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Abstract: Diabetic nephropathy (DN) is the most frequent cause of chronic renal failure. Until now, the 
pathophysiological mechanisms that determine its development and progression have not yet been elucidated. In the 
present study, we evaluate the role of autophagy at early stages of DN, induced in type 2 diabetes mellitus (T2DM) 
mouse, and its association with proximal tubule membrane endocytic receptors, megalin and cubilin. In T2DM 
animals we observed a tubule-interstitial injury with significantly increased levels of urinary GGT and ALP, but an 
absence of tubulointerstitial fibrosis. Kidney proximal tubule cells of T2DM animals showed autophagic vesicles 
larger than those observed in the control group, and an increase in the number of these vesicles marked with LBPA 
by immunofluorescence. Furthermore, a significant decrease in the ratio of LC3II/LC3I isoforms and in p62 protein 
expression in DN affected animals is shown. Finally, we observed a marked increase in urinary albumin and vitamin D 
binding-protein levels in T2DM animals as well as a significant decrease in expression of megalin in the renal cortex. 
These results indicate an alteration of the tubular endocytic transporters in DN, which could be related to autophagic 
dysfunction, which would in turn result in impaired organelle recycling, thus contributing to the progression of this 
disease.
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Diabetic nephropathy (DN) is  a cl inical  syndrome 
characterized by proteinuria and progressive renal damage 
(Gross et al., 2005). DN is currently the most frequent cause 
of chronic renal failure and, consequently, of dialysis and 
kidney transplantation (Pugliese, 2014). In susceptible type 
2 Diabetes Mellitus (T2DM) patients, DN has a clinical 
time-course, which presents an asymptomatic first stage 
(2 to 10 years) with an increase in both renal volume 
and glomerular filtration rate and also with rising urine 
albumin excretion (Parving et al., 2000). At early stages, 
physiopathological alterations involve microalbuminuria, 
glomerular hyperfiltration, and hyperperfusion (Ziyadeh 
and Wolf, 2008).

There is increasing evidence related to the fact that 
changes in glomerular function are not the triggers of 
early alterations of DN, but correspond to post-glomerular 
complications (Phillips and Steadman, 2002; Magri and Fava, 
2009; Thrailkill et al., 2009; Singh and Farrington, 2010; 
Vallon, 2011). There is a marked correlation between early 
tubular and cortical interstitial alterations and renal function 
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decline with worsening of prognosis (Thomas et al., 
2005; Singh and Farrington, 2010). The role of protein 
transporters in proximal tubule cell, as a hypothetical 
pathophysiological mechanism of the beginning of DN, has 
received attention recently and it will be one of the research 
topics of the present study.

Autophagy is a cellular homeostatic process that allows 
the cell to degrade and recycle damaged cellular components 
such as organelles and proteins (Kundu and Thompson, 
2008; Mizushima et al., 2008; Eskelinen and Saftig, 2009). 
An imbalance in the autophagy process has been related to 
the pathogenesis of DN, describing its inhibition in animal 
models of type 1 and 2 diabetes mellitus (T1DM and T2DM, 
respectively), but its role in tubular protein transport is  
unknown (Yamahara et al., 2013; Ding and Choi, 2015). 
DN autophagic alterations in proximal tubule cells could 
affect the endocytic recycling pathway of surface protein 
transporters and may cause cellular injury and apoptosis 
(Christensen et al., 2012; Giraud Billoud et al., 2017). 

Under physiological conditions, proteins that are filtered 
in the glomerulus are reabsorbed almost entirely by receptor-
mediated endocytosis in the proximal tubule (Christensen 
et al., 2009; Christensen et al., 2012). In DN, a glomerular 
hyperfiltration initially occurs without structural damage, 
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leading to proteins and especially albumin being found in 
the tubular lumen (Comper et al., 2008; Russo et al., 2009). 
Protein excess in the tubular lumen could be the initial 
trigger to induce cellular injury (Bryniarski et al., 2018) or 
the consequence of the incapability of proximal tubule to 
reabsorb them, as a result of the affectation of the specific 
transporters megalin and cubilin (Peres and Michelacci, 
2015; Figueira et al., 2017; Giraud Billoud et al., 2017).

The aims of this study were to evaluate the role of 
autophagy at early stages of DN induced in T2DM mouse 
and its relationship with endocytic protein receptors.

For this purpose. male C57BKSdb+/- (control group) 
and C57BKSdb/db (T2DM group) mice (Jackson Laboratory) 
were used. The animals were housed at constant temperature 
(22±2°C) and 60% relative humidity, with a 12:12 h light-
dark cycle and unrestricted access to a standard rodent 
diet and autoclaved water. C57BKSdb/db mice are leptin gene 
homozygous deficient mutants, what gives them susceptibility 
to obesity and insulin resistance (Wolf, 2013). After 
developing hyperglycemia, these animals show a decline in 
renal function (15-18 weeks-old, Cohen et al., 2000; Lim et 
al., 2009), showing albuminuria and reduced renal function 
at around 30 weeks old (Tesch and Lim, 2011). Both groups 
were sacrificed at 32 weeks old, and sample collections were 
done. Blood insulin, urinary levels of marker enzymes of 
proximal tubule damage (gamma-glutamyl transpeptidase 
-GGT-, and alkaline phosphatase -ALP-), vitamin D protein 
transporter (VDBP) were measured; while proximal tubule 
ultrastructural alterations, autophagy vesicles quantification 
in tubular cells and the expression of autophagy markers 
(lysobisphosphatidic acid -LBPA-, LC3, and p62) were 
determined in tissue samples. Also, megalin and cubilin 
expression were measured.

Thirty two-weeks-old T2DM mice showed a significant 
decrease in insulin levels (control: 0.98±0.01 μg/L-T2DM: 
0.40±0.02 μg/L, t Student, P<0.05) and a markedly high level 
of plasma glucose, compared to control animals (control: 
150.5±11.1 mg/dL-T2DM: 652.5±9.0 mg/dL, Mann Whitney, 
P<0.05). DN was evidenced by the presence of albuminuria 
(control: 8.3±2.1 μg albumin/mg creatinine-T2DM: 98.4±11.1 
μg/mg, t Student, P<0.05). Tubular injury was evaluated by 
the presence in urine of ALP (measured by a kinetic method, 
according to IFCC Tietz et al., 1983) and GGT (measured by 
kinetic method, a according to DGKC  Szasz, 1969) because 
both intracellular enzymes were released to the lumen when 
proximal tubule cells are damaged (Raab, 1972; Hong and 
Chia, 1998). Also, tubulointerstitial fibrosis was measured 
by (a) histochemical analysis, evaluating interstitial collagen 
deposition by a modified point-counting technique (Møller 
and Skriver, 1985) applied to tissue sections stained following 
the Masson trichrome method; (b) immunofluorescence 
(IFI) analysis, quantifying α-SMA (α-SMA, ab5694, AbCAM) 
immunoreactivity levels in the kidney interstitium.

Increased levels of GGT (control: 291.3±41.3 U/mg 
-T2DM: 752.8±219.2 U/mg creatine, P<0.05 t student) and 
ALP (control: 10.5±1.4 U/mg-T2DM: 146.9±26.6 U/mg 
creatine, P<0.05 t student) in diabetic animals indicated 
damage at the cellular level, as a consequence of tissue injury 
induced by DN. However, no tubulointerstitial fibrosis was 
observed, (data not shown), indicating that kidney damage was 

at an early stage and, therefore, at an adequate stage to evaluate 
the role of autophagy at the onset and evolution of DN.

Autophagy maintains normal cellular functioning, but 
if it is not able to achieve it, a triggering of apoptosis would 
follow (Rubinstein and Kimchi, 2012; Murrow and Debnath, 
2013). Transmission electron microscopy (TEM; Fig. 1) 
was performed according to Giraud-Billoud et al. (2017) 
and used to quantify the number of autophagic vesicles per 
cytoplasmic area and the percentage of the cytoplasmic area 
occupied by vesicles (3 cells per tubule and at least 5 tubules 
were studied in each case) (Ylä-Anttila et al., 2009). Statistical 
analysis showed that there were no significant differences in 
the number of autophagic vesicles between groups (Fig. 1A); 
however, the size of these vesicles was significantly higher in 
diabetic than in control animals, which may be associated 
with a more advanced stage of the vesicles (Fig. 1B). 

During autophagosome formation, some proteins can 
be used as markers of vesicles formation. Recent studies 
have shown that their expression is altered in DN, as a 
consequence of autophagy inhibition (Yamahara et al., 2013; 
Ding and Choi, 2015). Particularly, a shift of LC3 isoform 
I to isoform II is indicatives of autophagosome formation 
(Deretic, 2008; Klionsky et al., 2012). 

Protein p62 is incorporated into autophagosomes 
through direct binding to LC3 and is degraded. Total 
cellular expression levels of p62 inversely correlate with 
autophagic activity (Mizushima et al., 2010). In DN, 
according to some authors (Yamahara et al., 2013; Ding 
and Choi, 2015), it would be expected a shift of the 
isoform I of LC3 to isoform II, with an increase in p62 
levels, when the maturation process and formation of the 
autophagolysosome were inhibited (Deretic, 2008; Klionsky 
et al., 2012). In our study, Western Blot analysis showed that 
the isoform II/ isoform I ratio was significantly decreased in 
DN, as compared to the control group (Anti-LC3B antibody, 
ab51520, ABCAM) (Fig. 1G). Furthermore, p62 protein 
was also significantly decreased in T2DM animals, as 
compared to control animals (anti-SQSTM1/p62 antibody, 
ab64134, ABCAM) (Fig. 1H). These results indicate that the 
autophagic process would have continued to some extent, 
but apparently, it was not able to maintain normal function, 
and the cells could undergo apoptosis.

Finally, proximal tubules of T2DM animals showed 
an increase in the number of autophagic vesicles marked 
by immunofluorescence (LBPA, Molecular Probes), while 
megalin (sc-16478, Santa Cruz) and cubilin (sc-20609, 
Santa Cruz) did not show any altered distribution at the 
brush border of proximal tubule cells (Fig. 2). However, the 
expression (semi-quantitation by Western Blot technique) 
of both albumin transporters was decreased and megalin 
showed significant differences to the control group (Fig. 
2). These results were in agreement with the increased 
urinary levels of albumin and vitamin D binding protein 
(VDBP ELISA kit, Biomatic); control: 44.5±11.7 ng/mg-
T2DM: 702.1±89.8 ng VDBP/mg creatine, t Student, 
P<0.05) observed in DN animals. VDBP is a specific protein 
transported by megalin and cubilin and their significant 
increase in urinary excretion indicate tubular endocytic 
transporters alteration.
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F I G U R E  1 .  ( A- F )  T E M  i mage s  and 
morphometric analysis of proximal tubule 
cells. Cell borders were traced using ImageJ 
(National Institutes of Health, Bethesda, 
MD, USA), as well as areas of autophagic 
events, obtaining each area (μm2). We 
quantified (A) the number of autophagic 
vesicles as percent of the cytoplasmic area 
and (B) autophagic volume as a percentage 
of cytoplasmic volume in control (C and D) 
and T2DM animals (E and F). (G) Renal 
cortex Western Blot signal ratio between 
LC3-I and LC3-II, normalized to a loading 
control (β-tubulin, T4026, Sigma-Aldrich), 
and (H) p62 protein levels (RDU is relative 
density units of protein/β-tubulin). Values 
are mean±SEM, N=6. Horizontal brackets 
indicate significant differences between 
T2DM and control groups (Student’s t-test, 
P<0.05). Scale bars: C-E: 0.5 μm; F: 0.25 μm.
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Previous studies in T1DM animal models have shown a 
decrease in proximal tubule megalin levels related to hyper-
albuminuria (Tojo et al., 2001; Mori et al., 2016; Figueira 
et al., 2017; Giraud Billoud et al., 2017). Nonetheless, in 
T2DM animal models, the observations have been less 
conclusive. Apparently, at early stages of DN, the presence 
of high albumin levels in proximal tubule lumen induces 
an increase in megalin expression (Bryniarski et al., 2018) 
and the endocytosis of compounds usually absent in the 
glomerular filtrate (e.g. high molecular weight proteins, 
advanced glycation end products, and other albumin-bound 
compounds), these substances could cause cellular injury that 
contributes to DN progression (Birn and Christensen, 2006). 

2006). 
We propose that the pathophysiologic mechanisms 

behind this phenomenon, we propose that increases in 
deleterious substances in the proximal tubule induce 
autophagic dysfunction in tubule cells, with subsequent 

We propose that increases in deleterious substances 
in the proximal tubule induce autophagic dysfunction in 
tubule cells, with subsequent alterations in the homeostasis 
of organelle recycling, leading to cell death and the activation 
of further mechanisms of tubular damage, such as oxidative 
stress, inflammation, and fibrosis, which are observed at 
advanced stages of DN.

Future  studies  wi l l  be  needed to  disclose  the 
contribution of autophagy, and its relation with the protein 
transporters megalin and cubilin, to DN progression.

FIGURE 2. (A-H) Evaluation of subcellular trafficking of albumin transporters (megalin and cubilin) in T2DM and control animals. Images 
from the upper panels show the presence of LBPA protein (late endosome marker, green) and their co-localization with megalin and cubilin 
(red) in control (A-D) and T2DM animals (E-H) (N=4). (I-J) Renal megalin and cubilin protein levels measured by Western blot in both 
groups (RDU is relative density units of megalin or cubilin/actin). Values are mean±SEM, N=6. Horizontal brackets indicate significant 
differences between T2DM and control groups (Student’s t-test, P<0.05). Bars: 25 μm.
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