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SGBEM-FEM Alternating Method for Simulating 3D
Through-Thickness Crack Growth
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Abstract: A SGBEM-FEM alternating method had been proposed by Nikishkov,
Park and Atluri for the analysis of three-dimensional planar and non-planar cracks
and their growth. In the method, the symmetric Galerkin boundary element method
is used for the crack solution in an infinite body and the finite element method is
used to perform stress analysis for the uncracked body only. In this paper the
method is extended further to analyze through-thickness cracks. Adequate shape
of boundary element mesh is examined and it is found that the fictitious portion of
the boundary element mesh, which is located outside the body, plays an important
role in the method. In order to check the accuracy and efficiency of the method,
the obtained stress intensity factors are compared with the known solutions or the
results obtained from finite element method. Using the proposed method stress
corrosion crack growth simulation is performed for a through-thickness crack with
unequal surface lengths.

Keywords: SGBEM, FEM, alternating method, through-thickness crack, crack
growth.

1 Introduction

For several decades the Shwartz-Neumann alternating technique has been devel-
oped for three-dimensional cracks [Atluri (1997); Atluri (2005); Nishioka and
Atluri (1983), and Vijaykumar and Atluri (1981)]. Nikishkov, Park and Atluri
(2001) proposed a SGBEM-FEM alternating method to analyze planar or non-
planar three-dimensional cracks in a finite body. They used the symmetric Galerkin
boundary element method (SGBEM) [Bonnet, Maier and Polizzotto (1998), Li and
Mear (1998)] for modeling a crack embedded in an infinite body. Han and Atluri
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(2002) modified the method introducing a local finite sized subdomain. They used
a crack solution in a finite subdomain instead of an infinite body using SGBEM.
Until now, however, through-thickness cracks have not been considered in the al-
ternating method. The purpose of this paper is to extend the SGBEM-FEM alter-
nating method to obtain SIF values for a short through-thickness crack. For a long
through-thickness crack, we can obtain fracture parameters using two-dimensional
crack solutions. But when a through-thickness crack is short, it is impossible to use
two-dimensional crack solutions because the assumptions for a two-dimensional
problem are not valid. When the crack front is curvilinear or inclined to the body
boundary, three-dimensional stress intensity factor (SIF) solution is necessary for
fracture analysis or crack growth simulation. Well-established finite element method
can be used for this purpose. But creating appropriate meshes is complicated. In
this paper, the SGBEM-FEM alternating method is extended to consider a through-
thickness crack problem.

In the alternating method, it can be noted [Nikishkov, Park and Atluri (2001)] that
accurate solution can be obtained for a surface crack if we add a fictitious portion of
the crack mesh outside the body. In this study, it is found that the fictitious portion
plays a very important role in solving a through-thickness crack. And the boundary
conditions imposed on the boundary element mesh also affect the solution. The
effects of the fictitious portion and boundary condition are examined in this paper.
The obtained SIF results are compared with the known solutions or the results ob-
tained from finite element method. Using the developed method, stress corrosion
crack growth simulation is performed for a through-thickness crack with unequal
surface lengths.

2 SGBEM-FEM alternating method

2.1 Symmetric Galerkin boundary element method

In the alternating method, a symmetric Galerkin boundary element method is used
for crack modeling in an infinite body. Consider a non-planar crack of arbitrary
geometry embedded in an infinite three-dimensional body. A distributed load is ap-
plied at the crack surface. The following weakly-singular boundary integral equa-
tion is valid for the crack [Bonnet, Maier and Polizzotto (1998); Xu and Ortiz
(1993); Li and Mear (1998), Li, Mear and Xiao (1998)]:

−
∫
S

∫
S

Dαu∗i (z)Cαiβ j(ξ − z)Dβ u j(ξ )dS(ξ )dS(z) =
∫
S

u∗k(z)tkdS(z) (1)

Here S = S+ is one of crack surfaces; ui are displacement discontinuities for the
crack surface; u∗i are the components of a continuous test function; and tk are crack
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face tractions. The weakly singular kernel Cαiβ j is given as follows:

Cαiβ j(ζζζ ) =
µ

4π(1−ν)r

(
(1−ν)δiαδ jβ +2νδiβ δ jα −δi jδαβ −

ζiζ j

r2 δαβ

)
ζζζ = ξξξ − z

r2(ζζζ ) = ζiζi

(2)

where ν is Poisson’s ratio and µ is the shear modulus. Tangential operator Dα are
defined as follows:

Dα =
1
J

(
∂

∂η1

∂xα

∂η2
− ∂

∂η2

∂xα

∂η1

)
J = |s× t|
s = ∂x/∂η1 , t = ∂x/∂η2

(3)

where η1 , η2 are the surface coordinates on the crack surface, and s, t are vectors
in the plane that is tangent to the crack surface.

2.2 Discretization of the integral equation

We divide the crack surface into boundary elements, and displacement disconti-
nuities and tractions inside the elements are expressed with the values at element
nodes and suitable shape functions Na as follows:

ui = Na(η1,η2)uia

ti = Na(η1,η2)tia
(4)

where i = 1,2,3 is the global coordinate subscript; a is the node number; η1,η2
are element local coordinates. Then we can rewrite the integral equation (1) in the
following discretized form:

−
∫
S

∫
S

Cαiβ jDαNa(z)Dβ Nb(ξ )dS(ξ )dS(z) u jb =
∫
S

NaNqdS(z) tiq (5)

Solving Eq. (5), we can obtain the displacement discontinuities at nodes, and also
can calculate stresses at inner points. It is very important to perform accurate dou-
ble area integration of weakly singular kernels. Nikishkov, Park and Atluri (2001)
used an efficient approach presented in references [Andra (1998); Erichsen and
Sauter (1998), Frangi, Novati, Springhetti and Rovizzi (2000)]. The approach uses
coordinate transformations to produce transformation Jacobian, which cancels the
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weak singularity of the kernel. For coincident elements and for elements with com-
mon edge or common vertex, the four-dimensional integration domain is divided
into several integration subdomains. The numerical integration inside each subdo-
main is performed using the usual Gaussian quadrature integration rule, since all
the integrals after the appropriate transformations are nonsingular [Nikishkov, Park
and Atluri (2001)].

2.3 Alternating method

Finite element method is well-established and widely used method for elastic and
elastic-plastic structural analysis. But it is difficult to create finite element model for
a body with a three-dimensional crack. The symmetric Galerkin boundary element
method is a very convenient tool to solve planar or non-planar crack problems. But
the matrix becomes too big when considering complex geometry and boundary
elements for a crack are coupled with boundary elements for a body. A SGBEM-
FEM alternating method is a method to employ advantages of both methods. The
method obtains the solution for a finite body with a crack as a superposition of two
models:

• finite element model for a finite body under external loading, without a crack;

• an infinite body with a crack modeled by the symmetric Galerkin boundary
element method.

Because the crack is not included in the finite element model, its creation is easy.
And because the SGBEM is used to obtain the solution for a crack in an infinite
body, the boundary element mesh is independent of the body and can be changed
easily during the crack growth.

The basic steps of the SGBEM-FEM alternating iteration procedure are as follows:

1. Using the FEM, obtain the stresses at the location of the crack in a finite
uncracked body subjected to given boundary conditions.

2. Using the SGBEM, solve the problem for the crack, faces of which subjected
to tractions, found from FEM analysis of the uncracked body.

3. Determine the residual forces at the outer boundaries of the finite body, from
displacement discontinuities at the crack surface.

4. Using the FEM, solve a problem for the finite uncracked body under residual
forces from SGBEM analysis.
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5. Obtain the stresses at the location of the crack corresponding to FEM solu-
tion.

6. Repeat Steps (2)-(5) until the residual load becomes small enough.

7. By accumulating all the appropriate contributions, compute the total solution
for a finite body with the crack.

2.4 Calculation of fracture mechanics parameters

Once the displacement discontinuities are obtained at nodes, the stress intensity
factors KI , KII and KIII can be easily determined using the following relations:

KI =
E
√

π

(1−ν2)
u3

4
√

2r

KII =
E
√

π

(1−ν2)
u2

4
√

2r

KIII =
E
√

π

(1+ν)
u1

4
√

2r

(6)

where KI , KII and KIII are the stress intensity factors; E is the elasticity modulus;
ν is the Poisson’s ratio; r is the distance from the point to the crack front and u1,
u2 and u3 are components of the displacement discontinuities at points at the crack
surface in a local crack front coordinate system, x1, x2 and x3. The axis x1 of the
crack front coordinate system is parallel to the crack front, and the axis x3 is normal
to the crack surface.

The following procedure for the stress intensity factor calculation is used in the
current work:

1. Obtain the displacement discontinuities uG
i in the global coordinate system

for the quarter-point node and for the corner node of a singular crack front
element;

2. Extrapolate uG
i

/√
r to the crack front, using values at the quarter-point node

(L/4) and at the corner node (L). Here r is the distance along line normal
to the crack front and uG

i components of displacement discontinuities in the
global coordinate system.

3. Transform the extrapolated displacement discontinuities from the global co-
ordinate system to the crack front coordinate system, ui = αi juG

i where αi j

are direction cosines of the transformation.
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4. Calculate the stress intensity factors using equation (6).

When a crack front element edge is not normal to the crack front, a modification of
the obtained SIF is necessary. Let consider a crack front element with an inclined
element edge as shown in Fig. 1. AB is a part of crack front. If we calculate mode
I SIF along the edge AD using Eq. (6), the obtained SIF is the following K′I instead
of KI .

K′I =
E
√

π

(1−ν2)
u3

4
√

2r′
(7)

 

Figure 1: A crack front element with an inclined element edge.

Here r′ is the distance from the point A. Since r = r′ cosα , we can obtain the
following relation:

KI =
E
√

π

(1−ν2)
u3

4
√

2r
=

K′I√
cosα

(8)

Equation (8) is satisfied when SIF is constant along the crack front. But it can be
used when SIF variation is not much along the crack front.

3 Modeling crack growth

3.1 Modeling of non-planar crack growth

SGBEM-FEM alternating method is quite suitable for crack growth simulation.
Since the crack is modeled separately, the finite element model need not be modi-
fied during crack growth. Only the boundary element model (crack model) should
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Figure 2: Components J1 and J2 of the J-integral at the crack front. It is supposed
that the crack grows in the direction of the J-integral.

be changed during crack growth. For crack growth simulation of a non-planar
crack, it is necessary to know the direction of crack growth and the amount of
crack growth. The J-integral is used to determine the crack growth direction and
the amount of crack growth as follows:

• Crack grows in the direction of J-integral vector as shown in Fig. 2;

• Crack growth rate is determined by the effective stress intensity factor Ke f f

based on the J-integral.

In an elastic three-dimensional case, the J-integral components are evaluated using
the stress intensity factors as:

J1 =
1−ν2

E
(K2

I +K2
II)+

1+ν

E
K2

III

J2 =−2
1−ν2

E
KIKII

J =
√

J2
1 + J2

2

(9)

where E is the elasticity modulus and ν is the Poisson’s ratio. The crack growth
angle α , which is the angle between the axis x1 and the crack growth direction, is
determined by the direction of J-integral vector:

tanα =
J2

J1
(10)
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It is worth noting that the J-integral vector is normal to the crack front. Hence a
point at the crack front moves in the plane normal to the crack front at the angle α ,
from the plane which is tangential to the crack surface.

Typical crack growth model, suitable for fatigue or SCC crack growth simulation
can be expressed using the effective stress intensity factor Ke f f as follows:

da
dt

= f (Ke f f ) (11)

where da/dt is the crack growth rate and Ke f f is related to the J-integral as:

Ke f f =

√
JE

1−ν2 (12)

 
                                       (a) 

 
 
 

 
                                       (b) 
 

Figure 3: Crack growth model for a through-thickness crack: (a) Advance location
of current crack front points (b) Crack mesh after adding new crack front element
layer.
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3.2 Crack growth algorithm

The following algorithm is used to model mixed mode SCC crack growth.

1. Solve the boundary value problem for the current crack configuration using
the SGBEM-FEM alternating method.

2. Obtain the stress intensity factors KI , KII and KIII for the element corner
nodes located at the crack front and calculate the effective stress intensity
factor Ke f f according to Equation (12) and select the maximum value Kmax

e f f .

3. Estimate increment of the crack life by the following integration and accu-
mulate the crack life t = t +∆t:

∆t =
a+∆a∫
a

da
f (Ke f f (a))

(13)

4. If no value of crack advance ∆amac is left in the input data then stop.

5. For each corner node determine the crack front coordinate system by averag-
ing the coordinate axis vectors determined at the corner point of two neigh-
boring boundary elements. Also determine X1, X2 and X3 coordinate system.
The X3 axis is normal to the crack surface and the X1−X2 plane coincides
with the crack surface. In addition the X1 axis is parallel to the side surface
of the body near the crack front.

6. For each corner node, calculate the crack growth angle α according to Equa-
tion (10).

7. Determine crack advance ∆a for the corner nodes at the crack front using the
following equation:

∆a = ∆amax
f (Ke f f )
f (Kmax

e f f )
(14)

8. Move the corner nodes along the J-integral vector according to computed ∆a
values. Some nodes can be located outside the body as shown in Fig. 3(a).

9. Transform the coordinates of the advance nodes in the X1, X2 and X3 coordi-
nate system. Perform curve fitting for X1 and X3 coordinates with respect to
X2 coordinate using a polynomial expression.
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10. It is assumed that the crack front nodes advance preserving their X2 coor-
dinates. Using the fitting polynomial, obtain the X1 and X3 coordinates of
advance points as shown in Fig. 3(b). The curve CE in Fig. 3(b) becomes
new crack front.

11. For the crack front points located outside the body, we use the same ∆a and α

as the values calculated at the nearest crack front point on the body boundary.

12. Find the locations of crack front midside nodes, using linear or cubic spline
interpolation.

13. Shift the quarter-point nodes of the previous crack front elements to midside
position. Put quarter-point nodes on element sides nearly normal to the crack
front.

14. Generate one layer of boundary elements between old and new crack fronts.

15. Go to step (1)

3.3 Crack front smoothing

When crack growth simulation is performed using the alternating method, oscil-
lation phenomenon is observed in crack advance and SIF distribution. The phe-
nomenon occurs due to the following reason. If a crack front point advances less
than adjacent crack front points due to calculation error or local geometry, the SIF
of the point becomes larger than the values of adjacent crack front points. So in
the next increment, the crack front point advances more than other adjacent points.
Then after the increment, the SIF of the point becomes less than other points. If
oscillating amplitude in SIF or crack advance does not decrease during next incre-
ment steps, the crack growth simulation fails.

To prevent the oscillation phenomenon, geometrical smoothing can be used. The
step (10) in crack growth algorithm in section 3.2 implies the geometrical smooth-
ing. Figure 4 illustrates the procedure of geometrical smoothing. Let consider a
procedure to find a new advancing crack front point A′ corresponding to the cur-
rent crack front point A. First obtain the crack advance points corresponding to the
current crack front points. The open circles in Fig. 4 denote the crack advance
points. After transforming the coordinates of the points in the X1, X2 and X3 co-
ordinate system, curve fitting is performed for X1 and X3 coordinates with respect
to X2 coordinate using a polynomial expression. Let the number of points used in
the curve fitting be n f it . An even n f it value can remove the oscillating phenomena
more effectively than an odd n f it value. In this study, the second order polynomial
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is used in curve fitting and n f it = 6 is used. Using the obtained fitting polynomials,
the X1 and X3 coordinates of A′ can be calculated easily.

In usual SIF distribution obtained from alternating method, the SIF value at the
body boundary is less than the value inside the body. If we use the SIF values at
the boundary in crack growth simulation without modification, it may be the source
of the oscillation phenomenon. Instead of the obtained SIF value, extrapolated SIF
value using inner 2 or 3 points can be used. It is also possible to perform crack
front geometrical smoothing excluding the front points on the body boundary. In
the case, the obtained SIF value on the body boundary is not used.

3.4 Crack growth material model

Several material models for determining the SCC crack growth rate in the stainless
steel-water systems has been developed [Saito and Kuniya (2001); Peng, Kwon and
Shoji (2004)]. Currently for testing the developed crack growth procedure, we use
the mechanochemical model proposed by Saito and Kuniya (2001). The model is
represented by the following equation:
da
dt

= A0

[
C1 exp(−C2 (C3−C4(Ke f f −KISCC)))2/(n+1)

]m
(15)

Here Ke f f is the effective stress intensity factor calculated through the J-integral
value,A0, C1, C2, C3, C4 are material constants, KISCC is the threshold stress in-
tensity factor, n is the Ramberg-Osgood type strain hardening coefficient, m is the
parameter representing the effect of environment and material chemistry.

 

Figure 4: Crack front smoothing

4 Through-thickness crack

Typical boundary element mesh used for a through-thickness crack with different
surface lengths is shown in Fig. 5. In the figure, t is the thickness of a body and
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Figure 5: Boundary element mesh for a through-thickness crack.

2a1, 2a2 are the crack lengths on the surface. Quadrilateral ABDC is the region
embedded in the body and other regions in the mesh are located outside the body.
Let Lext be the length of the outside mesh as shown in Fig. 5. In Fig. 5, all edges
except EF and GH are assumed as crack fronts. So zero crack opening displace-
ment (COD) condition is applied on all edges except EF and GH. The boundary
conditions imposed on the edges EF and GH also affect the solution.

When free boundary conditions are imposed on EF and GH, finite value of COD is
obtained along EF and GH. Since COD must be zero outside the boundary element
mesh, finite value of COD is physically incompatible state. If the length Lext is very
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Figure 6: Example of a finite element mesh and boundary element mesh (crack
mesh) used in the study. Only the half of the finite element mesh is plotted.

short, large COD is obtained along EF and GH and incorrect large SIF are obtained
along crack front. If the length Lext is long, the COD on EF and GH is small and the
obtained SIF is nearly the same as the case when zero COD condition is imposed
along EF and GH.

4.1 Effect of Lext

A simple problem is considered to examine the effect of Lext/t on SIF of a through-
thickness crack. A through-thickness crack with surface length 2a is located at the
center of a plate. The width, thickness and height of the plate are 0.64 m, 0.05 m,
0.6 m respectively and normal stress σ=100 MPa is applied on the edge surfaces
of the body. The material of the body is assumed as an elastic material with elastic
modulus E= 210 GPa and Poisson’s ratio ν=0.3. Figure 6 shows an example of
finite element mesh and boundary element mesh (crack mesh). Only a half of finite
element mesh is plotted. In the finite element model, 3639 nodes and 700 20-node
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Figure 7: Effect of Lext on the normalized stress intensity factors when free bound-
ary condition is imposed on the edges EF and GH in Fig. 6.

three-dimensional solid elements are used and in the crack mesh, 1529 nodes and
480 8-node boundary elements are used. To represent stress singularity at the crack
front, the midside nodes are moved to the quarter positions in crack front elements.
The smallest element size in the mesh shown in Fig. 6 is 0.005m×0.005m. The
run time is 580 sec on an Intel 3 MHz personal computer for the typical model in
Fig. 6. The SIF is the value at the center of the thickness normalized by σ

√
πa.

For comparison, the two-dimensional solutions are also plotted.

The maximum SIF value on the crack front of a through-thickness is larger than the
two dimensional SIF solution. According to the result in Okada and Kamibeppu
(2005), the maximum SIF value is about 10% larger than the two-dimensional solu-
tion. According to the results given in Murakami (1987), the maximum SIF value
depends on the Poisson’s ratio ν . In the given solution for ν=0.3, the maximum
SIF value is about 4% larger than the two-dimensional solution in an infinite plate.

Figure 7 shows the effect of Lext/t on SIF of a through-thickness crack. Free bound-
ary condition is imposed on the edges EF and GH in Fig. 5. When a/t=0.2, the
effect of Lext/t is very small. The normalized SIF value remains nearly constant
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regardless of Lext/t value. And the constant value is nearly the same as the two-
dimensional solution. The value is about 2% larger than the two-dimensional so-
lution. So when the crack length is short compared to the thickness, accurate SIF
value can be obtained regardless of Lext/t value. When a/t=1.0, the SIF value ob-
tained from the alternating method varies according to Lext/t value. When Lext/t is
small, the SIF value is much larger than the two-dimensional solution. As Lext/t in-
creases, the SIF value decreases to a constant value, which is about 9% larger than
the two-dimensional solution. So in order to obtain the converged solution, Lext/t
should be greater than 2. If Lext/t is less than 2, the obtained SIF is greater than
the converged solution. When a/t=3.0, the SIF value obtained from the alternating
method is much larger than the two-dimensional solution when Lext/t is small. As
Lext/t increases, the SIF value converges to a constant value. When Lext/t= 5, the
obtained SIF value is not fully converged and 1.3% larger than the two-dimensional
solution.
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Figure 8: Effect of Lext on the normalized stress intensity factors when zero COD
boundary condition is imposed on the edges EF and GH in Fig. 6.

Next, the effect of Lext/t on SIF of a through-thickness crack is examined when zero
COD boundary condition is imposed on the edges EF and GH in Fig. 5. In Fig. 8,
the variation of the normalized SIF valued is plotted as a function of Lext/t when
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Figure 9: Normalized COD distribution along vertical center line of the crack mesh
when free COD boundary condition is imposed on the edges EF and GH in Fig. 6.
Here a/t=1, Lext/t=0.2 and COD is normalized by 4σa/E.

a/t=0.2, 1.0 and 3.0 respectively. For comparison, the two-dimensional solutions
are also plotted in the figure. When a/t=0.2 and 1.0, the SIF shows a constant
value regardless of Lext/t. The effect of Lext/t is observed only when a/t=3.0 and
Lext/t is less than 1. So if the zero COD boundary condition is used, converged SIF
solution can be obtained when we use Lext/t value greater than 1.

In order to examine the reason of the effect of the boundary condition imposed
on crack mesh edges, COD is calculated along vertical center line of crack mesh.
Figure 9 shows normalized COD distribution along vertical center line of the crack
mesh when free COD boundary condition is imposed on the edges EF and GH in
Fig. 6. Here a/t=1, Lext/t=0.2 and COD is normalized by 4σa/E, which is the
maximum COD in two dimensional solution. It can be noted that COD has finite
value at the points on crack mesh edge, i.e. at the points with y/t= -0.2 and 1.2.
Physically COD must be zero at the points on crack mesh edge. We obtained large
COD value compared two-dimensional COD solution. That is the reason why large
SIF is obtained when small Lext/t value is used. Figure 10 shows normalized COD
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Figure 10: Normalized COD distribution along vertical center line of the crack
mesh when free COD boundary condition is imposed on the edges EF and GH in
Fig. 6. Here a/t=1, Lext/t=2 and COD is normalized by 4σa/E.

distribution along vertical center line of the crack mesh when free COD boundary
condition is imposed on the edges EF and GH in Fig. 5. Here a/t=1, Lext/t=2. COD
shows small value near the crack mesh edge. That is why we obtain converged
solution when large Lext/t value is used.

Next, normalized COD distribution is obtained along vertical center line of the
crack mesh when zero COD boundary condition is imposed on the edges EF and
GH in Fig. 5. Figures 11 and 12 show the results when Lext/t=0.2 and 2 respec-
tively. Nearly the same maximum COD values are obtained regardless of Lext/t
value.

4.2 Effect of boundary element mesh

We examined the effect of boundary element mesh on the SIF distribution of a
through-thickness crack in a plate. The length of a through-thickness crack is 2a
= 0.1 m and the dimensions of the plate is same as in the previous problem. It is
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Figure 11: Normalized COD distribution along vertical center line of the crack
mesh when zero COD boundary condition is imposed on the edges EF and GH in
Fig. 6. Here a/t=1, Lext/t=0.2 and COD is normalized by 4σa/E.

adopted that Lext/t= 2 in the boundary element mesh. Four kinds of meshes are
used. The smallest element size of the coarsest mesh is 0.01 m × 0.01 m and the
size of the finest mesh is 0.0025 m× 0.0025 m. Figure 13 shows boundary element
mesh with size of 0.00333 m× 0.00333 m. The shaded region ABDC is the region
located inside the body, and other regions are located outside the body.

A simple definition of a quality of a quadrilateral element is Q = hmax/hmin. Here
hmax and hmin are the smallest and the largest edges in the element. Best results
can be obtained when the element quality is equal to 1. But in order to reduce
calculation time, we have to reduce the number of boundary elements. From the
experience, it is noted that the element quality can be 2 or 3 in the boundary element
region embedded in the body, i.e., the shaded region in Fig. 9. And the element
quality can be 5 or 6 in the boundary element region outside the body. But as shown
in Fig. 9, the element quality in the region near AB or CD should be same as in
the inside region and the quality can increase as the region goes farther from AB or
CD.
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Figure 12: Normalized COD distribution along vertical center line of the crack
mesh when zero COD boundary condition is imposed on the edges EF and GH in
Fig. 6. Here a/t=1, Lext/t=2 and COD is normalized by 4σa/E.

The obtained SIF distributions are given in Fig. 14. The SIF is normalized by
σ
√

πa. Normalized SIF distribution is given as a function of y/t. Here y is the
coordinate in the through-thickness direction. In every distribution, the maximum
SIF value is obtained at the center of the thickness and SIF shows the minimum
value at the body boundary. Besides the coarsest mesh, all other 3 types of meshes
give nearly the same SIF distribution. And the maximum SIF value shows about
10% larger value than the two-dimensional solution. The distribution shape and the
maximum value are consistent with the results obtained using virtual crack closure-
integral method (Okada and Kamibeppu, 2005).

4.3 Through-thickness crack with unequal surface lengths

SIF distribution is obtained for a through-thickness crack with unequal surface
lengths using the SGBEM-FEM alternating method. Let the surface lengths of
the crack be 2a1, 2a2 and let initial crack front be straight as shown in Fig. 5.
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Figure 13: Example of boundary element mesh (0.00333 m × 0.00333 m)

Three crack geometries are considered. Three cracks have the same a1 value of 0.05
m, but different a2 values of 0.05 m, 0.04 m and 0.025 m respectively. An example
of boundary element mesh used for the crack with a2=0.025 m is shown in Fig.
15. For comparison, SIF values are also obtained using finite element method. A
commercial code, ABAQUS is used in the analysis (ABAQUS, 2010). ABAQUS
code provides several convenient commands for modeling a crack, and SIF values
are obtained using the J-integral values for contours surrounding the crack front. In
the finite element model, 4704 20-node elements and 21848 nodes are used. The
used finite element model for a2=0.025 m is illustrated in Fig. 16.

The SIF distributions along the crack front are given in Fig. 17. For the crack with
a2=0.05 m, symmetric SIF distribution is obtained and the maximum SIF value
occurs at the middle of the thickness. For the crack with a2=0.04 m, the SIF value
near a1 is lower than the SIF value near a2. Here the point with y/t=0 corresponds
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Figure 14: Effect of boundary element meshes on the stress intensity factor distri-
bution along the thickness.

 
Figure 15: Boundary element mesh for a through-thickness crack with unequal
surface lengths
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Figure 16: A finite element model for a1=0.05m and a2=0.025m.



SGBEM-FEM Alternating Method 291

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

 

 

no
rm

al
iz

ed
 S

IF
 K

I/K
0

y/t

Alternating method
 a1=0.05m, a2=0.05m
 a1=0.05m, a2=0.04m
 a1=0.05m, a2=0.025m

FEM
 a1=0.05m, a2=0.05m
 a1=0.05m, a2=0.04m
 a1=0.05m, a2=0.025m

 

Figure 17: SIF distribution for a through-thickness crack with unequal surface
lengths.

to a1 and the point with y/t=1 corresponds to a2. The maximum SIF value occurs
at the first inner point near a2. The maximum value, however, is less than the
maximum value for the crack with a2=0.05 m. The two-dimensional SIF solution
for a=0.04 m is 35.8 MPa m1/2. So the SIF value at the first inner point near
a1 is about 7% larger than the two-dimensional SIF solution. For the crack with
a2=0.025 m, the SIF value near a1 is also lower than the SIF value near a2. And the
maximum SIF value is lower than the maximum value of the crack with a2=0.04 m.
The two-dimensional SIF solution for a=0.025 m is 18.1 MPa m1/2. And the SIF
value at the first inner point near a1 is 35.4 MPa m1/2, which is much larger than
the two dimensional SIF value. For a through-thickness crack with unequal surface
lengths, it is noted that the SIF corresponding to the shorter surface length is larger
than the SIF for the longer surface length.

Figure 17 also shows the comparison between two results obtained from alternat-
ing method and finite element method. The open symbols in Fig. 17 denote the
SIF values obtained using finite element method. Excluding the points on the free
surface, similar SIF values are obtained for the cases of a2=0.05 m and a2=0.04 m.



292 Copyright © 2010 Tech Science Press CMES, vol.68, no.3, pp.269-295, 2010

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

no
rm

al
iz

ed
 S

IF
 K

I/K
0

9
8
7
6

0

5

3
2

4

1

10

 

 

y/t

 

Figure 18: Stress intensity factor KI for a through-thickness crack during stress
corrosion crack growth.

But large discrepancy is observed when a2=0.025. Excluding the points on the free
surface, the SIF values from alternating method are larger than those from finite
element method. We cannot say that the result from finite element method is more
accurate than the results from alternating method. More rigorous and careful finite
element analysis seems to be necessary to obtain correct SIF values.

4.4 Crack growth

Crack growth simulation is performed starting from a through-thickness crack with
unequal surface lengths subject to uniform tensile loading. The surface crack
lengths of the crack are a1=0.05 m and a2=0.025 m, the applied loading is σ=100MPa
and the material and the geometry of the body are the same as the previous prob-
lem. The initial boundary element mesh is nearly the same as the mesh illustrated
in Fig. 15 except the length Lext . In this simulation, Lext /a1=6 is used. The SCC ma-
terial model of Eq. (15) is used with the parameters A0=1.1×10−7, C1=2.5×1010,
C2=12.9199, C3=3.0, C4=0.15, KISCC=9.0 MPa m1/2 and n=5. The crack growth
algorithm described in section 3.2 is used. Ten crack advancements are performed.
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Figure 19: Crack fronts during crack growth for a through-thickness crack

The maximum specified increment, damax is 0.01 m in each advance except the 8th

advance, where damax is 0.011 m.

Figure 18 shows SIF distribution after crack increments. For the initial crack, the
SIF near long crack length is lower than the SIF near short crack length. As the
crack grows, SIF distribution becomes symmetric. SIF values on the boundary
are not used in the simulation, because the crack front smoothing is performed
excluding the crack front points on the boundary. Figure 19 shows crack fronts
during the stress corrosion crack growth.

The accuracy and computational stability depends on the maximum specified in-
crement, damax. If inadequate increment value is specified, a crack element with
poor quality is generated during the crack growth simulation. And the simulation
fails because of inaccurate SIF value.

5 Conclusion

The SGBEM-FEM alternating method is extended to model a through-thickness
three-dimensional crack in a finite body. The symmetric Galerkin boundary ele-
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ment method is used to obtain the solution for a crack in an infinite medium. A
body without a crack is modeled by the finite element method. It is found that the
fictitious portion of boundary element mesh (crack mesh) plays an important role
in solving a through-thickness crack. The effect of the length of the fictitious por-
tion on SIF solution is examined. The effect of the boundary condition imposed on
crack mesh edges is also examined. It is noted that as the length of the fictitious
portion increases the SIF converges to a constant value. When zero COD boundary
condition is imposed on the crack mesh edges, a converged solution can be ob-
tained with shorter length of the fictitious portion compared to the free boundary
condition.

The accuracy and efficiency is examined by solving example problems for through-
thickness cracks with equal and unequal surface lengths. Stress corrosion crack
growth simulation is also performed using the developed SGBEM-FEM alternating
method. It is found that the developed SGBEM-FEM alternating method can be
used as an effective method to analyze a short through-thickness crack in a finite
body.
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