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Abstract: Transverse vibration and stability analysis of circular plate subjected 
to follower force and thermal load are analyzed. Based on the thin plate theory in 
involving the variable temperature, the differential equation of transverse 
vibration for the axisymmetric circular plate subjected to follower force and 
thermal load is established. Then, the differential equation of vibration and 
corresponding boundary conditions are discretized by the differential quadrature 
method. Meanwhile, the generalized eigenvalue under three different boundary 
conditions are calculated. In this case, the change curve of the first order 
dimensionless complex frequency of the circular plate subjected to the follower 
force in the different conditions with the variable temperature coefficient and 
temperature load is analyzed. The stability and corresponding critical loads of the 
circular plate subjected to follower force and thermal load with simply supported 
edge, clamped edge and free edge are discussed. The results provide theoretical 
basis for improving the dynamic stability of the circular plate. 
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1 Introduction 

The transverse vibration of the circular plate has played an important part in many engineering systems, 
such as friction clutches, circular saws, disk brakes, and so on. Some research work has been performed on 
the circular plate. Bauer and Eidel [1] studied the transverse vibration of the circular plate by Galerkin 
method, and analyzed the effects of angular speed on the natural frequency and dynamic stability. 
Khorasany and Hutton [2] discussed the linear vibration behavior of the rotating plate by the modal 
expansion method. Gupta et al. [3] utilized Rayleigh-Ritz method to calculate the deflections of the first two 
modes in orthotropic viscoelastic circular plates, and discussed the effect of nonhomogeneous value and 
taper coefficient on transverse vibration. Wang et al. [4] analyzed the change of the complex frequencies of 
the rotating circular plate under three boundary conditions with the change of the angular speed by the 
differential quadrature method.  

All of the researches mentioned above are carried out in the constant temperature field, but in actual 
engineering applications, the temperature is not constant which needs to be taken into consideration. The 
variable temperature will affect the transverse vibration and stability of the circular plate inevitably, which 
has been attracted some researchers’ attention, and did some corresponding research. For example, Gupta 
[5] studied free vibration of a non-homogeneous visco-elastic circular plate with linearly varying 
thickness and subjected to a linear temperature load by Rayleigh-Ritz’s method. Sepahi et al. [6] analyzed 
the effect of variable temperature on large deflection of FGM plate by the differential quadrature method. 
Shu and Zhan [7] used Galerkin method to discuss the nonlinear thermoelastic vibration of circular plate 
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with clamped edge. Sun et al. [8,9] analyzed the thermoelastic coupling vibration of micro-circular plates, 
and discussed the effect of different temperatures on the thermal bending moments and vibration 
amplitude. Hao [10] analyzed the vibration of circular thin-plate micrometer and nanometer 
electromechanical exciters under the heat-elastic damping.  

All of these references did not take the effects of the followed force in the circular plate into 
consideration. In fact, a considerable research work had been done on the vibration of rectangular plates 
subjected to the followed force. Adali [11] analyzed and compared the stability of non-conservative and 
conservative rectangular plate. Leipholz and Pfendt [12] used the Galerkin theory to analyze the 
transverse vibration of a rectangular plate subjected to the follower force and in the boundary condition of 
free edge, and discussed the critical load of rectangular plate. Guo et al. [13] investigated the stability of 
the moving thermoelastic coupling rectangular plate subjected to uniformly distributed tangential follower 
force, and analyzed the effects of the thermoelastic coupling factor and the speed on the stability and 
critical load of the plate. Wang et al. [14] studied the dynamic stability of the rectangular plates subjected 
to the uniformly distributed tangential follower force. Zuo and Shreyer [15] investigated the vibration and 
instability regions of the plate with simply supported edge and subjected to the fixed and follower force 
However, the research on the follower force of the circular plate is not so much. Hochlenert [16] studied 
the vibration problem of circular plate caused by the frictional follower load in the brake system. 
Mottershead and Chanr [17] analyzed the flutter instability of the circular plate under the frictional 
follower load. Wang et al. [18] investigated the relationship between the complex frequencies and the load 
of the circular plate with simple supported edge and the clamped edge. Up to now, few papers have been 
reported on the transverse vibration and stability problems for the circular plate subjected to the follower 
force and thermal load.  

Therefore, the aim of this paper is to establish the transverse vibration differential equation of the 
circular plate subjected to the follower force and thermal load. The eigenequation is obtained by the 
differential quadrature method, and the dimensionless complex frequencies of the circular plate are 
calculated. The relation curves between the follower force and the complex frequency of the circular plate 
with variable temperature are obtained, the effects of the follower force, the variable temperature coefficient 
and the temperature load on the transverse vibration and stability of the circular plate are analyzed. 

2 Differential Equation of Motion  
2.1 Differential Equation of Transverse Vibration with Variable Temperature   

Fig. 1 shows an axisymmetric circular plate subjected to the follower force q  and the variable 
temperature T . R  and h  are the radius and thickness in the polar coordinate, respectively  

As shown in Fig. 2, the temperature T  of the circular plate along r-direction is as follows: 

0( )= +T r T Kr

                                                          

  (1) 

where 0RT T
K

R
−

= , 0 (0)T T= , ( )RT T R= . 
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Figure 1: Schematic diagram for an axisymmetric circular plate subjected to the follower force 

 
Figure 2: Temperature field of the axisymmetric circular plate 

 
The strain-displacement relation of the circular plate can be given by 
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where ru is the displacement field components along the r  axis, z  is the rotation axis, and 
( , )w w r t=  is the transverse displacement. 

The governing equation of transverse motion is 
4 3 2 2 2

2
4 3 2 2 3 2 2

2 1 1 1( ) 0
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where 
3

212(1 )
EhD

µ
=

−
 is the flexural rigidity, µ is Poisson’s ratio, E is elastic modulus, α  is the linear 

thermal expansion coefficient, ρ  is the density of materials, rN
 
and Nθ  are normal in-plane forces, 
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= ∫  is the thermal moment. 

rN
 
and Nθ  are given by 

r rN h
N hθ θ

σ
σ

=
 =                                                               (4) 

The normal forces in the plate is given by the equations of equilibrium 

0rr N NN q
r r

θ−∂
+ − =

∂                                                       (5)
 

The relations of the strain-displacement and in-plane force with the variable temperature T may be 
written as 
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The strain compatibility equation is obtained 
( )

r
r
r
θεε

∂
=

∂                                                        
(7) 

The following equation is derived by using Eqs. (5)-(7) 
2

2
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From Eq. (8), the solution of rN
 

can be obtained as 

2
2 2

1 1 1 1 d(2 ) d(2 )
2 2 2 dr

BTN qr E hT r r Aq E h
r rr

µ α µ α = + − + + +− + +  ∫
                          

(9) 

Substituting Eq. (1) into Eq. (9) results in: 

0 2

1 1 1(2 )
3 3 2r

BN qr E hKr E hT A
r

µ α α= + − − + +
                                        

(10) 

where A and B are integral constants. Since stress components in the center of plate are limited, 0B = . 
Based on Eqs. (2) and (6), ru

 
can be obtained as 

( )r r
ru N N Tr

Eh θ µ α= − +                                               (11) 

Substituting Nθ  of Eq. (5) into Eq. (11) results in 

(1 )r
r r

r Nu Trr N qr
Eh r

αµ
∂ = ++ − − ∂                                        (12) 

The boundary conditions of clamped edge and simply supported edge are given by: 
0r r R

u
=

=                                                            (13) 

Substituting Eq. (10) into Eq. (12) and solving it with respect to the above boundary condition yields 

0 0
1 1 1 1 1(1 ) ( )
3 2 3 1 1

A qR Eh T RK Tµµ α
µ µ

+
= − + + − −

− −                                 (14) 

Substituting Eq. (14) into Eq. (10) and based on Eq. (5) results in (clamped edge and simply 
supported edge) 

[ ]

[ ]
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3 1 13
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                            (15) 

The boundary condition of free edge is given by  
0r r R

σ
=

=                                                                     (16) 
Based on Eqs. (4), (5), (10) and (16), rN

 
and Nθ  are given by in the boundary condition of free edge 
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2.2 Dimensionless Vibration Differential Equation and Dimensionless Boundary Conditions 

The following dimensionless quantities are introduced as follows 
rr
R
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Substituting Eq. (18) into Eq. (3), we can get the dimensionless forms 
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For simply supported edge and clamped edge  
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For the free edge 
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The solution of Eq. (19) is assumed in this form 
j( , ) ( )w r W r e ωττ =                                              (22) 

where ω  denotes the dimensionless complex frequency of the circular plate. 
Considering that the change of temperature along z-direction is ignored, the thermal moment =0TM . 

Substituting Eq. (22) into Eq. (19), the differential equation of the circular plate is obtained as 
4 3 2 2

2
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Considering the edge of the plate is placed at a constant temperature, the three dimensionless 
boundary conditions are given as follows: 

(1) Simply supported edge  
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(2) Clamped edge  
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(3) Free edge      
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The dimensionless boundary conditions of the center of the plate are given as follows: 
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3 Discretization Method   

The differential quadrature method (DQM)19-24 is employed to solve Eq. (23). The radial direction 
of the circular plate is divided into N nonuniform nodes, the δ  method is adopted to treat the boundary 
conditions. The nodes are calculated by the following formula 24. 
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Based on the Lagrange interpolation polynomial, the weight coefficients of the first derivative (1)
ijA  

is obtained 
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The weight coefficients of the second, third and fourth derivatives can be expressed by matrix 
multiplication as follows:  
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Eq. (23) can be discretized into the following form by DQM 

(4) (3) (2) (1) (2) (1) 2
1 22 3

1 1 1 1 1 1

2 1 1 1- 0
N N N N N N

ik k ik k ik k ik k i ik k i ik k i
k k k k k ki ii i

A W A W A W A W N A W N A W W
r rr r

ω
= = = = = =

 
+ − + − − = 

 
∑ ∑ ∑ ∑ ∑ ∑

     

(31)           

The differential quadrature forms of boundary conditions (24), (25) and (26) can be can be 
expressed as follows, respectively            
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The discretization of Eq. (27) can be expressed in the following form 
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Eq. (31), the boundary condition (35) and the one of the boundary conditions (32)-(34) can be 
written in the matrix form 

2( [ ] [ ]){ } 0I K Wω + =                                                    (36)      

where the matrix [ ]K and [ ]I  involve the follower force Q , the variable temperature coefficient g and 
the temperature load λ . Eq. (36) is a generalized eigenvalue equation of the circular plate subjected to 
the follower force and thermal load. 

    
4 Results and Discussions  

In order to verify the present formulation and method, the transverse vibration equation is reduced 
and the results are compared with those from [25]. By placing the conditions 0Q = , 0g =  and 0λ = , Eq. 
(36) can be reduced to the transverse vibration equation of the circular plate which is not subjected to the 
follower force and thermal load. The first three order natural frequencies of the circular plate with three 
boundary conditions are calculated when the number of nodes is 13. It can be seen from Tab. 1 that the 
results obtained by the presented method in this paper are in a good agreement with the corresponding 
values from [25]. 

Table 1: The first four dimensionless natural frequencies of circular plate with three boundary conditions 

 

                     Boundary condition 
Simply supported Clamped Free 
this 
paper 

[25] this 
paper 

[25] this    
paper 

[25] 

1ω  4.943 4.997 10.225 10.21 0 0 

2ω  29.774 29.76 39.811 39.78 9.023 9.084 

3ω  74.294 74.20 89.194 89.10 38.523 38.55 



58                                                                                    SV, 2019, vol.53, no.3 

4.1 Circular Plate with Simply Supported Edge 
Fig. 3 gives the variation of the first order dimensionless complex frequency of the circular plate 

with the follower force in the case of 1λ =  with variable temperature coefficient 2, 1,0,1, 2g = − − . It can 
be seen that when the follower force 0Q = , the dimensionless complex frequency is a real number, 
which indicates the natural frequency decreases with the increase of temperature coefficient g . With the 
increase of the follower force Q , the real part of ω  becomes smaller, while the imaginary part remains 
zero. When the follower force Q  reaches the critical value dQ  (shown in Tab. 2), the real part in the 
first mode becomes zero, but the imaginary part has two branches. This result shows when the follower 
force Q  is larger than the critical load, the divergence instability appears in the first order mode of the 
circular plate. The reason is that the internal stress caused by the temperature change has an effect on the 
bending stiffness of the circular plate, which turns out the compressive stress makes the bending stiffness 
weaken. Meanwhile, as the average temperature of the circular plate increases with an increase of g , the 
natural frequency deceases. 

The critical load versus the variable temperature coefficient g  can be seen in Fig. 4. From Fig. 3 
and Fig. 4, we can see that the temperature coefficient g  increases while the first critical load deceases 
when the temperature load is a certain value. 

   
Figure 3: The first order dimensionless complex frequency versus the follower force ( 1λ = ) 

 
Table 2: The first critical load of the circular plate subjected to follow force ( 1λ = ) 

 1 2g = −  2 1g = −  3 0g =

 
4 1g =  5 2g =

 
cQ

 
25.9 21.5 16.8 12.0 6. 

 
Fig. 5 gives the variation of the first order dimensionless complex frequency of the circular plate with 

the follower force in the case of 1g =  and the temperature load 0,1,1.5λ = . As the follower force Q  
increases, the real part of the first order dimensionless complex frequency reduces to zero and the imaginary 
part appears as two branches. The circular plate appears divergence instability in the first order mode. The 
variation of the critical load with the temperature load λ  is shown in Fig. 6. From Figs. 5 and 6, it can be 
seen that for a certain value of the variable temperature coefficient g , the natural frequency and the critical 
load deceases with the increase of the temperature load λ . With certain physical parameters and average 
temperature of the circular plates, the temperature load λ  is mainly related to the radius-thickness ratio c , 
which means that with the increase of c , the first critical load deceases. 
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Figure 4: The critical load versus the variable temperature coefficient ( 1λ = ) 

 

     
Figure 5: The first dimensionless complex frequency versus the follower force ( 1g = ) 

 
Figure 6: The critical load versus the temperature load ( 1g = ) 

4.2 Circular Plate with Clamped Edge 
Fig. 7 gives the variation of the first order dimensionless complex frequency of the circular plate 

with the follower force in the case of 1λ = with variable temperature coefficient 2, 1,0,1,2g = − − . Fig. 8 
gives the variation of the first order dimensionless complex frequency of the circular plate with the 
follower force in the case of 1g = with temperature load 0,1,1.5λ = . It shows that the increase of the 
follower force causes the real parts of ω  to decrease, subsequently the imaginary parts becomes two 
branches, which indicates that the first order mode appears the divergence instability. This instability of 
the circular plate with clamped edge is similar to that with simply supported edge. Comparing Figs. 7 and 
8 with Figs. 2 and 4 respectively, we can see that the change of temperature coefficient g and temperature 
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load λ  have less effect on the complex frequency of the circular plate with the clamped edge than that 
with simply supported edge. The critical load with clamped edge is larger than that with simply supported 
edge, which shows the circular plate subjected to follow force and with clamped edge has better stability 
than that with simply supported edge.   

     
 Figure 7: The first order dimensionless complex frequency versus the follower force ( 1λ = ) 

 

       
 Figure 8: The first dimensionless complex frequency versus the follower force ( 1g = ) 

    
Figure 9: The critical load versus the variable temperature coefficient ( 1λ = ) 
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Figure 10: The critical load versus the temperature load ( 1g = ) 

 
The variation of the critical load with the variable temperature coefficient g ( 1λ = ) and with the 

temperature loadλ ( 1g = ) can be seen in Fig. 9 and Fig. 10 respectively. Comparing Figs. 9 and 10 with Figs. 
4 and 6, it can be observed obviously that the critical load deceases with an increase of g and λ , which 
shows the critical load is not only dependent on g and λ , but also affected by the boundary condition. 

4.3 Circular Plate with Free Edge  
Fig. 11 shows the variation of the first order dimensionless complex frequency of the circular plate with 

the follower force in the case of 1λ =  and the variable temperature coefficient 2, 1,0,1, 2g = − − . Fig. 12 
shows the variation of the first order dimensionless complex frequency of the circular plate with the 
follower force in the case of 1g =  and the temperature load 0,1,1.5λ = . It can be seen in Figs. 11 and 
12 that the increase of the follower force leads to decrease of the real part of the first order complex 
frequency, and when the follower force dQ Q≥ , the real parts remains zero, while the imaginary parts 
have two branches, which means the circular plate with free edge undergoes the divergence instability. 
The change of g  and λ  has less effect on the complex frequency of the circular plate with free edge 
than that with simply supported edge and clamped edge.  

       
Figure 11: The first order dimensionless complex frequency versus the follower force ( 1λ = ) 
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Figure 12: The first dimensionless complex frequency versus the follower force ( 1g = ) 

 
The variation of the critical load with the variable temperature coefficient g ( 1λ = ) and with the 

temperature loadλ ( 1g = ) can be seen in Fig. 13 and Fig. 14 respectively. As shown in Figs. 13 and 14, 
with the increase of g  and λ , the critical load decreases. The critical load in the boundary condition of 
free edge is smaller than that in the boundary condition of clamped edge. 

 

   
Figure 13: The critical load versus the variable temperature coefficient ( 1λ = ) 

 
Figure 14: The critical load versus the temperature load ( 1g = ) 

 
5 Conclusions 

In this paper, the transverse vibration and stability of the circular plate subjected to follower force 
and thermal load with three boundaries are investigated by DQM. The effects of the follower force, the 
variable temperature coefficient, the temperature load and the boundary condition on transverse vibration 
and stability are discussed The results are listed as follows:  
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(1) As the follower force increases, the real part of the first order dimensionless complex frequencies 
decreases to zero under all the three boundary condition, while the imaginary part has two branches with 
positive and negative values, which shows the circular plate subjected to follower force and thermal load 
undergoes divergence instability when the follower force reaches the critical load. 

(2) The variable temperature coefficient and the temperature load have great effects on the natural 
frequency of the circular plate subjected to follower force, which are performed by the average 
temperature of the circular plate. As the average temperature of the circular plate increases, the natural 
frequency of the circular plate decreases.    

(3) With an increase of the variable temperature coefficient and the temperature load, the critical load 
decreases under the boundary condition of simple supported edge, clamped edge and free edge. For 
certain conditions, the critical load of the circular plate with clamped edge is larger than that with simple 
supported edge and free edge, which shows that the stability of the circular plate with clamped edge is the 
best in the three boundary condition. 
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