the use of the lattice GF are the main causes
for the incomplete relaxation.

We note that the low force level before the application
of the shear at 0.15 ns corresponds to a static situation,
in which the applied stress is absent and the dislocation
is not moving. After 0.15 ns, the GF is applied to a dy-
namic situation in which the applied shear is maintained,
and the dislocation is moving. Indeed, the increase in
the strain energies of the crystallite due to the application
of the shear is obvious in Fig. 2c, at 0.15 ns. It is rea-
sonable to speculate that the resulting contribution of this
increase may explain the higher residual boundary forces
after the subsequent GF relaxations.

The time dependence of the energy stored in the simu-
lation cell provides another measure of the effectiveness
of the GF boundary relaxation scheme presented here. It
can be seen from the Fig. 2c that the total energy of the
crystallite decreases when the dislocation move through
the crystal. Such a decrease is related to the strain energy
stored in a crystal of finite size with a dislocation mov-
ing under an applied shear. The filled squares plotted in
Fig. 2c correspond to the difference in energy of the un-
stressed crystal containing the dislocation located atx=
0, 5, 10 and 15b with respect to that of the dislocation lo-
cated atx= 0. It can be seen from this plot that the energy
changes under dynamic and static conditions follow each
other quite well.

We note that our calculation is only quasi-dynamic, and
the speed of the dislocation is only apparent. The effect
of the image forces must be taken into account if one is

interested in the true dynamical behavior.

4 Dislocation-void interaction

The interaction of a dislocationwith an obstacle in a form
of a void can be considered within the continuum model
of dispersion-strengthening, developed by Russell and
Brown (1972) (R&B), for second-phase particles with a
shear modulus lower than that of the matrix. In this con-
nection, an obstacle in the form of voids is a limiting case
in which the second-phase particles have zero shear mod-
ulus. Thus in accordance with the R&B model, the yield
stressτ due to voids placed on the slip plane at a distance
L apart is given by

τ =
µb
L




0.8

[
1−

(
ln(R/r)
ln(R/rc)

)2
]1/2

, φ≤ 100o,[
1−

(
ln(R/r)
ln(R/rc)

)2
]3/4

, φ≥ 100o,

(2)

whereφ is the critical angle at which the dislocation cuts
a void of the radiusr. In Eq. 2,µ is the shear modulus,b
is the Burgers vector andR, rc are the cut-off radius and
the core radius of the dislocation, respectively. Note that
τ = 0 whenr ≤ rc.

As can be seen from Eq. 2 the yield stressτ at a given
void spacing,L, is a function of the void radius,r, critical
angle,φ, and dislocation core radius,rc. The core radius
can be calculated by the standard method (see e.g. [Xu
and Moriarty (1996)]). It is one of our aims, in this pa-
per, to investigate the limitations of the continuum R&B
model by comparing with the results of computer simu-
lation, in terms of the yield stressτ and critical angleφ
as a function of void size.

An (a/2)[111](101) edge dislocation is introduced into
the simulation cell with the center atx = −8b andz= 0
by the method described in the section 2. The asymmetri-
cal position along the slip direction is chosen to keep the
dislocation near the center of the atomistic region during
the course of the calculation. The initial configuration
is relaxed for 0.09 ns, with a GF relaxation applied after
0.05 ns. After that a void is introduced into the crystallite
by removing a set of atoms with the coordinates located
in a sphere centered on the dislocation line in the mid-
dle of the simulation cell iny− direction. The atomic
configuration of the dislocation and the void was further
relaxed in an unstressed crystal for 0.08 ns with two GF
relaxations after each 0.03 ns.
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We note that, to save computation time without losing
the essential physics of the process, the void is directly
placed with its center on the dislocation line, a position
corresponding to an energy minimum. Indeed, due to
the reduction of the dislocation line length, the process
involved when an edge dislocation enters into a void is
energetically favorable. As a result, the energy of a crys-
tal minimizes when a void is placed with its center at the
dislocation line, and such a configuration will be arrived
at, regardless of the initial distance between the moving
dislocation and void. When the dislocation line moves
away from the void center to void surface and starts to
lengthen, the energy increase is the cause of the strength-
ening.

A constant pure shear stress in thex−direction on the
x− y plane is then applied. After that the atoms are al-
lowed to relax as described in the foregoing for a time
period of∼1ns, with GF relaxations applied at 0.05 ns
intervals. Similar to the case in subsection 2, the mean
force<FGF> and the total energy of the system are mon-
itored during the calculation. In addition, the configura-
tion of the dislocation line and the mean dislocation dis-
placement in the glide direction, are also recorded. The
calculation is repeated, with applied stresses increased at
a step size of∆σ = 0.1 GPa, to determine the minimum
stress, i.e., the yield stress,τ, needed for the dislocation
to break away from the void. The calculations have been
performed for voids with three different sizes.

The time dependence of the mean force<FGF>, mean
dislocation displacement, and energy change, are pre-
sented in Fig. 3. The dash and solid lines correspond to
shear stresses of 0.6 and 0.7 GPa, respectively. To facili-
tate description, the plot is divided into four time periods
marked by numbers from I to IV.

During period I, the crystallite containing the dislocation
and void is relaxed in the absence of the applied shear.
Both the mean force<FGF> and the energy converge at
the end of this period. Note the time dependence of the
energy change in this period is not shown in Fig. 3c,
because the relaxation takes place without the void and
is similar to that presented in Fig. 2c.

Period II in Fig. 3 corresponds to the initial dislocation
movement when the applied shear is applied. It can be
seen from Fig. 3a that in this time period, the mean force
<FGF> gradually decreases with time for both low and
high stresses. Moreover each GF relaxation decreases
<FGF> to a level, which is only slightly higher than that

in the unstressed crystal. Such a behavior is different
when the void is absent (see Fig. 2). In this case the
magnitude of<FGF> is larger and on the average in-
creases with time. This difference may be understood,
because in the presence of a void, the total resistance to
the movement of the dislocation is higher than in its ab-
sence where the resistance is due to the fixed boundary
conditions only.

Figure 3 : Time dependence for the same values as
in Fig.2 for the case of interaction the dislocation with
VOID-II under pure shear stressσxz = 0.7 GPa (solid
line) and 0.6 GPa (dashed line). The dotted lines mark
the times corresponding to introduction of the dislocation
and void, loading the shear stress and dislocation braking
free of the void, respectively. Note that the energy of the
system increases during the dislocation-void interaction
therewith the effect takes place as a result of GF relax-
ation.

In the presence of the void, the dislocation displacement
during each relaxation in the atomistic region is smaller,
resulting in a reduced<FGF>. Consequently, each GF
application leads to a deeper relaxation. In both cases
of low and high stresses the dislocation moves through
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the void although the effective speed of the dislocation is
slightly different (see Fig. 3b).

In period III, the evolution of<FGF> is primarily differ-
ent for the two different stresses. At the low stress, the
mean force<FGF> has a clear tendency to saturate at
a low level, close to that in the unstressed crystal. This
process continues in period IV, where the mean displace-
ment and energy become constant. This behavior shows
that the dislocation is trapped by the void, i.e. the applied
stress is below the yield stress.

With the higher applied stress of 0.7 GPa, the mean force
<FGF> increases with time in Period III, and its reduc-
tion due to the GF relaxation becomes very small. At the
same time the dislocation is moving slower less than in
period II (see Fig. 4). It shows that in this period the dis-
location movement is mainly controlled by its interaction
with the void. At the end of the period, the effective glide
speed starts to increase, and finally the dislocation breaks
away from the void. Thus the yield stress is determined
to be between 0.6 and 0.7 GPa, and we take it to be 0.7
GPa.

Note that for the higher stress case, in period IV the dis-
location moves through the perfect crystal with a speed
close to that at the beginning of the period II, i.e. when
the dislocation just starts to move. Moreover the<FGF>
dislocation displacement and energy change in period IV
depend on time in a way similar to that in Fig. 2.

Figure 4 : The effective speed of the dislocation during
it interaction with the VOID-II under critical stress ofσ xz

= 0.7 GPa. Note that the speed is about the same at the
beginning and end of dislocation movement.

The time dependence of the energy in Fig.3c is of par-
ticular interest. Indeed, there is an overall increase of
energy with time, when the dislocation is pinned by the
void (e.g. in periods II and III in the case of the higher
stress). However this increase occurs only with the GF
relaxation. The energy actually decreases between the
GF applications during relaxations in the atomistic re-
gion. Such a difference in the energy behavior caused by
the atomistic and GF relaxations reflects an essential dif-
ference in their nature. Thus the former operates in the
atomistic region only, i.e. in the closed system of atoms
(atoms in the atomistic region together with ones in GF
and continuum regions). In this case the energy unavoid-
ably decreases during the relaxation. In contrast, the GF
relaxation operates in the entire crystal, and represents
the response of the “infinite crystal” on the atomic con-
figuration change in the atomistic region. In this case,
the computational cell is only a part of the infinite crys-
tal, and the atoms in the simulation cell do not form a
closed system.

Consequently the total decrease in energy of the infinite
crystal, caused by the dislocation moving through the
crystal, does not necessarily lead to an energy decrease
in a sub-system. This is the case when the void-pinned
dislocation bows out under an applied stress.

There are two reasons for the energy increase during the
dislocation bow-out process. First, the length of the dis-
location increases when the dislocation bows out. Sec-
ond, it is related to the geometry of the calculations,
namely during the dislocation bow-out process the dis-
location moves towards the center of the simulation cell
(see Fig. 5) where the strain energy of the dislocation
stored in the finite crystal takes a maximum value (see
previous paragraph). Actually in the time period IV, i.e.
after the dislocation breaks away from the void, the en-
ergy rapidly decreases due to the same reason, when the
shape of the dislocation returns to a straight line (see Fig.
5b) and as it moves away from the center of the simula-
tion cell (see Fig. 5b).

We wish to emphasize that such energy behavior cannot
be obtained with other methods, for example, when the
two- dimensional periodic boundary conditions are used
[Rodney and Martin (1999); Rodney and Martin (2000);
Diaz de la Rubia, Zbib, Khraishi, Wirth, Victoria and Ca-
turia (2000)]. Indeed, such simulation methods are based
on the atomistic relaxation of a close system of atoms
when any calculation in unstressed or stressed crystals
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Figure 5 : Snapshots of the edge dislocation projected on
the (101) plane in a process of interaction with voids of
different sizes. Snapshots presented in the plot (a) to (c)
correspond the cases of VOID-I, VOID-II, and VOID-III,
respectively. Circles and triangles correspond the projec-
tion of the atoms located to two(101)planes.

will always result in an energy decrease regardless of the
process simulated. This difference in energy behavior be-
tween the present results and those obtained using other
methods is related to the difference in the dislocation dy-
namics of a single dislocation and an array of disloca-
tions.

The simulation results for the time evolution of the
mean force<FGF>, dislocation displacement and en-
ergy change obtained for VOIDI and VOID III are qual-
itatively similar to that in Fig. 4. It is found that the
yield stress is equal to 0.5 and 1.0 GPa in the case of
VOID-I and VOID-III, respectively. Thus, one may infer
that the yield stress increases with increase of the void
size, which agrees qualitatively with the predictions of
the R&B model. However, a quantitative comparison re-
quires an estimate of the critical angle,φ, for the voids
and the core radiusrc.

We next estimate the critical angle,φ. In Fig. 5a-5c,
snapshots of the dislocation configurations projected on
the(101) plane for voids of different sizes under the criti-
cal stresses of 0.5, 0.7 and 1.0 GPa are presented. The cir-
cles and triangles show the positions of atoms belonging
to the two(101) glide planes (see Section 2) projected on
the(101) plane in the unstressed crystal.

As can be seen from Fig. 6 the dislocation configurations
prefer to be lined in parallel to the crystallographic direc-
tions in<111> plane, in all cases. Consequently, arms
of the dislocation when it is about to break away from
the void (those configuration drawn by the thick lines)
are not symmetrical with respect to the [111] direction.
The critical angle,φ(i.e. the angle between the arms) de-
creases as the void size increase, being smaller than 100o

in all cases. Thus one may infer that in the framework
of the R&B model the voids have to be considered to be
strong obstacles, i.e. the first equation in Eq. 2 is relevant
for the critical stress calculations.

A surprising result of the present work is that the dislo-
cation climbs when cutting through the void, if the void
size is sufficiently large. This can be seen in Fig. 6 where
the configuration of the dislocation after leaving the void,
projected on the [111] plane, are presented. For conve-
nience, the configurations of VOIDII and VOID III are
presented by shifting them on 1.5 and 3.0 periods along
the [101] direction, respectively. As can be seen from
Fig. 6 in the case of VOID-I the dislocation keeps the
initial straight configuration. It is interesting to note that
when the dislocation enters the larger voids, a double jog
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is first formed, with a separation between the jogs about
equal to the void diameter.

Figure 6 : Projection of the dislocation on [111] plane
after the dislocation braking free of the voids. The pro-
jections for the VOID-II and VOID-III are presented by
shifting them on 1.5 and 3.0 periods along[101] direc-
tion, respectively. Note that in the cases of the VOID-II
and VOID-III the dislocation climbs on a half of the unit
in positive[101] direction forming the two-unit jogs sep-
arated by a distance about the void diameter.

4.1 Core radius

Within the continuum isotropic elasticity theory, the
strain energy of a dislocation in an isotropic cubic crystal
is a linear function of ln(R), whereR is the outer radius
of a cylinder containing the dislocation core at its center.
The strain energy may be divided into two parts, the core
energyEc stored inside the core area of a radiusrc, and
the elastic strain energy stored outside the core. Then
the total strain energy of the edge dislocationE can be

written as

E = Ec +Λ ln
(

R
rc

)
,

Λ = µb2

4π(1−ν) ,
(3)

whereν is the Poisson ratio. We can estimate the core
radius, by comparing equation (3) with the total strain
energy calculated from the atomistic simulations. Plot-
ting E as a function of ln(R/b) in Fig. 7, a straight line is
obtained whenR > 4.85b, a value which can be estimated
as the magnitude of the core radius. The corresponding
core energyEc, and parameterΛ are 16.6 eV/nm and 8.2
eV/nm, respectively. The value ofΛ is equal to that cal-
culate from the elastic moduli (see Eq. 3). We note the
arbitrariness in the estimation of the core radius because
the exact point at which the curve in Figure 7 becomes
linear is not very well defined.

Figure 7 : Formation energy of (a/2)<111> edge dis-
location vs ln(R/b) obtained in the present calculations.
The fitted calculation results above ln(R/b) =1.55 are
shown as a dashed straight line.

4.2 Comparison with R&B model

The yield stress as a function of void radius between
1.75a and 4.0a has been calculated. The strengthening
effect of the voids is found to be rather high, and in-
creases rapidly with increasing void sizes. The core ra-
dius of the dislocation is found (r c = 4.85b) to be larger
that the radius of the largest void (r max = 4a ≈ 4.62b).
It follows from the R&B model (Eq. 2) that the yield
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stress due to the voids presently considered is zero. The
large discrepancy between the atomistic and the contin-
uum results is clear from Fig. 8, where the atomistic
results (filled squares) are presented in comparison with
predictions from the R&B model (dashed line) plotted as
a function of the void radius. The latter is obtained us-
ing the first equation in Eq. 2, assuming the void spacing
to be equal to the length of the simulation cell between
the periodic boundaries, that isL =45.2b. The magnitude
of the cut-off radius in the calculations is taken to beR
= 106rc, i.e.,∼2.5mm. From this comparison, one may
tend to conclude that the R&B model is not suitable for
describing the strengthening effects of small voids.

However, as can be seen from Fig. 8, the void-size de-
pendence of the yield stress from both models is simi-
lar. Indeed, very good agreement between the simula-
tions results and the predictions of the R&B model can
be obtained if an effective dislocation core radius is used:
re f f

c = 1.78b (solid line in Fig. 8). Other than the arbi-
trary nature ofrc, this agreement may also be understood,
as reflecting the difference between the core radii under
static and dynamical conditions.

Figure 8 : Yield stressτ as a function of void radius
as calculated in the present simulations and by using
the first equation in Eq. 2. The points marked by the
filled squares correspond to the yield stress calculated in
present simulations. The dashed and solid lines corre-
spond to the core radius of 4.85b and 1.78b, respectively.

5 Summary

For atomistic simulations involving moving dislocations,
e.g., the bow-out of a dislocation under an external ap-
plied stress against a field of defects, image forces due to
the necessary imposition of boundary conditions on a fi-
nite simulation cell, may produce artifacts and adversely
affect the accuracy of the results. Despite the common
use of such boundary conditions in many simulations to-
date, there is an obvious need for a method that may alle-
viate this problem. The present work aims to contribute
to this effort.

In the present work, the image forces due to the fixed
boundaries is relaxed periodically, using the 3D GF, to
allow the continuation of the dislocation motion and var-
ious reactions to take place. Our basic assumption is that
a single GF relaxation is able to remove the built-up im-
age forces due to the fixed boundaries. We test this as-
sumption in the case of the glide of an edge dislocation
under a shear stress much large than the Peierls stress.

The present method is applied to study the reaction be-
tween an edge dislocation in tungsten and an obstacle in
the form of a void. Detail information on the reaction
at the atomistic level is obtained, together with all the
necessary parameters describing the void strengthening
effect. The yield stress as a function of void size ob-
tained in this work is not in agreement with that predicted
by the continuum model, if the dislocation core radius is
calculated on a basis of the MD static strain energy cal-
culations (4.85b). However, the simulation results are in
excellent agreement with the model if a smaller effec-
tive radius can be sued (1.78b). It is interesting to note
that the dislocation is found to climb during its motion
through a void, if the void is sufficiently large.
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