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Methods for scaling mode shapes determined by operational modal 
analysis (OMA) have been extensively investigated in the last years. 
A recent addition to the range of methods for scaling OMA mode 
shapes is the so-called OMAH technique, which is based on exciting 
the structure by harmonic forces applied by an actuator. By applying 
harmonic forces in at least one degree-of-freedom (DOF), and 
measuring the response in at least one response DOF, while using at 
least as many frequencies as the number of mode shapes to be scaled, 
the mode shape scaling (modal mass) of all modes of interest may be 
determined. In previous publications on the method the authors have 
proven that the technique is easy and robust to apply to both small 
scale and large scale structures. Also, it has been shown that the 
technique is capable of scaling highly coupled modes by using an 
extended multiple reference formulation. The present paper summarizes 
the theory of the OMAH method and gives recommendations of how to 
implement the method for best results. It is pointed out, as has been 
shown in previous papers, that the accuracy of the mode scaling is 
increased by using more than one response DOF, and by selecting 
DOFs with high mode shape coefficients. To determine the harmonic 
force and responses, it is recommended to use the three-parameter 
sine fit method. It is shown that by using this method, the 
measurement time can be kept short by using high sampling 
frequency and bandpass filtering whereas spectrum based methods 
require long measurement times. This means that even for structures 
with low natural frequencies, the extra measurement time for scaling 
the mode shapes can be kept relatively short. 

Keywords: Operational modal analysis, OMA, mode shape scaling, 
OMAH, sine excitation. 

1 Introduction 
Operational modal analysis (OMA) naturally leads to unscaled mode 
shapes, since the forces acting on the structure are not measured. It is 
not uncommon that scaled mode shapes are desired, however. In such 
cases, several methods exist by which the mode shapes obtained by 
the OMA parameter extraction may be scaled. Most of the methods 
developed to scale OMA mode shapes can be divided into the 
following categories: 
1. Methods based on several OMA tests, with different mass or
stiffness configurations1-4;
2. Methods based on knowing the mass matrix of the structure,
expand the OMA mode shapes to the size of the mass matrix, and
scale the mode shapes using the weighted mode vector orthogonality
property, see Aenlle et al.5;
3. Methods based on exciting the structure by a known force, and use
this force for scaling, usually referred to as OMAX6, 7.
Of the methods above, the last method has the advantage that it uses
an actual measurement of the force, and is thus, in some sense,
scaling the modal model to some calibrated force value. On the other
hand, it is generally difficult to excite large structures with broadband

force. The authors recently suggested to use harmonic forces for the 
excitation, since this requires less performance of the actuator used8. 
The method, called OMAH, was extended with a global formulation 
in Brandt et al.9, allowing to use multiple degrees of freedom (DOFs) 
for force as well as response locations. The global OMAH method is 
therefore capable of scaling mode shapes also in cases where there is 
no single DOF to be chosen for excitation of all modes. Furthermore, 
using several response points for the scaling reduces the variance in 
the estimates of the modal mass of the structure.  
Using harmonic force to scale OMA mode shapes has the advantage 
that it puts little demand on the actuator, as the actuator only needs to 
produce a narrowband excitation. Relatively inexpensive actuators 
can readily be designed for harmonic excitation-even for exciting 
large structures at low frequencies with relatively high force levels. 
Furthermore, the estimation of the harmonic signal, hidden in random 
noise from wind, traffic, and other possible sources, can be achieved 
under poor signal-to-noise ratios (SNRs), with well-known signal 
processing methods (mainly the so-called three-parameter sine fit 
method), see Section 2.2. 

2 Theory 
The theory of the global formulation of the OMAH method is 
presented in this section. First, in Section 2.1 by laying out the 
method for scaling, based on estimates of the frequency response of 
the structure at a number of frequencies. Secondly, in Section 2.2 the 
method to accurately determine the harmonic force and responses at a 
particular frequency, is discussed. 

2.1 OMAH Mode Shape Scaling 
Scaling mode shapes is identical to determining the modal mass of 
each mode. We start by assuming a frequency response function (FRF) 
in receptance format (displacement over force) between excitation in 
DOF q and response in DOF p, which can be written as a function of 
angular frequency, ω, as 

_

, *
1

( )
( )( )

q pN r
r r

p q
r r r r

H j
m j s j s

ψ ψω
ω ω=

=
− −∑

(1) 

where mr denotes the modal mass of mode r, * denotes complex 
conjugate N_r. Moreover,  𝜓𝜓𝑟𝑟

𝑝𝑝  and 𝜓𝜓𝑟𝑟 
𝑞𝑞  are the eigenvector

coefficients (from the OMA) for mode r at DOFs p and q, respectively. 
The poles, sr, are defined by the undamped natural frequencies (in 
rad/s), ωr, and the relative damping ratios, 𝜁r, as 

(2) 
Finally, j is the imaginary unit. 
After OMA parameter extraction all factors on the right-hand side are 
known, except the modal mass, and scaling the modal model thus 
requires to determine the modal mass of each mode. 
The OMAH method relies on first making an OMA test, whereafter a 
number of frequency responses, Hp, q(jω), are estimated at a number 
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of response DOFs p=p1, p2,………,pm and one or more excitation 
DOFs q=q1, q2,………….qv. 
Then, an equation system is set up to estimate the modal masses and, 
potentially, residual terms accounting for out-of-band modes. In the 
simplest of cases, however, Equation 1 can be used directly employing 
a single FRF estimate, assuming a single-DOF approximation and no 
effects of surrounding modes.  
For the general case, we define a global scaling method by first 
assuming we wish to scale a number, g, modes, from mode number h 
to h+g-1, using the set of measured FRFs. We also define constant 
residual terms Cpq (for modes below the modes of interest) and Dpq 
(for modes above the modes of interest) by approximating the FRF by 

(3) 

Next, we define the FRF column vector {H}l, containing measured 
FRFs, by 

(4) 
where the superscript [ ]T denotes vector transpose. Furthermore, we 
define the column vector {x}1 with the unknown modal masses and 
residual terms, by 

(5) 
We now introduce the function Г(p, q, r, ωex), defined by: 

 (6) 
at one of the experimental frequencies ωex where the FRF is measured. 
Finally we build a matrix [A]l, defined by 

(7) 
at various frequencies ωex, k for some integers k. 
Using the vectors and matrices thus defined, we can form an equation 
system 

(8) 
which can be solved for the vector {x}l by a least squares solution or a 

pseudo inverse. 
It is important to note that the frequencies in each line of the matrix 
[A]l, although for simplicity denoted ωex,1, ωex, 2,…….., may actually be 
arbitrary frequencies, albeit in most cases it will be practical to 
calculate many of the FRFs from simultaneous measurements of 
several responses.  
Next, it is important to consider which requirements apply in order to 
make the matrix [A]l well conditioned. First, we need to ensure that 
we have more rows in the equation system than the number of 
unknowns (i.e. modal masses plus residual terms). If we have 
measured M unique FRF locations (p, q), then it is sufficient that the 
number of lines in the equation system, L>g+2M. In most cases this 
will be fulfilled without any extra thought, if the recommendations in 
Section 2.3 are followed. 
Next, we note that each function Г(p, q, r, ωex, k) in the matrix [A]l, 
belongs to the FRF value Hp, q(jωex, k) due to mode r, at frequency ωex, 

k. The natural way to ensure that [A]l is well conditioned, is to excite
the structure at frequencies close to the eigenfrequencies and
including all the modes to be scaled. Also it should be ensured that
the excitation DOF in each case, is at a point of the structure where
the mode in question is well excited (i.e. has a large mode shape
coefficient). This will ensure that each line in [A]l has at least one
large function Г(p, q, r, ωex, k).

2.2 Estimating Harmonics in Noise 
One of the strengths with the OMAH method, is that harmonics 
hidden in noise can be accurately and efficiently estimated even in 
cases with very low SNRs. The method therefore does not rely on 
large excitation forces. Furthermore, as will be shown in the present 
section, the measurement time does not have to be very long even in 
cases with poor SNRs. 
The method we recommend for estimating the complex amplitudes of 
the force and response signals Fq(jωex) and Up(jωex) is the so-called 
three-parameter sine fit method10. The name implies that the DC 
value as well as two Fourier coefficients a and b are unknown, 
whereas in our case the DC does not apply since we remove the mean 
of the signals prior to estimating the harmonics. Regardless, the 
method is usually referred to as the three-parameter sine fit. 
For simplicity, in the following we assume that we are exciting the 
structure at a frequency ω (corresponding to one of the frequencies 
previously denoted ωex, k). We furthermore assume we have measured 
N samples of the signal y(t) at y(n) = y(n·∆t) (y(t) being a force or a 
response signal) using a sampling frequency fs=1/∆t. The measured 
signal will then conform to the model 

(9) 
where the Fourier coefficients a and b are the desired unknowns, and 
e(t) contains the random part of the signal, due to wind, traffic, and 
other random contributions, and possibly higher (and undesired) 
harmonics of the excitation frequency. To calculate the complex FRF 
values, we calculate the amplitude and phase of y(n) as √𝑎2 + 𝑏2 
exp(j arctan(b/a)). 
Based on the measurements of y(n), we can define the matrix B 

(10) 
and the unknown coefficient vector {x}=[a b]T, and the measurement 
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vector 

(11) 
The model in Equation (9) can now be written as: 

[ ] }{ }{ }{B x y e= − (12) 

which we can solve for the estimate x̂  of x in Equation (12), by a
least squares solution. Furthermore, having solved for the estimate x̂ ,
the remaining signal ê  may be calculated by

(13) 
after which we can estimate the variance of the remaining signal ê
by 

(14) 

Since the power of the unknown harmonic is 2 2ˆˆ( ) / 2a b+ the
SNR can be calculated as 

(15) 
When the coefficients in { x̂ } are computed, the absolute value of

F̂ q that we need for the FRF estimates, may becomputed by 

(16) 

In P. Händel10, it is shown that the mean square errror (MSE) of | F̂
q(jω)| in Equation (16) is approximately 

(17) 
which is a conservative error.  
The result in Equation (17) is a very important result. It shows, that at 
any SNR (i.e. any level of variance of the random part of the reponse, 
independent of the harmonic amplitude), the relative error in the 
amplitude can be made arbitrarily small, by increasing the number of 
samples, N. Furthermore, it is important to realize that this number of 
samples can be recorded in a short time, by increasing the sampling 
frequency without increasing the bandwidth of the measurement 
system, since this will not affect the SNR, but will result in more 
samples in a given time. In most modern measurement systems, this 
will not be allowed because the cutoff frequency is chosen as a factor 
of the selected sampling frequency. But a higher performance can be 
achieved by sampling at a high frequency, and then bandpass filtering 
the data after the data acquisition is finished (which will improve the 
SNR as well as create more samples). 
If we want to have a particular maximum uncertainty on the estimate 
of the FRF value, we can allow half that uncertainty on each of the 
force and response values. Furthermore, since the MSE includes both 
random and bias errors, a conservative measure may be to use three 
times the square root of the MSE as the maximum deviation from the 
measured values. Say, for example, that we may allow 5% inaccuracy 
on the FRF estimate. For the force (and similar for the response) 
measurements, we then need to assure that, 

(18) 

2.3 Guidelines for Applying OMAH 
Using the results in Sections 2.1 and 2.2, we will now present some 
guidelines for the design of a test for scaling mode shapes from an 
OMA test. The following procedure can thus be used. 
1. Complete the OMA measurements. This is usually done by
measuring batches of channels, keeping some references. Keep all the
sensors in place after the last batch measurement. If all DOFs can be
measured simultaneously, the better.
2. Complete the OMA parameter estimation, resulting in poles and
unscaled mode shapes.
3. Study the mode shapes, and choose a DOF with large mode shape
coefficients for some (if possible most) modes. Attach the actuator in 
this DOF. (In many cases where the mode shapes are, at least 
approximately, known beforehand, this actuator position can be 
determined prior to performing the OMA test.) 
4. Add an accelerometer on the mass of the actuator, for measuring
the force. If there is no available channel, replace one of the response
channels with the accelerometer for measuring the force.
5. Investigate a proper force amplitude, by measuring an arbitrary
amount of time, and estimate the signals Fq(t) and Up(t), where p
denotes all the DOFs in the last measured batch. Furthermore, Uq
must be included in the set of Up. This requires estimating the MSE
using Equation (17), and to calculate an appropriate relative error. If
necessary, increase the sampling frequency and follow up by lowpass
filtering the signals prior to estimating the amplitudes and phases, to
ensure the measurement time is kept appropriately short. This step
may also involve changing the moving mass of the actuator, to
produce an appropriate force.
6. For each frequency, ωex, k, compute the amplitudes and phases of
the force and all responses, and compute the FRF values Hp, q(jωex, k)
and store these FRF values.
7. Make consecutive measurements of frequencies near all modes
which are well excited by the DOF q where the actuator is located.
This means that data for creating a relatively large number of rows
for the matrix [A]l in Equation (7) will be acquired.
8. For the mode or modes not well excited by the first chosen
excitation DOF, move the actuator to a DOF where one or more of
these modes will be well excited. Excite the mode or modes near their
natural frequency (frequencies), measure the force and all response
channels, produce the new FRF values, and store these.
In most cases, each of these modes needs to be excited only at a
single frequency near the natural frequency of the mode in question in
order to be able to solve Equation (8). However, exciting more
frequencies, as long as they are close to a mode that is well excited by
the DOF q, can result in higher accuracy of the estimated modal
masses. Repeat this step until all modes have been well excited at
least at one frequency.
9. Now build the measurement vector {H}l and the matrix [A]l by
Equations (4) and (7), respectively, and solve for the unknown modal
masses and residual terms by solving Equation (8).

3 Discussion 
To see how an OMAH test may be conducted, we assume we would 
scale the first 8 vertical modes of the Little Belt Bridge, see S. S. 
Christensen et al.11

. The information about the modes is found in 
Table 1. We also assume that we have an eightchannel measurement 
system, and that we use seven accelerometers for the response 
measurements for scaling, including the reference (in the same DOF 
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as the force). The final channel is used to measure the acceleration of 
the moving mass of the actuator, so we can compute the excitation 
force. Using the information in Table 1 and information about the 
mode shapes (that are essentially the shapes of a pinned narrow plate), 
we define three excitation points, in order to be able to excite all 
modes well: 
1. vertically on one side, at 1/4 from one end, to excite modes 1, 2, 5,
7, 8
2. vertically on one side, at 1/3 from one end, to excite modes 4, and
6
3. vertically on one side, at 1/2 from one end, to excite mode 3

Table 1: First 8 modes of the Little Belt Bridge, used as an example 
for a mode shape scaling case. 

Mode # Frequency 
[Hz] 

Damping 
[%] 

Description 

1 0.155 1.49 First vertical bending 
2 0.171 11.41 Second vertical bending 
3 0.258 0.69 Third vertical bending 
4 0.402 0.75 Fourth vertical bending 
5 0.524 0.65 First torsion 
6 0.572 0.45 Fifth vertical bending 
7 0.769 0.71 Sixth bending 
8 0.807 0.72 Second torsion 

Note that these may not be optimal points, but are given as an 
example. 
We thus start the test by positioning the actuator in position 1, and set 
the frequency close to 0.155 Hz. Since mode 1 has a damping value 
of 1.5%, we need to wait approximately 500 seconds for the structure 
to reach its steady-state condition. After this time, we acquire a 
number of samples, for example corresponding to five periods of the 
harmonic, i.e. 32.3 seconds. After calculating the complex sines of 
the force and the 7 responses, we check that Equation (18) is fulfilled, 
and if not, we may set the sampling frequency higher, acquire data 
again, and BP filter data to a narrow bandwidth around the frequency 
of interest, and then recompute the complex amplitudes and using 
them to produce seven estimates of the FRFs. 
After this, we tune the frequencies of modes 2, 5, 7, and 8, in turn, 
and for each of them wait for steady state, acquire data, and check the 
accuracy. When the accuracy is adequate, we compute the complex 
amplitudes, and then the FRF values. Once this is accomplished, the 
shaker is moved to position 2, the frequency tuned to the frequencies 
of modes 4 and 6 and the procedure is repeated. Finally, the same is 
done for position 3 for mode 3. 
When all this is done, we have acquired 7 FRFs times 5 frequencies 
from position 1, 7 FRFs times 2 frequencies from position 2 and 
finally 7 FRFs times 1 frequency for position 3. This thus produces 
56 rows in the matrix [A]l in Equation (7). The number of unknowns 
we have are eight modal masses, plus 2 residuals times 7 response 
DOFs times 3 excitation DOFs, which equals 50 unknowns. We can 
thus solve the equation system. It would be advantageous, however, if 
time allows, to measure a few more frequencies to obtain a more 
overdetermined system of equations. This could easily be achieved by 
adding those frequencies, in each position of the actuator, for which 
there is a reasonably large mode shape coefficient in the forcing DOF.  
So, how long would this whole test take? In Table 2 we present all 
measurements with the settling time and the time taken for measuring 
five periods of each frequency of excitation. We have defined 
steady-state conditions as the time when the RMS of the response 
from one block of data containing five periods to the next five periods, 
does not change more than 1%. As can be seen in the table, the total 
time of data acquisition is approximately 45 minutes, of which the 

major time is spent waiting for the system to reach steady-state 
conditions. The time to move the actuator is not taken into account in 
this example. Also note, that the measurement time is independent of 
the SNR used. So the actuator can, for example, be set to generate 10% 
of the RMS of the random response. This example shows that even on 
a relatively low-frequency structure like this, the OMAH method 
does not require very long measurement times. 
A further advantage with the OMAH technique is that, once the 
modes are scaled, the accuracy of the scaling can be investigated. 
This was demonstrated in the previous papers presenting the method, 
see A. Brandt et al.8, 9. It is done by comparing the measured 
harmonic response amplitudes in the response DOFs, with the 
computed responses using the synthesized FRF (using the scaled 
modal model) times the excitation force. 
Finally, it should also be mentioned that an advantage of the OMAH 
method is that the response of the structure to changes in the 
amplitude of the force can easily be included in the measurements. 
Thus, the linearity of the structure may be investigated. This is not 
easily done with most other methods for scaling OMA mode shapes. 

Table 2: Values of settling times (time until the response is 
steady-state, defined by less than 1% change in RMS level from 5 
periods to next 5 periods), and measurement times (5 periods) for the 
entire test. See text for details. The total time in columns 5 and 6 adds 
up to 2595 seconds, or approx. 45 minutes. 
Meas.
# 

Exc.p
os. 

Mode 
# 

Frequency 
[Hz] 

Setting 
Time [s] 

Measurements 
Time [s] 

1 1 1 0.155 500 32.3 
2 1 2 0.171 75 29.2 
3 1 5 0.524 300 9.5 
4 1 7 0.769 220 6.5 
5 1 8 0.807 200 6.2 
6 2 4 0.402 300 12.4 
7 2 6 0.572 400 8.7 
8 3 3 0.258 600 19.4 

4 Conclusions 
In this paper we have described the theory of global OMAH scaling 
of mode shapes, using harmonic excitation. The method depends on 
exciting the structure in one or more DOFs, and, although not strictly 
necessary, we recommend exciting at frequencies close to the 
eigenfrequencies of the structure. The least squares global solution 
method described in the paper can handle structures with closely 
coupled modes. Furthermore, it gives modal masses for all the modes 
taken into account as well as residual terms for all the pairs of 
measuring and forcing points.  
It has been shown that the technique offers several attractive 
properties: 
-It puts low demands on the actuator, as the force level can be low
relative to ambient response.
-The accuracy of the method may be increased by using more
response measurements.
-The method can handle closely coupled modes.
-The sine hidden in noise can be accurately determined without
needing long measurement times.
-The method allows to investigate the accuracy of the mode shape
scaling, by comparing the measured responses with those from
synthesized frequency response multiplied by the harmonic force
applied.
-The method allows to easily investigate the linearity, by observing
the response for several different force levels.
An example of how to scale the first eight modes of a bridge with
eigenfrequencies from approx. 0.15 Hz to 0.8 Hz was shown to

IMAC 36 Orlando, Florida 

http://www.sandv.com/


www.SandV.com        SOUND & VIBRATION/June 2018  22

require approximately 45 minutes of total measurement time, exciting 
the structure in three DOFs, at a total of eight frequencies. 
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