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Atomistic Simulations of Dislocation-Void Interactions using Green’s Function
Boundary Relaxation

Xiangli Liu 1, S. I. GoluboVt, C. H. Woo%? and Hanchen Huang

Abstract: A Green’s function technique is developedki, Duesbery and Taylor (1972); Hoagland, Hirth and
for the relaxation of simulation cell boundaries in th&ehlen (1976); Woo and Puls (1976); Puls and Nor-
modelling of dislocation interactions using molecular dygett (1976)]. These calculations are mostly for infinite
namics. This method allows the replacement of fixedraight dislocations, due to the restriction imposed by
or periodical boundary conditions with flexible boundthe treatment of the simulation cell boundaries available
ary conditions, thus minimizing the artificial effects duat that time. Three types of boundary conditions are gen-
to images forces introduced by the fixed boundary coerally used. The rigid (fixed) boundary [Gehlenal.,
dition, or the periodic repetition of simulation cells. Th€1968); Granzeet.al (1968); Basinskét.al. (1972); Puls
effectiveness of the Green’s function in the removal aihd Norgett (1976)], the periodic boundary [Daw, Baskes
the fixed boundary image forces is first checked in tlamd Wolfer (1986); Moncevicz, Clapp and Rifkin (1990);
atomistic simulation involving the glide of tte#2<110> Daw, Foiles and Baskes (1993); Chang, Bulatov and Yip
dislocation in bcc tungsten. This method is then appli€di999); Rodney and Martin (1999); Rodney and Martin
to study the reaction of an edge dislocation with void2000); Diaz de la Rubia, Zbib, Khraishi, Wirth, Victoria
in tungsten. The simulation results are compared witéimd Caturia (2000)], and the flexible boundary employ-
predictions from the continuum model. ing the line Green function [Hoaglaretlal (1976); Woo
and Puls (1976)]. More recently, the Molecular Dynam-
keyword:  Crystal, Green’s function, atomistic simulaics (MD) technique is used to study the mobility of non-

tions, dislocation dynamics straight dislocations, such as joggga<110> edge dis-
location and their interactions with interstitial clusters in
1 Introduction fcc Ni[Rodney and Martin (1999, 2000)], aat2<110>

ling h , edge dislocation interacting with stacking fault tetrahedra
Computer modeling has been widely used to study c{&+c. oy [Diaz de la Rubia, Zbib, Khraishi, Wirth, Victo-
tal properties, particularly those of the_ crysta_l defegtﬁa and Caturia (2000)]. Liu, Shi, Woo and Huang (2002)
such as_the core structure a”‘?' energetlcs_ of dislocatiq}ied the nucleation of dislocations in thin films. In
and their role in the mechanical properties of Cryswtlﬁese calculations, basically, the periodic boundaries, or

(Ghoniem and Cho, 2002, Srivastava and Atluri, 2002) i re of periodic and fixed boundaries are assumed.
Thus, calculations of the Peierls stress of dislocations,

their mobility, and their interactions with various othelt 1 weII_knov_vn thaF th_e res_ul_ts of the MD_ simulation
%f moving dislocation in a finite computational cell are

crystal defects, are of special interest in understandi -
y P trongly affected by the conditions assumed at the cell

the plasticity of materials through the dynamics of dis- _ : .
location. Some of the pioneering work in this area i oundaries (see Olmsted, Hardikar and Phillips (2001);

volves the calculation of the lattice friction stress in thghsawa_ an_d Kuramoto (1999) for oyerw_ews)_. Assummg
late sixties and seventies [Gehlen, Rosenfield and H:ﬂﬁ{md'c'ty in all three orthogonal directions is the sim-

(1968); Granzer, Wagner and Eisenblatter (1968); Basm(-:"sf[ methodolggy. H0\_Never, since this boundary condi-
tion is not consistent with the existence of a net Burgers
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(in the glide direction and the line direction), but fixedhe 3D GF boundary relaxation method (GFBR)
boundaries (or partially fixed) on each side in the thindtcently proposed by Rao, Hernandez, Simmons,
direction. Such a method allows the simulation of a sifarthasarathy and Woodward (1998), further extends the
gle dislocation in the computation cell, but the forcesarlier flexible boundary methods to applications beyond
between the dislocation and its images across the fixbe single straight dislocation. Instead of using the GF
boundaries may considerably distort the dislocation coffer infinite lines of atoms in the earlier flexible boundary
and directly affect its motion. This also happens similaripethods, the GFBR method calculates the relaxation of
to the case where pure periodic boundary conditions dredy forces acting on individual atoms, using the 3D-GF.
applied. The GFBR method has been introduced for the study of

It is worthwhile noting that the results obtained this wa§tatic dislocation properties only. Despite the successful
are, rigorously speaking, only relevant to a system of d@pplication of the line-force GF to problems involving
locations situated periodically at a fixed distance alofgoving dislocations by Woo and Puls (1976), the exten-
the direction of the Burger's vector. Thus, one has 0N of GFBR to studies involving moving dislocations
be careful when comparing the simulation results with@S Yet to be considered.

those from macro-models based on the “single dislocEhe GFBR method employs an iterative procedure, in
tion in an infinite medium” approach. Moreover, thesshich complete relaxation in the atomistic region is fol-
methods are not suitable for application to dislocatioih®wved by GF relaxation of the cell boundaries and contin-
with a screw component. A satisfactory method for theum regions. Under static conditions, the iterative pro-
simulation of 3D dislocation dynamics, for dislocationsess results in a minimum-energy, zero force, configu-
of both the screw and edge type, is very much in negdtion of the system of atoms. Under dynamic condi-
This is the subject of investigation of the present papettions, however, it is more complex because in general a

Several attempts to solve the image-force problem hap#imum-energy configuration does not necessarily ex-
been made via the so-called flexible boundary methd®f; Yet, in this case, with each relaxation in the atom-
the earliest works of which has been reviewed by VitdRtic region, which is essentially a MD calculation in a
(1974) and Perrin (1974). Subsequently, making use@ystal with fixed-boundaries, a quasi-minimum-energy
the periodicity along the dislocation line in a schemg@nfiguration can be reached due to the development of
called Flex-l, Hoaglancet.al. (1976) apply the line- the image forces. It is then unclear whether the GFBR
force Green's function (GF) of Hirth, and Lothe (1973t)echnique is capable of relaxing the lattice configuration
to re-arrange the atoms after relaxation of the prima‘P{/ the cell boundaries, to sufficiently reduce the build
atomistic region (Region 1) to achieve relaxation of théP of image forces that may disturb the iteration pro-
boundary forces. The effectiveness of this scheme sg@Ss. In this regard, it has been shown by Liu, Golubov,
fers because the elastic GF diverges when the field polAtiang and Woo (2003) that a single application of the
at which the displacement is evaluated, is close to tBP-GF may produce an energy reduction of about 80%
source point. In a separate attempt, Sinclair, Gehldprough the relaxation. Under such a deep level of relax-
Hoagland and Hirth (1978) achieve relaxation of th@fion provided by the GF application, it is hopeful that
boundary region by solving the anisotropic linear elastf large build-up of image forces, sufficient to seriously
problem outside the atomistic region to high order terniaterfere with the iteration process, can be avoided. We
(Flex-HT). Woo and Puls (1976, 1977) modify the FlexWill test the method in this regard, in some detail, through
Il scheme to calculate the Peierl's barrier, configurati@® atomistic simulation study of the mobility of an edge
and energy of am/2<110> edge dislocations in MgO, a/2<111>(110) dislocation under the action of a pure
by employing a "lattice” GF for very close separationghear stress.

between the source and field points. Iterative alterndtbe present paper is organized as follows. Sec. 2 de-
applications of the atomistic and GF relaxations reduseribes the method and the computational details. The
the forces below tolerance quickly and effectively in aflimulation results for a moving dislocation are presented
regions. This turns out to be the most efficient scheraed analyzed in Sec.3. In Sec. 4, the application of the
for single dislocations, according to Sincldiral. (1978) present method to the interaction of an edge dislocation
and Puls and Woo (1975). with a void is presented and the results compared with
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the continuum model. A short summary is given in Seponents of those atoms to zero for each time step, if its

5. sign is opposite to the corresponding force component
acting on the atom. The Newton’s equations of motion
2 Methodology and computational details are integrated, with respect to time, with a time step of

The 3D GEBR method used in th t calculati At = 10-1% sec. Relaxation of the atomic configuration
N method used in the present calcula 10N 1Fthe MD region causes forces on atoms in the GF and

essentially similar to the earlier modified Flex-I metho%ontinuum regions, which are fixed during the MD cal-

a_ comprehensive description of Whi,Ch has already be&ﬂation. We note that it is the action of these forces that
given by Raoet. al. (1998), and will not be repeated

. . collectively produce the image forces on the dislocation
here. In general, the flexible boundary condition can yP g

: . . . mthe MD region.
mixed with other types of boundary conditions, periodic _
or fixed. Simulation cells, in which all boundaries arBUring the subsequent GF relaxation, forces on each

flexible, have been used in static simulations (see e%(.)m in'thGF regiqn are relaxed byo!isplacing all atoms
[Raoetal. (1998)]). However, this is not suitable fo'ound it in the entire crystal according to the 3D GF,
studies involving moving dislocations, because, due Y1ich has been modified to take into account periodic
the static nature of our 3D GE. the GEBR method cafoundary condition along the dislocation line. In this
not describe the time-dependent field of a moving di§2lculation, we use GFCUHEX [Golubov, Liu, Huang
location. Furthermore, displacements of atoms near ¢ W00 (2001)], which has been written to calculate the

dislocation core may be more than 10% of the lattice pdiSPlacements according to the elastic GF in cubic and
ﬁpxagonal crystals. An advantage of GFCUHEX lies in

rameter, while for atoms in a perfect crystal environment; _ _
e use of a matrix method that improves the computa-

the displacements caused by stresses of a similar ma C :
tude, being linear elastic in origin, are one- to two- oftoN efficiency by two orders of magnitude, compared to

ders of magnitude smaller. Even in the static simulatiof@nventional methods based on the integral calculations.
of a dislocation with an isolated kink in an unstressegdeed; this is a major factor that makes the present 3D
crystal [Raoet.al. (1998)], it has already been noted{€Xible boundary method feasible at all.

that, "some of the forces that develop as the dislocatibh€ lattice GFs for the region close to the source of the
threads through the GF region at the end of the 3D cpRint force, where linear elasticity fails, is calculated us-
cannot be optimized”. This result reflects the differefftg the method described in Rabal. (1998). Displace-
characteristics of atoms near the dislocation core cofents due to the lattice and elastic GFs agree with each
pared to those in the perfect crystal, in their responseaier beyond a certain distance between the “source and
body forces. Although this effect may not be significari€ld atoms”. This is illustrated in Fig.1 where the ra-
in static simulations, the situation may be much more géo of the G;; components of the lattice and elastic GFs
rious under dynamic conditions, since “unrelaxed” forcé$e calculated for the first nine shells is plotted. Similar
may accumulate in the boundary region and eventuafighavior was also observed for other components of the
lead to the complete failure of the simulation. GFs. This comparison shows that atoms are displaced ac-

Thus, the 3D GF technique can be used for simulatiSHrding to the elastic GF, if its distance from the source

studies involving moving dislocations, only if the dislo-Of the point force is larger than Za5a being the lattice

cation does not thread through the GF region. This cop@rameter, i.e. within the first nine shells. The lattice GF
dition may be satisfied by using periodic boundary cof Used for smaller distance.
ditions in the direction along the dislocation line. In the

present paper this type of simulation cell is used. Quasi-dynamic simulation of a moving dislocation

The calculation in the present paper follows a procedufe ensure that the accumulation of body forces in the
similar to that used in static calculations. After each corbeundary regions will not produce image forces on de-
plete MD relaxation in the atomistic region, a GF relaxects and their structures, which may excessively in-
ation in all regions (atomistic, GF and continuum) is peterfere with the evolution of the defect in the present
formed. The MD relaxation process in the atomistic recheme, the development of such forces during the mo-
gion is achieved as usual by moving atoms accordingtton of an(a/2) [111(101) edge dislocation under an ap-
Newton's equations of motion, and setting velocity conplied shear, is monitored. The many-body potential for
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tungsten [Ackland and Thetford (1987)]is used. Anidedhe (a/2)[111(101)dislocation in the atomistic region
bcc lattice with a lattice constant of 0.31652nm is firss introduced at the center of the simulation cell, with the
constructed with the lattice vectors [112-direction), line along cylindrical axis, i.e., thg-direction, by dis-
[121] (y-direction) and[101] (z-direction). The compu- placing all atoms according to the isotropic linear elastic-
tation cell is in the form of a cylinder with the cylin-ity theory, and then relaxing the system with the method
drical axis measured 12.4 nm in tlyedirection (about described. The number of units for proper relaxation of
450), whereb is length of the Burgers vectob (= the boundary forces is found to be sevén=(3 in the
(v/3/2)a =0.27411nm). Periodic boundary condition i€q. 14 of Raoet.al. (1998)]). A homogeneous pure

shear stresgj, in the x—direction on thex—y plane,

is applied by displacing atoms in all regions according to

the corresponding homogeneous linear elastic strain. The

1.20 = ' ' ' ' ' ' ' calculations are performed with applied stresses in the
range between 0.4 and 1.0 GPa, corresponding to 0.25%
.15 F 1 1t00.625 % of the shear modulys,
A | Since our dislocation is moving very slowly, the config-
110 - uration of the dislocation during the glide process can be
clearly recognized, its glide plane being a known con-
stant in the calculation. Indeed, the “extra half plane”
g LOSF | for the edge dislocation in a bcc crystal consists of three
3 = “ a (111) planes. Atoms that belong to these planes near
% 1.00 oo ooz 2 ] the slip plane, can be easily identified on {121} plane
ER o (i.e.,x—z—plane), from which the location of the dislo-
. A N 1 cation core along the dislocation line can be obtained.
SR ° A & Noting that the “extra plane” consists of three (111)
R 2 ] planes and the slip plane consists of t@i®1) planes,
0.90 - the core of the dislocation has a width lofin <111>
“ n 1 (xdirection) and,/2/3bin < 101 > (z-direction). This
085 L A method is simple and straightforward, and is consistent
' with the centro-symmetric parameter method, and the
disregistry method.
080 2 1 2 1 L 1 L 1
1.0 1.5 2.0 2.5 . .
To monitor the accumulation of sources forces on atoms
Distance (a ) in the boundary region as the relaxation takes place in the
Figure 1 : Ratio of the lattice and elastic point force GRD region, we define the quantitgFer>:
components(;1, for the first nine coordinate shells in s
bcc tungsten as a function of distance R. < For >= \/N—GF i; (Fi>2<+ Fi)2/+ Fé), (1)

assumed along the dislocation line in §hdirection. The WhereFy, Fy,F; are the Cartesian components of the
cylindrical computation cell is elliptical in the—zplane, force acting on the atomandNgr is the total number of
being elongated in the-direction [111], i.e., the slip di- atoms in the GF region. We note thaFgr > so defined
rection. The elliptical semi-axes are 7.22 nm (abott)26!n €quation (1) neglects the contributions from the small
along thex-direction and 4.75 nm (about thifalong the forces in the continuum region. Nevertheless, we antici-
zdirection. The lengths of the semi-axes in MD regioRate<Fer > to give a good measure of the image forces
along thex— andz— directions are 6.05 nm (aboutl2p ©On the dislocation.

and 2.99 nm about 1}, respectively. The total numberThe dislocation is allowed to relax in the absence of an
of atoms in the MD region is 44631. applied stress for 0.16 ns, during which the GF relaxation
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is repeated at 0.02 ns intervals. After that, a pure glic 0.5

shear stress is applied, at about ten times the magnit. 04

of the Peierls stress [Ligt.al. (2003)]. The simulation £ g3

was carried on for about 0.5 ns, with the GF relaxatio 3 ¢,

applied at 0.05 ns intervals. s 01

The dislocation position<Fge>, and energy change v 0.0

as functions of time are shown in Fig. 2a-2c, respet

tively. The dotted line marks the application of the ap

plied shear. In additions Fer > is also plotted in Fig.2d, &

as a function of the displacement of the dislocation. | %

Figs. 2a and 2c it can be seen that bethgr > and 2

the energy of the system tends to saturate during the | §

laxation in the unstressed crystal. Note that the valt

of <Fgr> at equilibrium is non-zero (about>x@0~2

eV/nm), but is just sufficiently small to have negligible <

effects on the stability and the final atomistic configura =

tion of the dislocation. 2"

In Fig. 2a,<Fgr> increases significantly when the ap- ?B =0 5=0.8GPa

plied stress is turned on and the dislocation startsto glic = 5 " [ : )

away from the starting position during the relaxationo ™ -25 0'0 ‘ Oll ' 0'2 ‘ 0'3 ‘ 0'4 ' 0'5 ‘ 0'6 : 0'7

the atomistic region (see Fig. 2b). In Fig. 2d, it is ’ ' ' Ti.me (ns') ' ’ '

clear that<Fgr > increases linearly with the displace-

mentx. At the end of each relaxation cycle of the atom 030 d

istic region, the dislocation slows down and the magni <[ .

tude of <Fgr > tends to saturate. The saturation occur — I I )

in response to the image-forces buildup under the fixe £ o020} g -

boundary conditions, which acts to oppose further ac % s

vance of the dislocation under the applied shear [Wc \; 0.15 - . : .

and Puls (1976); Hull and Bacon (2001)]. Thus, in thc % I R

present case, the total image force opposing the disl =~ ¢10F : 1

cation motion mainly comes from the two (111) fixec v 005'_

boundaries. For an edge dislocation at a distarftem e

the mid-point between fixed boundaries separated at 000 v

distance of B apart, the image force on the dislocatior 060 05 1.0 L5 20 25 30 35

F:m can be easily calculated [Hull and Bacon (2001)] an Displacement (b)

putin the formF,, = —Ax, where Figure 2: (a) Time dependence of the mean force in GF

) = region,<Fge>, (b) displacement of the dislocation, (c)

A— M (9) (1 _ X_) energy change of the crystal, unstressed, and during glide

2m(1-v) \d dz) of the dislocation and (d) displacement«Egr > under

. . . ure shear stress 0.0@5elation betweencF and
is a weak function of, for x < d/2. Fi, increases approx-p. 40 Fer >
displacement.

imately linearly withx as the dislocation moves towards
the cell boundary. For a separation ob4® has a value
of ~ 0.7x103p eV/b?, and at a distance of less than 8
this image force would already be sufficiently large ttg indeed reflected in the displacement-time curve of the
completely cancel a sizable applied shear of up to2p0 dislocation in Fig.2b.

on the dislocation. This slowing down of the dislocaComparison with Fig. 2d reveals thiyis directly pro-
tion motion during each fixed boundary relaxation cyclgortional to <Fgg >, the magnitude of which then re-
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flects the magnitude &, (Fim ~ 0.8 <Fgr>). Each ap- interested in the true dynamical behavior.
plication of the GF reducesFge> and the image force
against dislocation motion, thus rejuvenating the disld- Dislocation-void interaction

cation glide and allowing dislocation motion to continue hei ion of a dis| , ith lei
during the entire simulation process. The interaction of a dislocation with an obstacle in a form

The f . lculat h hat bound | of a void can be considered within the continuum model
e foregoing calculation shows that boundary relags dispersion-strengthening, developed by Russell and

6_‘“0'_‘ achiev_ed by the application of th? GFis very eﬁ?%‘rown (1972) (R&B), for second-phase particles with a
tive in reducing the image force opposing the dislocati ear modulus lower than that of the matrix. In this con-

motion in its attempt to attain a lower energy Conf'gurqfection, an obstacle in the form of voids is a limiting case

tion. This is particularly true when the dislocationis near, \vhich the second-phase particles have zero shear mod-

the center of the simulation cell. In Fig. 2a the GF rela>l<ﬂus. Thus in accordance with the R&B model, the yield

ation, though effective, does not completely reduce tg?ressr due to voids placed on the slip plane at a distance

mean forcg in the GF region tq zero. In this regarq_, VY_eapart is given by
note that with each GF application, not only the positions

of the atoms in the GF region are adjusted, those in the In®/")

atomistic region are also adjusted. The errors involved in 0.8 [1 - <|n(R/rC)> , <100,

the use of the perfect crystal GF in the defected atomistic T 213/4 2)
region, and the use of the lattice GF are the main causes [1— <|Ir?((§//rrc))> ] , 9>100,

for the incomplete relaxation.

We note that the low force level before the applicatiopheregis the critical angle at which the dislocation cuts
of the shear at 0.15 ns corresponds to a static situatigisoid of the radius. In Eq. 2,pis the shear modulus,
in which the applied stress is absent and the dislocati@nthe Burgers vector arfg, r are the cut-off radius and

is not moving. After 0.15 ns, the GF is applied to a dythe core radius of the dislocation, respectively. Note that
namic situation in which the applied shear is maintainefl= 0 whenr < re.

and the_ disloca_tion is moving. .Indeed, the incre_ase_}& can be seen from Eq. 2 the yield stresat a given

the strain energies of the crystallite due to the applicatigf;q spacingL, is a function of the void radius, critical

of the shear is obvious in Fig. 2c, at 0.15 ns. Itis rea; e o and dislocation core radius,. The core radius
_sonableto speculatg that tr_le resultlng contribution of ﬂHﬁn be calculated by the standard method (see e.g. [Xu
increase may explain the hlgher_re3|dual boundary for% Moriarty (1996)]). It is one of our aims, in this pa-
after the subsequent GF relaxations. per, to investigate the limitations of the continuum R&B
The time dependence of the energy stored in the sinijodel by comparing with the results of computer simu-
lation cell provides another measure of the effectivenéagion, in terms of the yield stressand critical anglep

of the GF boundary relaxation scheme presented herexdts function of void size.

can be seen from the Fig. 2c that the total energy of the 5 /2)(111(101) edge dislocation is introduced into
crystallite decreases when the dislocation move througf), «im(iation cell with the center at— —8b andz= 0

the crystal. Such a decrease is related to the strain eNg§f9%he method described in the section 2. The asymmetri-

stored in a crystal of finite size with a dislocation MOVey position along the slip direction is chosen to keep the

ing under an applied shear. The filled squares plottedjyocation near the center of the atomistic region during
Fig. 2c correspond to the difference in energy of the Ufljs coyrse of the calculation. The initial configuration

stressed crystal containing the dislocation locatextat is relaxed for 0.09 ns, with a GF relaxation applied after

0,5, 10 and 16with respect to that of the dislocation [0 g5 s After that a void is introduced into the crystallite
cated a= 0. It can be seen from this plot that the energy,

H X h - aﬁ-% removing a set of atoms with the coordinates located
changes under dynamic and static conditions follow €N, gphere centered on the dislocation line in the mid-
other quite well.

dle of the simulation cell iry— direction. The atomic
We note that our calculation is only quasi-dynamic, angbnfiguration of the dislocation and the void was further
the speed of the dislocation is only apparent. The effg@elaxed in an unstressed crystal for 0.08 ns with two GF
of the image forces must be taken into account if oneriglaxations after each 0.03 ns.
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We note that, to save computation time without losinig the unstressed crystal. Such a behavior is different
the essential physics of the process, the void is directishen the void is absent (see Fig. 2). In this case the
placed with its center on the dislocation line, a positiomagnitude of<Fgg > is larger and on the average in-
corresponding to an energy minimum. Indeed, due ¢eeases with time. This difference may be understood,
the reduction of the dislocation line length, the proces®cause in the presence of a void, the total resistance to
involved when an edge dislocation enters into a void iee movement of the dislocation is higher than in its ab-
energetically favorable. As a result, the energy of a crygence where the resistance is due to the fixed boundary
tal minimizes when a void is placed with its center at theonditions only.

dislocation line, and such a configuration will be arrived

at, regardless of the initial distance between the movin . . ] . . .
dislocation and void. When the dislocation line moves =~ 03 _, ——0.7GPa
away from the void center to void surface and starts t £ I
lengthen, the energy increase is the cause of the streng &
ening. :_3 i
A constant pure shear stress in thedirection on the
X —Yy plane is then applied. After that the atoms are al
lowed to relax as described in the foregoing for a tim¢
period of ~1ns, with GF relaxations applied at 0.05 nes
intervals. Similar to the case in subsection 2, the mez é
force <Fge > and the total energy of the system are mon &
itored during the calculation. In addition, the configura-E-
tion of the dislocation line and the mean dislocation dis = )
placement in the glide direction, are also recorded. Tt
calculation is repeated, with applied stresses increased
a step size oo = 0.1 GPa, to determine the minimum
stress, i.e., the yield stress,needed for the dislocation
to break away from the void. The calculations have bee
performed for voids with three different sizes.

The time dependence of the mean forCEge >, mean
dislocation displacement, and energy change, are pi
sented in Fig. 3. The dash and solid lines correspond Time (ns)

shear stresses of 0.6 and 0.7 GPa, respectively. To fa‘Fﬂbure 3 : Time dependence for the same values as
tate description, the plot is divided into four time periodg, Fig.2 for the case of interaction the dislocation with
marked by numbers from I to IV. VOID-II under pure shear stress, = 0.7 GPa (solid
During period I, the crystallite containing the dislocatiotine) and 0.6 GPa (dashed line). The dotted lines mark
and void is relaxed in the absence of the applied shee times corresponding to introduction of the dislocation
Both the mean forcecFge > and the energy converge aéind void, loading the shear stress and dislocation braking
the end of this period. Note the time dependence of thiee of the void, respectively. Note that the energy of the
energy change in this period is not shown in Fig. 3system increases during the dislocation-void interaction
because the relaxation takes place without the void aieérewith the effect takes place as a result of GF relax-
is similar to that presented in Fig. 2c. ation.

Period Il in Fig. 3 corresponds to the initial dislocation

movement when the applied shear is applied. It can pethe presence of the void, the dislocation displacement
seen from Fig. 3a that in this time period, the mean forg@ring each relaxation in the atomistic region is smaller,
<Far > gradually decreases with time for both low angksulting in a reducee:Fgr>. Consequently, each GF
high stresses. Moreover each GF relaxation decreaggflication leads to a deeper relaxation. In both cases
<Fgr > to a level, which is only slightly higher than thaiof low and high stresses the dislocation moves through

Energy change (eV)
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the void although the effective speed of the dislocationT$he time dependence of the energy in Fig.3c is of par-
slightly different (see Fig. 3b). ticular interest. Indeed, there is an overall increase of
In period I1l, the evolution ok Fge > is primarily differ- €nergy with time, when the dislocation is pinned by the
ent for the two different stresses. At the low stress, t8id (€.9. in periods Il and IIl in the case of the higher
mean force<Fge> has a clear tendency to saturate gtress). However this increase occurs only with the GF
a low level, close to that in the unstressed crystal. TH@laxation. The energy actually decreases between the
process continues in period 1V, where the mean displaéeE applications during relaxations in the atomistic re-
ment and energy become constant. This behavior shéi@n- Such a difference in the energy behavior caused by

that the dislocation is trapped by the void, i.e. the app”éae atomistic and GF relaxations reflects an essential dif-
stress is below the yield stress. ference in their nature. Thus the former operates in the

With the higher applied stress of 0.7 GPa, the mean fo tgmlstl_c region on!y,_l.e. N the closed sy_stem of "?“O”‘S
atoms in the atomistic region together with ones in GF

<Fge > increases with time in Period lll, and its reduc*

tion due to the GF relaxation becomes very small. At tﬁ’md continuum regions). In this case the energy unavoid-
' %Iy decreases during the relaxation. In contrast, the GF

same time the dislocation is moving slower less than i . : )
period Il (see Fig. 4). It shows that in this period the disr_elaxatlon operates |n t.he_z entire ciystal, and represents
location movement is mainly controlled by its interactioﬁhe response of th_e infinite cr_ys_tal on the ato"?'c con-
with the void. At the end of the period, the effective glid lguration che_mge n th.e atomistic region. _In_ thls case,
speed starts to increase, and finally the dislocation breél{é‘ computational c.eII IS on_Iy a part of the infinite crys-
away from the void. Thus the yield stress is determined’ and the atoms in the simulation cell do not form a

to be between 0.6 and 0.7 GPa, and we take it to be 6.9sed system.

GPa. Consequently the total decrease in energy of the infinite
Note that for the higher stress case, in period 1V the dI%r_ystal, caused by the dls_locatlon moving through the
location moves through the perfect crystal with a spe&y stal, does not neqes_sarlly lead to an energy def:rease
close to that at the beginning of the period 11, i.e. wheh 2 sub_-system. This is the case yvhen the void-pinned
the dislocation just starts to move. Moreover thegg > dislocation bows outunder an applied stress.

dislocation displacement and energy change in period \i€re are two reasons for the energy increase during the
depend on time in a way similar to that in Fig. 2. dislocation bow-out process. First, the length of the dis-

location increases when the dislocation bows out. Sec-
ond, it is related to the geometry of the calculations,
ALy T T T 1 namely during the dislocation bow-out process the dis-
[ 1 location moves towards the center of the simulation cell
(see Fig. 5) where the strain energy of the dislocation
stored in the finite crystal takes a maximum value (see

250 E

5b) and as it moves away from the center of the simula-
1 tion cell (see Fig. 5b).

h | We wish to emphasize that such energy behavior cannot

T T S be obtained with other methods, for example, when the

e e B T B two- dimensional periodic boundary conditions are used
Time (ns) [Rodney and Martin (1999); Rodney and Martin (2000);

Figure 4 : The effective speed of the dislocation durin§iaz de la Rubia, Zbib, Khraishi, Wirth, Victoria and Ca-

it interaction with the VOID-II under critical stress of,, turia (2000)]. Indeed, such simulation methods are based

= 0.7 GPa. Note that the speed is about the same at@Rethe atomistic relaxation of a close system of atoms
beginning and end of dislocation movement. when any calculation in unstressed or stressed crystals

50 -

w200 - N . . . . .

5 I | previous pgragra_ph). Actually in the time perlgd IV, i.e.

= 150 | | after the dislocation breaks away from the void, the en-
2 L ergy rapidly decreases due to the same reason, when the
L 100 - 4  shape of the dislocation returns to a straightline (see Fig.
«©

z

e ——
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will always result in an energy decrease regardless of the
process simulated. This difference in energy behavior be-
tween the present results and those obtained using other
methods is related to the difference in the dislocation dy-
namics of a single dislocation and an array of disloca-
tions.

Atomic coordinates along [121] (b)

The simulation results for the time evolution of the
mean force<Fgr>, dislocation displacement and en-
ergy change obtained for VOLDand VOID Il are qual-
itatively similar to that in Fig. 4. It is found that the
yield stress is equal to 0.5 and 1.0 GPa in the case of
VOID-I and VOID-III, respectively. Thus, one may infer
that the yield stress increases with increase of the void
size, which agrees qualitatively with the predictions of
the R&B model. However, a quantitative comparison re-
quires an estimate of the critical angtg,for the voids
and the core radius..

Atomic coordinates along [121] (b)

We next estimate the critical angle, In Fig. 5a-5c,
snapshots of the dislocation configurations projected on
the(101) plane for voids of different sizes under the criti-
cal stresses 0of 0.5, 0.7 and 1.0 GPa are presented. The cir-
cles and triangles show the positions of atoms belonging

to the two(101) glide planes (see Section 2) projected on

the (101) plane in the unstressed crystal.

As can be seen from Fig. 6 the dislocation configurations
prefer to be lined in parallel to the crystallographic direc-
tions in <111> plane, in all cases. Consequently, arms
of the dislocation when it is about to break away from
the void (those configuration drawn by the thick lines)
are not symmetrical with respect to the [111] direction.
The critical angleg (i.e. the angle between the arms) de-
creases as the void size increase, being smaller thah 100
in all cases. Thus one may infer that in the framework
of the R&B model the voids have to be considered to be
strong obstacles, i.e. the first equationin Eq. 2 is relevant
for the critical stress calculations.

A surprising result of the present work is that the dislo-
cation climbs when cutting through the void, if the void
b size is sufficiently large. This can be seen in Fig. 6 where
6 -4 kN TS the configuration of the dislocation after leaving the void,
projected on the [111] plane, are presented. For conve-

_ , , _ nience, the configurations of VOID and VOID 1l are
Figure 5: Snapshots of the edge dislocation projected esented by shifting them on 1.5 and 3.0 periods along

the (101) plane in a process of interaction with voids o he [10T] direction, respectively. As can be seen from

different sizes. Snapshots presented in the plot (a) to ﬁ‘f& 6 in the case of VOID-I the dislocation keeps the
correspond the cases of VOID-1, VOID-II, and VOID-lll; ;. straight configuration. It is interesting to note that

respectively. Circles and triangles correspond the projggsq, the dislocation enters the larger voids, a double jog

tion of the atoms located to twd01)planes.

AT AN ALY

Atomic coordinates along [121] (b)

Atomic coordinates along [111] (b)
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is first formed, with a separation between the jogs abautitten as

equal to the void diameter. R
E—E.+Aln (r) ,

3
/\ _ . u]l?Z ’ ( )
5.0 — 1 ' 1 T T T T )
i VOID_I 5 herev is the Poi tio. W timate the cor
i VO T wherev is the Poisson ratio. We can estimate the core
A VOID TiI | radius, by comparing equation (3) with the total strain
S 40l T energy calculated from the atomistic simulations. Plot-
-g T ting E as a function of INf/b) in Fig. 7, a straight line is
o .7l obtained wheiR > 4.8%, a value which can be estimated
= as the magnitude of the core radius. The corresponding
o core energ¥., and parameteh are 16.6 eV/nm and 8.2
— eV/nm, respectively. The value &fis equal to that cal-
en i . :
S 25 Liaih: culate from the elastic moduli (see Eqg. 3). We note the
1 . . . . . .
= I ,r‘.,"\,“‘,'\.'m 1 arbitrariness in the estimation of the core radius because
e bt a0t h \ Crbaa )T the exact point at which the curve in Figure 7 becomes
= UL e NI IR AT . . .
= 15 ey Ve YUYy linear is not very well defined.
-_a . L ' 1 [ B
= L
9]
8 1.0 | T T T T T T
g 2r .
g 05 1
< 0.0

—_
wn

05 ! A | A 1 A ! ; !

—
(=

Atomic coordinates along [151] (Period)

Figure 6 : Projection of the dislocation on [111] plane
after the dislocation braking free of the voids. The pro
jections for the VOID-II and VOID-III are presented by

IS

o

o

b

=
Formation energy (eV/nm)

- =178 r=4.85b

0 -
shifting them on 1.5 and 3.0 periods aloji@1] direc- NS IS S
tion, respectively. Note that in the cases of the VOID-I 05 00 0.5 1.0 L5 2.0 23
and VOID-III the dislocation climbs on a half of the unit In(R/b)
in positive[101] direction forming the two-unit jogs sep-Figure 7 : Formation energy ofg2)<111> edge dis-
arated by a distance about the void diameter. location vs InR/b) obtained in the present calculations.

The fitted calculation results above Rif) =1.55 are
shown as a dashed straight line.

41 Coreradius

Within the continuum isotropic elasticity theory, the4'2 Comparison with R&B model

strain energy of a dislocation in an isotropic cubic crystdlhe yield stress as a function of void radius between
is a linear function of INR), whereR is the outer radius 1.75 and 4.@ has been calculated. The strengthening
of a cylinder containing the dislocation core at its centegffect of the voids is found to be rather high, and in-
The strain energy may be divided into two parts, the cotesases rapidly with increasing void sizes. The core ra-
energyE. stored inside the core area of a radigsand dius of the dislocation is found { = 4.8%) to be larger
the elastic strain energy stored outside the core. Thibat the radius of the largest void® = 4a =~ 4.62).

the total strain energy of the edge dislocatibrcan be It follows from the R&B model (Eq. 2) that the yield
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stress due to the voids presently considered is zero. Bhe Summary

large discrepancy between the atomistic and the contin- o L . , : .
uum results is clear from Fig. 8, where the atomistﬁ:or atomistic simulations involving moving dislocations,
’ ., the bow-out of a dislocation under an external ap-

results (filled squares) are presented in comparison Witf: ) , :
predictions from the R&B model (dashed line) plotted led stress ag"?"“St a_f_leld of defects, 'mage forces due_to
a function of the void radius. The latter is obtained u§-_e necessary imposition of boundary conditions on a fi-

ing the first equation in Eq. 2, assuming the void spacig?;e simulation cell, may produce artifacts_ and adversely
to be equal to the length of the simulation cell betwe ect the accuracy of the results. Despite the common

the periodic boundaries, thatlis=45.2. The magnitude use of such boundary conditions in many simulations to-
of the cut-off radius in the calculations is taken toRe d_ate, there is an obvious need for a method that may alle-

= 10Pr,, i.e., ~2.5mm. From this comparison, one mayate this problem. The present work aims to contribute

tend to conclude that the R&B model is not suitable f Pth's effort. _ _
describing the strengthening effects of small voids. I the present work, the image forces due to the fixed

However, as can be seen from Fig. 8, the void-size é)‘?oundarles is relaxed periodically, using the 3D GF, to

pendence of the yield stress from both models is sinﬂ-low the continuation of the dislocation motion and var-

lar. Indeed, very good agreement between the simupus reactions to take place. Our basic assumption is that
tions results and the predictions of the R&B model Caq‘single GF relaxation is able to remove the built-up im-

be obtained if an effective dislocation core radius is us€t® fo_rce§ due to the fixed bqundaries. We te_st this_as-
eff _ 1 7ap (solid line in Fig. 8). Other than the arbi-SUmption in the case of the glide of an edge dislocation

. der ash h large than the Peierl
trary nature of ., this agreement may also be understood|C€r & shear stress much large than the Peierls stress.

as reflecting the difference between the core radii undéte present method is applied to study the reaction be-
static and dynamical conditions. tween an edge dislocation in tungsten and an obstacle in

the form of a void. Detail information on the reaction
at the atomistic level is obtained, together with all the
necessary parameters describing the void strengthening
effect. The yield stress as a function of void size ob-
tained in this work is not in agreement with that predicted
by the continuum model, if the dislocation core radius is
calculated on a basis of the MD static strain energy cal-
culations (4.86). However, the simulation results are in
excellent agreement with the model if a smaller effec-
tive radius can be sued (18 It is interesting to note
that the dislocation is found to climb during its motion
through a void, if the void is sufficiently large.

Yield stress 1 (GPa)
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