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Abstract: In this paper, we present our report on the forced vibration of a bi-
layered plate-strip with initial stress resting on a rigid foundation induced by a 
time-harmonic force. The investigation is carried out according to the piecewise 
homogeneous body model with utilizing the three-dimensional linearized theory 
of elastic waves in initially stressed bodies (TLTEWISB). The materials of the 
body are chosen to be linearly elastic, homogeneous, and isotropic. The interface 
between the layers is assumed to be imperfect, and is simulated by the spring-
layer model. A similar degree of imperfection on the interface is realized in the 
normal and tangential directions. The mathematical model for the problem under 
consideration is designed, and the system of the equations of motion is 
approximately solved by employing the finite element method (FEM). The 
numerical results explaining the influence of the parameter that characterizes the 
degree of corresponding imperfectness on the dynamic response of the plate-strip 
are presented. In particular, we demonstrate that the distributions of the normal 
stress become flat, as the normal-spring parameter increases. 
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1 Introduction 
Multilayered structures have received substantial attention because they are regularly encountered on 

a daily basis. The mechanical properties of the interface adhesive bonds play a key role in investigating 
the dynamic response of the body under consideration. Therefore, the imperfect contact conditions, which 
cause discontinuity in the displacement components, are of increasing importance. For instance, with 
regard to the assumption that stresses are continuous, but displacements are discontinuous across the 
interface, the widely used spring-type imperfectness of the interface is modeled, and it is observed that 
the jumps in displacement components are linearly proportional to the respective interface stress 
components. Different imperfect contact conditions are also encountered in the designation and 
production of the materials. 

Many known factors determine the dynamical behavior of multilayered systems, including its 
geometry, the initial static stress, and the frequency of the dynamic force exerted. The influence of the 
initial stresses cannot be investigated with regard to classical linear theory of elasticity since it is non-
linear. According to the preceding mechanical consideration, when the amplitudes of the deformations by 
a dynamic force of a system with initial deformation are gradually smaller than those of the static initial 
force, appropriate investigations can be conducted within the scope of the three-dimensional linearized 
theory of elastic waves in initially stressed bodies (TLTEWISB). This theory has been developed within 
the scope of elastodynamics, upon which more detailed information is available in the monographs by 
Guz [8,9] and Akbarov [5]. 

Due to technological demands and the need for economic use of materials, some interesting 
phenomena have been observed within the scope of TLTEWISB and its other version. Kepceler [11] 
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investigated the torsional wave propagation in the bi-material compounded cylinder with an imperfect 
interface in the absence of initial stresses. Hu et al. [13] considered the influence of identically applied 
initial pressures on the radial surfaces of a hollow cylinder composed of materials with a first power 
hypo-elastic constitutive model. Akbarov and Negin [4] studied the generalized Rayleigh wave dispersion 
in a system consisting of two axially pre-stressed covering layers and half-spaces with an imperfect 
interface. Kurt et al. [12] examined the extensional and flexural Lamb waves in the sandwiched plate 
consisting of a metal elastic middle-core layer imperfectly bonded to piezoelectric face layers. By 
analysis of this research, it is clear that the problems under consideration have complex structures. The 
forced vibration of a pre-stressed plate-strip with finite length resting on a rigid foundation under a time-
harmonic force has been comprehensively studied employing the finite element method (FEM) by 
Akbarov et al. [2] (for plate-strip subjected to a perpendicular force) and [1] (for bi-layered plate-strip 
subjected to a perpendicular force), Eröz [7] for plate-strip subjected to an inclined force), Akbarov et al. 
[3] (for bi-layered plate-strip with shear-spring interface), and Daşdemir and Eröz [7] (for bi-layered 
plate-strip subjected to an inclined force). 

The forced vibration of a pre-stressed bi-layered plate-strip subject to a time-harmonic external force 
resting on a rigid foundation, where shear- and normal-spring types of imperfect contact at the interface 
exist, has yet to be analyzed. The mathematical modeling used to present fundamental insights for 
characterizing the influence of the imperfection of the contact conditions between the layers is missing. 
To address this issue, mathematical modeling is designed within the scope of the piecewise homogeneous 
body model with the utilization of TLTEWISB, to investigate the imperfect contact conditions and the 
frequency response of the plate-strip with finite length. The numerical calculations are done by using the 
FEM. The problems studied by Akbarov et al. [1,2,3,6,7] are special cases of the current problem. 
Therefore, the findings presented in this paper can also be regarded as a development of the 
aforementioned papers, because imperfect contact conditions between the layers of the plate-strip for both 
the shear- and normal-spring types are satisfied. 

2 Problem Statement 
The problem is investigated in the plane-strain state within the scope of TLTEWISB by utilizing the 

piecewise homogeneous body model. The mathematical modeling is constructed according to the 
following theory.  

Consider a bi-layered plate-strip with length 2a  and thickness h ( )1 2h h= + , where 1h  and 2h  
denote the thickness of the upper and lower layers, respectively. We assume that the materials of the 
layers are chosen to be linear, elastic, homogeneous, and isotropic. As shown in Fig. 1, the plate-strip is 
resting on a rigid foundation and is subjected to the action of a time-harmonic force. The Cartesian 
coordinates given by ix  are associated with the initial state and coincide with the Lagrange coordinates 

ix′  in the natural state. 

 
Figure 1: Geometry (left) and symbolic representation of the interface (right) 
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The length of the body along the direction of the 3Ox  axis is infinite. Since the force being applied to 
the body under consideration extends to infinity along this axis, the plane-stress-deformation state appears 
on the 1 2Ox x  plane. To represent the quantities related to the upper and lower layers, the upper indices 
“(1)” and “(2)” are respectively used, and the values for the initial state are denoted by the additional 
superscript 0. According to Fig. 1, the plate-strip lies in the domain 1 2B B B= ∪ , where 

( ){ }
( ){ }

1 1 2 1 1 2

2 1 2 1 2 1

, : , 0 ,

, : , .

B x x a x a h x

B x x a x a h x h

= − ≤ ≤ − ≤ ≤

= − ≤ ≤ − ≤ ≤ −
                          (1) 

Each layer of plate-strip interacts with one another and with the rigid foundation after each of them 
is exposed by a homogeneous normal tension or compression force separately (only along the direction of 
the 1Ox  axis). Therefore, the uniaxial homogenous initial stress state occurs in the plate-strip. This initial 
stress is represented according to the linear theory of the elasticity, and written as  

( ) ( )0,
11

m mqσ =  and ( )0, 0m
ijσ =  for all 11ij ≠ ,  (2) 

where ( )mq  is a constant for each layer. 

Guz [1,2] and Akbarov [5] express the general forms of the governing field equations under 
consideration as follows: 

( ) ( ) ( )( ) ( ) ( )0,
, , ,

m m m m m
ij j kj i k ij

u uσ σ ρ+ =  ,  (3) 

where ; ; ; 1,2i j k m = ,  ( )mρ  is the mass density, ( )m
iu  is the displacement of the plate-strip in the ix  

direction, and ( )m
ijσ  are the stress tensor components. The dot over the quantities indicates time 

differentiation and the indices followed by the comma represent differentiation with respect to the 
relevant space-coordinate. The mechanical and geometrical relations for an isotropic elastic material 
between the stress and the displacement, respectively, can be written as  

( ) ( ) ( ) ( ) ( )2m m m m m
ij ij ijσ λ ε δ µ ε= +



 and ( ) ( ) ( )( ), ,
1
2

m m m
ij i j j iu uε = + ,  (4) 

where ( )mλ  and ( )mµ  are the Lamé constants, and ijδ  is the Kronecker delta. Here and after this, the 
repeated subscript indices are summed over all possible index values. 

Next, the boundary and contact conditions are considered. On the free surface of the plate-strip, the 
dynamic force condition 

( )
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1
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0
x

σ
=
= , ( ) ( )
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p x e ωσ δ
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is given, where ( )δ ⋅  is a Dirac delta function. 

Because of the above initial stress that is applied to the edge of the plate-strip, the following 
boundary condition is satisfied. 

( ) ( ) ( )( )
1

j,1 1 0m m m
j

x a
q u σ

=
+ =



.  (6) 

The complete interaction at the interface plane between the considered body and rigid foundation are 
given by 

( )

2

2 0j x h
u

=−
= .   (7) 

In addition to the preceding assumptions, it is believed that an imperfect contact interaction exists 
between the elastic layers. For the analysis presented herein, the imperfectness is described with reference 
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to a spring-layer model. This modeling is based on the assumption that stresses are continuous but the 
displacements are discontinuous across the interface. This means that there are jumps in the displacement 
components, namely these jumps are proportional to the tension components of the corresponding 
interface in terms of the spring-type interface parameters. Hence, it is believed that the displacement u+  
and force f +  at one surface of an interface are proportional to the displacement u−  and force f −  at the 
other surface of the same interface, respectively. This approach can be written as 

[ ]f Gu Bf− −= +  and [ ]u Au Ff− −= + ,  (8) 

where A , B , F ,  and G  are square matrices, and [ ].  indicates the jump in the corresponding quantities 
at the respective interface. In this paper, we consider the following case. Depending on the selection of 
the matrices A , B , F ,  and G  different incomplete contact situations can occur. Neglecting the matrix 
G  and assuming that the matrices A and B  are zero, we obtain the case investigated by Jones and 
Whittier [10], in matrix form: 

[ ]f 0=  and [ ]u Ff −= ,  (9) 

where F  is a constant diagonal matrix whose entries are identified in terms of the thickness and elastic 
constants of the investigated body. As a result, the imperfect contact conditions can be given 
mathematically as 

( ) ( )

2 1 2 1

1 2
2 2i ix h x h
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=− =−

= , ( ) ( )
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where 1F  and 2F  are the shear- and normal-spring imperfect parameters, respectively and they are 
dimensionless varying over the ranges of 1 20 ,F F ∞  . The spring imperfectness creates three limiting 
cases. When 1 2 0F F= = , the displacements are continuous at the interface. Therefore, the spring 
imperfectness approaches a welded interface. If 1F →∞  and 2F →∞ , an unrestricted interaction occurs 
at the interface without mechanical contact. In the case wherein 1F →∞  and 2 0F = , the displacements 

( )
2

mu  are continuous, but the displacements ( )
1

mu  are discontinuous at the interface. Therefore, the spring 
imperfectness transforms into a slip interface. 

This completes the presentation of the governing field equations and the corresponding boundary-
contact conditions for the plate-strip shown in Fig. 1.  

3 Solution Procedure 
Since the problem under consideration has a complex structure and boundary-contact conditions, an 

analytical solution of the problem cannot be achieved. Therefore, the solution to this problem is 
approximated by using the FEM. Recall that the external force applied to the plate-strip is assumed to be 
time-harmonic with frequency ω  as ( )1

i t
op x e ωδ . Thus, all the corresponding dependent variables can be 

written in the form: 

{ }( ) ( ) { }( ) ( )1 2 1 2, , , , , , ,
m m i t

ij i ij ij i iju x x t u x x e ωσ ε σ ε= , (11) 

where the superimposed bar represents the amplitude of the corresponding quantity. The dimensionless 
coordinate system is also introduced as 

1
1̂

xx
h

= , 2
2ˆ

xx
h

= .  (12) 

Substituting the expression in Eq. (11) into the previous equations and the conditions following the 
coordinate transformation in Eq. (12), the same equations and boundary-contact conditions are directly 
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found for the amplitude of the investigated quantities, changing the terms ( )2 2/m
ju t∂ ∂  and ( )1

i t
op x e ωδ  

with ( )2 m
juω−  and ( )1op xδ , respectively. 

To obtain FEM modeling of our last problem, the functional 
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is proposed, where 
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m m m
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In Eq. (15), ( )
1

mc  is the speed of the dilatation waves, ( )
2

mc  is the speed of the distortion wave, 
( )mΩ  denotes the dimensionless frequency of the plate-strip, and ( )mη  is the initial stress parameter of 

the thm  layer. 
Eq. (13) can be validated as follows: Considering the terms given in (14), using the Gauss theorem 

and computing the statement “ ( )( ) 0Jδ =mu ”, which is the first variation of the function in (13); the 

equations of motion in (3) and the relevant boundary-contact conditions in (5-7) and (10) that construct 
the problem are found. Thus, the desired proof is completed. 

To carry out the FEM modeling of the problem under consideration, the virtual work principle and 
the standard Rayleigh-Ritz method are adopted, as stated by Zienkiewicz and Taylor [15]. With this 
approach, the domain B is divided into a finite element of sub-domains whose structures are nine-node 
smooth rectangular elements. The number of these finite elements is determined by the desired numerical 
convergence requirement. After certain mathematical adjustments, a system of algebraic equations 

( )2ω =K- M u F   (16) 

is obtained. In Eq. (16), K  is the stiffness matrix, M  is the mass matrix, u is the unknown nodal 
displacement vector, and F  is the force vector. The explicit forms of the matrices and vectors are not 
provided herein; the explicit forms are derived from Eq. (13) using the proposed procedure. Therefore, the 
FEM modeling of the problem under consideration is completed. 

4 Results and Discussions 
The key objective of this study is to investigate the influence of the spring-type imperfect parameters 

(in both the normal and tangential directions) on the dynamic behavior of the plate-strip under 
consideration.  Before giving the analysis of the numerical results, some explanations are required. The 
following notations are introduced: ( ) ( )1 2/e E E= , where ( )mE  is the Young modulus of mth layer. It can 
be derived that the distributions of stress components at the interface plane between the layers and on the 
bottom surface of the plate-strip have the same oscillating character in the qualitative sense. Since the 
force applied to the body under consideration is perpendicular to its free surface, the graphs are 
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symmetrical about 1 /x h . All the following calculations are made on the surface for those parts of the 
diagrams where 1 / 0x h ≥ , and on the bottom after this. This does not impair the validity of the numerical 
results under consideration. In the analysis, the situation where Aluminum (Al) with properties 

( ) 0.35Alν =  and ( ) 32.7 10Alρ = ×  at the upper layer and Steel (St) with properties ( ) 0.29Stν =  and 
( ) 37.86 10Stρ = ×  at the lower layer is considered under / 2 0.2h a = , 1 2h h= , ( ) ( )1 2 0Ω =Ω =Ω = , 

( ) ( )1 2 0η η η= = =  and 1 2F F F= =  unless otherwise indicated.  

 
Figure 2: The variation of 22 0/h pσ  vs. the line 1 /x h  for various thickness ratios under 1e = , 

( ) ( )1 2 0.33ν ν= =  and F 0=      

To prove the validity of the programs used, the case where 1e = , ( ) ( )1 2 0.33ν ν= =  and F 0=  is 
examined. Uflyand [14] considered the case for the plate with infinite length, and the problem was 
resolved. It can be demonstrated that the geometry of the plate-strip under consideration begins to 
resemble the one investigated by Uflyand as / 2 0h a → . In this situation, the numerical results given by 
the current FEM algorithm must converge to the corresponding ones from the one, which is the asterisked 
graph in Fig. 2, given by Uflyand [14]. This speculation is proven by the graphs in Fig. 2, and hence the 
validity and trustworthiness of the algorithm and programs. 

 
Figure 3: The distribution of 22 0/h pσ  vs. the line 1 /x h  for normal spring-type parameter 2F  under 

1e = , ( ) ( )1 2 0.33ν ν= =  and 1 0F =  
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Akbarov et al. [3] investigated the situation where only shear-spring-type imperfect contact exists 
between the layers. To compare the influence of the normal spring-type imperfectness on the distribution 
of 22 0/h pσ  with that of the shear-spring-type imperfectness, Fig. 3 is provided for the case where 1 0F =  
and 2 0F ≥  under 1e =  and ( ) ( )1 2 0.33ν ν= = , where only the normal spring-type imperfect contact exists 
between the layers. As can be seen from the graphs, an increase in the value of the parameter 2F  ensures 
the identical distribution of normal stress 22 0/h pσ  with respect to the line 1 /x h . In particular, the 
difference between the consecutive value of the stress 22 0/h pσ  at the point ( )0, 1−  damps quickly. In 
addition, it follows from the graphs in Fig. 3 that the numerical values of 22 0/h pσ  converge to a 
particular asymptotic value with the parameter 2F . This is explained by the case where 1 0F =  and 

2F →∞ , where the displacements ( )
1

mu  are continuous but the displacements ( )
2

mu  are discontinuous at 
the interface, such that the upper layer is pushed to the lower layer with the assistance of current loading, 
such as a punch loading. 

 
Figure 4: The distribution of 22 0/h pσ  vs. the line 1 /x h  for a normal- and shear- spring-type parameter 
F  under a pair of Al + St 

In the case wherein both normal- and shear-spring-type imperfect contacts exist between the layers, 
the distribution of the stress 22 0/h pσ  with respect to the line 1 /x h  for various values of the parameter F  
is given in Fig. 4 under the same assumptions defined in Fig. 3. The graphs show that the absolute values 
of the normal stress 22 0/h pσ  decrease with an increase in parameter F . However, comparison of Fig. 3 
and Fig. 4 indicates that the distributions of the stress 22 0/h pσ  in Fig. 4 are relatively gradual processes. 
In addition, the values of the stress 22 0/h pσ  are independent of the selected parameter F  for certain 
values of 1 /x h . The numerical results given in Fig. 3 show that, in the case where F→∞ , the absolute 
values of 22 0/h pσ  converge to a certain asymptotic one with the parameter F , and that this asymptote 
relates to the case of full slipping at the interface. 

Fig. 5 displays the dependence between the stress 22 0/h pσ  and Ω  for various values of imperfect  
parameter F . In addition, various values of the ratio / 2h a   are considered with the construction of these 
graphs. It can be seen from these graphs that there exist certain locations where 22 0/h pσ  reaches an 
extreme for particular values of Ω . These values are known as the resonance values denoted by *Ω . The 
numerical results indicate that the values of *Ω  decrease with an increase in the ratio / 2h a . The 
conclusion is that the effect of the parameter F  on the values of  *Ω   is notable not only quantitatively,  
but also qualitatively. The parameter F  has a great influence on the resonance mode of 22 0/h pσ . An 
increase in the value of the ratio / 2h a  causes a reduction in the influence of the imperfect parameter F  
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on the distribution of 22 0/h pσ . The normal stress 22 0/h pσ  has the parametric resonance at certain 
locations for certain values of the parameter F  (denoted by *F ). These values of *F  change with the ratio 

/ 2h a . An increase in the values of / 2h a  causes a decrease in the numbers of the local maxima and 
minima of the normal stress 22 0/h pσ  versus the dimensionless frequency Ω .  

            
(a) / 2 0.05h a =                                                      (b) / 2 0.10h a =  

          
     (c) / 2 0.20h a =                                                    (d) / 2 0.30h a =  

Figure 5: The distribution of 22 0/h pσ  vs. the dimensionless frequency Ω  for various normal + shear 
spring type parameter F  under a pair of Al + St: (a) h/2a = 0.05, (b) h/2a = 0.10, (c) h/2a = 0.20, (d) h/2a 
= 0.30 

These discussions are made without reference to the initial stress in each layer. Therefore, in Fig. 6, the 
influence of the initial stress parameter η  on the dependence between 22 0/h pσ  and Ω  is analyzed. 
Correspondingly, numerical results are given for various values of the imperfect parameter F . A 
comparison of the graphs in Fig. 6 reveals that the initial tension of the layers causes a decrease; however, 
the initial compression causes an increase in the absolute values of the normal stress 22 0/h pσ . The 
influence of the initial stresses on the frequency response of the stress 22 0/h pσ  in the case wherein the 
spring-type imperfection exists between the layers is more considerable compared with when the layers 
are in complete contact. The imperfect parameter F  changes the character of the influence of the initial 
stress of the layers on the frequency response of the plate-strip. It can be demonstrated that an increase in 
the values of initial tension parameter leads to the decrease in its resonance by contrast with the influence 
of the compression parameter. In addition, the number of the parametric resonance of 22 0/h pσ  arisen in 
certain values of the initial stress parameter η  decreases as the imperfect parameter F  increases. 
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5 Conclusions 
In this study, the forced vibration induced by a time-harmonic external force of a pre-stressed plate-

strip with two imperfectly bonded elastic layers, which rest on a rigid foundation, has been investigated. 
This has been done based on the fundamental principles of the TLTEWISB in the case where both shear- 
and normal-spring-type imperfections exist between the layers. The mathematical problem is created for 
consideration and numerically solved using FEM. Numerical results have demonstrated the influence of 
the change in imperfectness on the frequency response of the normal stress, acting on the interface planes 
between the plate-strip and rigid foundation. Numerical investigations have shown the following: 
• the variation of the stress 22 0/h pσ  with respect to the line 1 /x h  possesses an identical distribution 

when increasing the normal spring parameter 2F ; 

• an increase in the values of the parameter F  causes the resonance mode of the normal stress 
22 0/h pσ  to vanish; 

• the imperfect interaction between the layers affects the character of the influence of the initial 
stresses on the frequency response of plate-strip; 

• and the numbers of the local maxima and minima of the stress 22 0/h pσ  versus the dimensionless 
frequency Ω  decrease with increasing the ratio / 2h a . 
The numerical results listed above have been presented under two different cases (for example a pair 

of Al + St), but note that they also have a general validity in a qualitative sense. 

      
(a) F 0=                                                                           (b) F 1=  

             
(c) F 2=                                                                    (d) F 5=  

Figure 6: The distribution of 22 0/h pσ  vs. the dimensionless frequency Ω  various initial stress parameter 
η  under a pair of Al + St: (a) F = 0, (b) F = 1, (c) F = 2, (d) F = 5 
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