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Abstract: Elm (Ulmus pumila L.) is the dominant tree species in the sparse elm woodland, the original vegetation 
in the Horqin Sandy Land. The effects of changes in precipitation on U. pumila trees have not been fully studied. We 
determined a dynamic model by considering the five stages in the U. pumila life cycle, i.e. seed, seedling, and juvenile, 
mature and over-mature tree stages. The effects of changes in precipitation on population density and age structure 
were then evaluated. Population density, after averaging all study developmental morphology stages, ranged from 
16.67 individuals/m2 to 25.01 individuals/m2 under a mean annual precipitation (MAP) of 80% to 120%, respectively. 
This suggests that population density could increase as MAP also increased. The proportion of seedlings, and juvenile, 
mature and over-mature trees were 95.23%, 4.58%, 0.19% and 0.01%, respectively, under all precipitation levels. This 
indicates that precipitation had little effects on the developmental stages of the studied U. pumila populations in the 
Horqin Sandy Land. Additional water supply might be provided in addition to the natural rainfall that occurs in the 
region, for contributing to maintain U. pumila population density in the Horqin Sandy Land.
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Introduction

Changes in precipitation are one of the most important 
aspects of climate change, which is mainly caused by global 
warming (Brewer, 1994). Changes in climate might lead to 
a reduction in precipitation and an increased intensity of 
drought in arid lands (Dore, 2005; Trenberth et al., 2014). 
In arid and semi-arid lands, drought is one of the most 
important factors that limit plant development (Klausmeier, 
1999). Changes in precipitation are a key factor in the 
regulation of plant population development, especially in 
arid and semi-arid environments (Giorgetti et al., 1997; Miao 
et al., 2018). They have changed land use on many regions 
in the world with negative results on the renewable natural 
resources (i.e. increased land degradation). For example, land 
used previously for meat production on native rangelands 
is currently used for crop production in arid and semiarid 
territories (Busso and Fernández, in press). These changes in 
land utilization because of precipitation changes had negative 
social and economic consequences in arid and semiarid 
zones of the world (Busso and Fernández, in press).

The effects of changes in precipitation on plants have been 
investigated by studying various morphophysiological plant 
traits (Busso et al., 2003; Bonvissuto and Basso, 2007; Piao  
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et al., 2012; Albert et al., 2013; Claesson and Nycander, 2013). Recently, 
some reportshave focused on the effects that changes in precipitation 
might have on plant population dynamics (Dalgleish et al., 2011, 
Martin and Meinke, 2012; Prevey and Seastedt, 2015). This is 
crucial to understand the interaction between plants and their 
environments, and for exploring the mechanisms regulating 
the temporal-spatial formation of plant populations, 
especially in arid and semi-arid lands, where precipitation is 
the main source of water supply (Benavides  et al., 2016). 

Ulmus pumila, a tree species, is dominant in sparse elm 
woodland, which is the original vegetation in the Horqin 
Sandy Land, one of the largest sandy lands in China (Jiang 
et al., 2014). Maintenance of sparse elm woodland is critical 
for vegetation restoration in the Horqin Sandy Land, where 
rehabilitation with native species has become a useful way 
to control desertification (Normile, 2007). Thus, exploring 
the effects of precipitation on the dynamics of U. pumila 
populations might help us to understand the stability of 
sparse elm woodland, and promote the restoration of 
vegetation in the Horqin Sandy Land. 

The effects of precipitation on U. pumila trees in sparse 
elm woodland have been studied (Dulamsuren et al., 2009b). 
However, the effects on U. pumila trees caused by changes in 
precipitation are not fully understood. This might lead to an 
inaccurate assessment of the status of the U. pumila population, 
especially when considering the background of climate 
changes. Therefore, it is critical to explore the effects of different 
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precipitation levels on population dynamic of U. pumila. 
The simulation methods have proved to be a feasible 

tool to look at the scenarios of plant populations under 
different environmental conditions (Tang et al., 2015). 
For example, effects of the timing of flooding recession 
and precipitation were evaluated with deterministic and 
stochastic matrix population models on the population 
dynamic of Boltonia decurrens (Smith et al., 2005). In 
addition, the effects of different fire frequencies, and 
variations in spring precipitation levels, were studied with 
stochastic models on the population dynamic of Fabiana 
imbricate (Curth et al., 2012).

The aim of this work was to understand how various 
precipitation levels influence the population dynamic (e.g. 
population density and age structure) of U. pumila trees in 
sparse elm woodland. With this purpose, we constructed a 
systematical dynamic (SD) model, where population dynamic 
was structured at five morphological stages of development: 
seed, seedling, and juvenile, mature and over-mature trees. 
We used various parameters based on field studies as input 
variables to feed the model at the studied developmental 
stages. The stochastic precipitation was considered a key 
factor for regulating growth of the U. pumila population. 

Materials and Methods

Model construction
We established a dynamic model considering the five stages 
of the U. pumila life cycle, i.e. seed (i=1), seedling, juvenile, 
mature and over-mature (i=5) tree stages (Fig. 1). The model 
was established following the equations below where at the 
seed stage i was from 4 to 5. 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ 𝑑𝑑𝑑𝑑𝑖𝑖
𝑑𝑑𝑑𝑑

= �𝐵𝐵𝑖𝑖 ∙ 𝑁𝑁𝑖𝑖 − 𝑇𝑇𝑇𝑇𝑖𝑖

5

𝑖𝑖=4

 ⋯⋯⋯⋯⋯  ⋯⋯⋯⋯⋯   𝑓𝑓𝑓𝑓𝑓𝑓 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑑𝑑𝑑𝑑𝑖𝑖
𝑑𝑑𝑑𝑑

= �𝑇𝑇𝑇𝑇𝑖𝑖−1 ∙ 𝑁𝑁𝑖𝑖−1 − (𝐷𝐷𝑖𝑖 + 𝑇𝑇𝑇𝑇𝑖𝑖) ∙ 𝑁𝑁𝑖𝑖 ,𝑁𝑁𝑖𝑖 < 𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖  
                  0                                  ,𝑁𝑁𝑖𝑖 ≥ 𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖

� , 𝑖𝑖 = 2,⋯ ,𝑛𝑛 − 1

𝑑𝑑𝑑𝑑𝑖𝑖
𝑑𝑑𝑑𝑑

= �𝑇𝑇𝑇𝑇𝑖𝑖−1 ∙ 𝑁𝑁𝑖𝑖−1 − 𝐷𝐷𝑖𝑖 ∙ 𝑁𝑁𝑖𝑖 ,   𝑁𝑁𝑖𝑖 < 𝑀𝑀𝑀𝑀𝑀𝑀 
                  0                  ,𝑁𝑁𝑖𝑖 ≥ 𝑀𝑀𝑀𝑀𝑀𝑀 �⋯⋯⋯⋯⋯⋯⋯𝑖𝑖 = 𝑛𝑛

𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖 =
𝑃𝑃𝑖𝑖
𝑊𝑊𝑊𝑊𝑖𝑖

,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯𝑖𝑖 = 2,⋯ , 𝑛𝑛
 ⎭

⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎫

 

This is because seeds come only from individuals at the 
mature and over-mature stages. At the over-mature stage, 
no transition is made to a next stage, as a result that the 
over-mature stage is the last one in the U. pumila life cycle. 
Thus, the number of individuals in at the over-mature stage

was described with a different equation (i.e., 3rd equation). 
In addition, N was the number of individuals at each of 
the five stages, B was birth rate, D was death rate, TP was 
the transition probability (i.e. the probability associated 
with a pine population at one age-stage shifting to another 
age-stage). P was precipitation, which followed normal 
distribution in this study, and WC was water consumption 
per individual at each of the study developmental stages, but 
the seed stage. 

Each stage was linked to the following stage through a 
transfer probability. The mature and over-mature tree stages 
were linked to the seed stage, as seeds are produced in these 
two stages. U. pumila trees die to a stage-specific rate, except 
for the seed stage. The seeds became seedlings to a specific 
germination rate (Tab. 1). The long-term precipitation data 
were collected from various Wulanaodu regions (42°29´-
43°06´N, 119°39´-120°02´E, 480m a.s.l.), located at the 
Horqin Sandy Land in northeastern China (Tang et al., 2014). 
This region has a semi-arid climate and a typical landscape 
which includes active sand dunes, stabilized sand dunes, and 
inter-dune lowlands (Jiang et al., 2014). Besides U. pumila 
trees, there are also typical shrubs, like Salix gordejevii and 
Artemisia halodendron, and perennial and annual herbs, 
such as Aristida adscensionis, Agriophyllum squarrosum and 
Setaria viridis (Cao et al., 2011).

We obtained 56 years of annual precipitation data (1958-
2013) from the China Meteorological Data Sharing Service 
System to estimate the expectation and variation of the 
precipitation distribution in the Wulanaodu region (China 
Meteorological Data Sharing Service System, 2015). Other 
parameters used as input variables in the model included 
seed production, death rate, seed germination rate, period 
of each study morphological stage, transition probability 
between subsequent developmental morphology stages, and 
water requirements (Tab. 1). 

Model validation and simulation
We used a unit-consistency test to validate this model. 
The unit-consistency test, which checks for agreement 
among units, was automatically completed in the Vensim 
package (Tang et al., 2014). The model was formulated and 
simulated using a professional SD software package ‘Ventana 
Simulation Environment Personal Learning Edition (Vensim 
PLE)’. The simulation was run for 100 times, where each time 
represented 1 year. 

Figure 1. Stock-flow diagram representing the simulated system.
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used to represent a decrease in precipitation. Five scenarios  
were considered in this study (i.e. 120% MAP, 110% MAP, 
100% MAP, 90% MAP, and 80% MAP). In each scenario, 
overall population density, and seedling, and juvenile, mature 
and over-mature tree densities were tested. 

Scenario analysis
We evaluated the effects of changes in precipitation on 
plant population density and age structure. A scenario was 
designed to represent the mean annual precipitation (MAP).  
A MAP value of more than 100% was used to represent an 
increase in precipitation, whereas a value below 100% was

Figure 2. Simulation results of U. pumila tree densities under different precipitation levels. (A) Seedling stage; (B) Juvenile trees; (C) 
Mature trees; (D) Over-mature trees. Please note the change of scale among the panels.

Full names Seed Seedling Juvenile 
tree

Mature 
tree

Over-
mature 
tree

Source

Seed production (seeds/m2) - - - 2456 7744 Gu et al. 2012
Death rate (%) - 0.268 0.133 0.346 0.941 Li et al. 2011
Expectation in precipitation 
(mm) 352 352 352 352 352 http://data.cma.cn

Variance in precipitation 8627 8627 8627 8627 8627 http://data.cma.cn
Seed germination rate (%) - - - 10 10 Tang 2011
Period of stages (years) 1 5 15 30 50 Zhang 2011
Transition probability (%) - 20 6.67 3.33 2 -
Water consumption (L/
individuals/year) - 21.6 1680.7 1977 1977 Li 2003;Guo et al. 2008;Tian 

2009; Ma 2010

Table 1 

Input parameters for the five developmental morphology stages of U. pumila population in the SD model
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Results

Population densities vs. precipitation levels
The mean population densities, after averaging all stages of
developmental morphology within each MAP (from MAP 
120% to MAP 80%) were 18.49 individuals/m2, 17.01 
individuals/m2, 15.54, individuals/m2, 14.06 individuals/m2 and 
12.49 individuals/m2, respectively. At the end of the simulation 
period (i.e. after 100 runs of the software), and after averaging 
all stages of developmental morphology within each MAP, 
population densities obtained with precipitation levels from 
80% to 120% MAP increased from 16.67 to 25.01 individuals/
m2, respectively. The order of population density under the 
different MAPs, and after averaging all stages of developmental 
morphology within each MAP, was 120% of MAP > 110% of 
MAP > 100% of MAP> 90% of MAP > 80% of MAP (Tab. 2). 

　
MAP 
120%

MAP 
110% MAP MAP 

90%
MAP 
80%

Min. 0.20 0.20 0.20 0.20 0.20
1st Qu. 13.14 12.05 11.24 10.13 8.99
Median 18.40 16.87 15.33 13.8 12.27
Mean 18.49 17.01 15.54 14.06 12.49
3rd Qu. 25.05 22.97 20.88 18.79 16.7
Max. 39.77 36.45 33.14 29.83 26.51
End point 25.01 22.93 20.84 18.76 16.67

Other aspects of population structure under the different 
precipitation levels
The reductions in population densities of U. pumila fluctuated 
among the various stages (Fig. 2). At the end of the simulation 
period, the maximum and minimum seedling densities were 
23.81 (120% MAP) and 15.88 (80% MAP) individuals/m2, 
respectively (Fig. 2). Seedling densities were 21.83, 19.84 and 
17.86 individuals/m2 in the presence of 110%, 100% and 90% 
MAP, respectively (Fig. 2a). In the same period, the maximum 
(1.15 individuals/m2) and minimum (0.76 individuals/m2) 
densities of juvenile trees occurred in scenarios with 120% 
MAP and 80% MAP, respectively. The densities of juvenile 
trees at 110% MAP, 100% MAP and 90% MAP were 1.05, 0.95 
and 0.86 individuals/m2 separately (Fig. 2b). The maximum 
and minimum densities on mature trees were 0.05 (100% 
MAP) and 0.03 (80% MAP) individuals/m2 (Fig. 2c). Densities 
of mature trees under 110% MAP, 100% MAP and 90% 
MAP were 0.04, 0.04 individuals/m2 and 0.03 individuals/m2, 
respectively (Fig. 2c). The maximum and minimum densities 
in over-mature trees were 0.0012 and 0.0008 individuals/m2 
at scenarios of 120% MAP and 80% MAP after running the 
software 100 times (Fig. 2d). At this time, densities in over-
mature trees at 110% MAP, 100% MAP and 90% MAP were 
0.0011 individuals/m2, 0.0011 individuals/m2 and 0.0010 
individuals/m2, respectively (Fig. 2d). 

Stability in population structure
At all precipitation levels, seedling made up the largest 

proportion of the population structure. They accounted for 
95.23% of the total population structure. At the same time, 
juvenile, mature and over-mature trees constituted 4.58%, 
0.19% and 0.01% of the total population structure (Fig. 3). 

Discussion

Population density declined as MAP also declined when all 
stages of developmental morphology were averaged within 
each MAP; the order was as follows: MAP 120%> MAP 
110%> MAP> MAP 90%> MAP 80%. This indicates that 
U. pumila population density increased with increases in 
precipitation (after averaging all developmental morphology 
stages within each MAP). These results suggest that 
precipitation could regulate population density of U. pumila 
trees in sparse woodlands. This is consistent with previous 
studies, which reported that drought stress reduced growth of
U. pumila seedlings in northern Mongolia (Dulamsuren et al., 
2009b). In arid lands, drought can influence the emergence, 
survival and mortality of plants (Cipriotti et al.,2008; 
McAuliffe and Hamerlynck, 2010). In sparse elm woodlands, 
a lack of water supply might increase the intensity of 
competition for water among the individuals of an U. pumila 
population, which can lead to the self-thinning of U. pumila 
trees (Zhang et al., 2016). Therefore, our results indicate that 
U. pumila population density would increase with higher 
precipitation, and decrease with lower precipitation levels 
(after all stages of developmental morphology were averaged 
within each MAP).

Climate changes might lead to a drying trend in mid-
latitudes, where the Horqin Sandy Land is located (Trenberth 
et al., 2014). The drying trend in the Horqin Sandy Land is 
supported by evidence gathered by other investigators(Zhang 
et al., 2012). They reported an annual decreasing precipitation 
rate of 13.54 mm/year in the Horqin Sandy Land. The decrease 
in precipitation decreased very little U. pumila population 
density, but anyhow this might contribute to cause further land 
degradation. In the scenario of mean annual precipitations, 
the densities of seedlings, and juvenile, mature and over-
mature trees were 19.8, 0.95, 0.04 and 0.0011 individuals/
m2, respectively. These values indicate the importance of the 
developmental morphology stage in determining population 

Table 2 
Descriptive statistics of population densities (individuals/m2) 

under different precipitation levels
Figure 3. Proportion of specific-stages of U. pumila population 
under different precipitation levels.
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