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( )S z  represents the transfer function of the secondary path; Ĕ( )S z  

represents the estimate of the secondary path; ( )jC n  are the 

decomposed IMFs; ( )jV n  are the filtered vectors of ( )jY n  through 

secondary path estimate Ĕ( )S z . The primary noise after passing 

through the nonlinear primary path is denoted as reference noise ( )d n , 

and the output ( )u n  after passing through the secondary path is 

referred to as secondary noise Ĕ( )d n . 

 

2.2 Nonlinear Primary Path Model 

Block-oriented model, consisting of a linear time-invariant (LTI) block 

and a static nonlinear block, is the most popular representation of 

nonlinear systems. This method reduces the number of coefficients and 

the size of the required memory. Figure 2 shows three types of Wiener, 

Hammerstein and LNL models3. In the ANC system, the LTI block is 

expressed by finite-impulse-response (FIR) filter, while the 

nonlinearity can be represented by a polynomial with fixed 

memoryless nonlinear function. 

 

(a)

(b)

(c)
 

Figure 2. Nonlinear primary path models: (a) Wiener (b) 

Hammerstein (c) LNL. 

 

As shown in Figure 2(a), the Wiener system consists of a LTI block 

followed by a static nonlinear block, expressed by 
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where ( )x n  is the primary noise; ( )z n  is the output of FIR filter; 

( )d n  is the reference noise; H denotes order of the FIR filter; ( )ih n  

denotes FIR filter coefficients; ( )f Ö denotes a nonlinear function. 

The Hammerstein system, shown in Figure 2(b), reverses the order of 

LTI and static nonlinear blocks in Wiener-based model, denoted by 
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The LNL system is a series connection of the Wiener and Hammerstein, 

with a static nonlinearity sandwiched between two LTI blocks, shown 

in Figure 2(c), given by 
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The nonlinear block is a continuous function expressed by Taylor 

expansion18, and the output of which is given by 
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where *T NÍ  is an order. If 1T > , the primary path is nonlinear; 

otherwise, it is linear. 

The roller bearing is one of the key elements in rotating machinery. 

The generated noise becomes much more non-stationary under 

variable speed, especially for startup and shutdown, which can be 

expressed as 

( ) cos(2 )s q s qq
x n B qf np b= +ä    (9) 

where 
sf  is a rotational frequency of the shaft; qB  and qb  are 

amplitude and initial phase of the q-th harmonic. 

Substituting Equation (9) into the power function ( )k  leads to 
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The analytical expressions are obtained by 
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where 1,2, ,i I= , *k NÍ ; ,k id  are amplitudes of the harmonics; 

,0kd  are constant terms. 

Similarly, when 1q> , analytical expressions are given by 
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where 1,2, , 'i I= , 'I q k= Ö, *k NÍ ; ,'k id  are the amplitudes of 

the harmonics; ,0'kd  are constant terms. Substituting Equation (14) 

into Equation (8) leads to the output signal given by 
'
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where ( )ng  is a constant term. Compared to the primary noise, ( )sx n , 

it is found that the frequency components of the output signal passed 

through the nonlinear primary path contain some higher order 

harmonics. 

 

2.3 Noise Decomposition 

The EEMD is a popular method in the analysis of the non-stationary 

primary noise. Partition the data series of primary noise into windows, 

each sub-series thus would be processed by EEMD, sequentially, from 

left to right. The choice of the window length needs to satisfy the 

following two conditions: (a) Sufficiently long to result in reasonably 

stationary IMFs; (b) Short enough to ensure a shorter delay and fast 

response to the primary noise. Appropriate length can be adjusted in 

the experiments. The procedures are as follows: 

(1) Initialize the number of trials K, the amplitude of the added white 

noise, and set the trial number 1i= . The generated white noise series 
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( )in n  is added to the primary noise to obtain the i-th trial by 

( ) ( ) ( )i ix n x n n n= +    (16) 

(2) Decompose the noise-added signal into IMFs with the EMD as 
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where 1,2,...,i K= , 1,2,...,j J= ; ,i ju  denotes the j-th IMF of the 

i-th trial; , ( )i Jr n  is a residue of the signal; J denotes the total number 

of the decomposed IMFs by 

2= (log ( ))WJ fix N    (18) 

where ( )fix Ö is an integral function; 
WN  denotes a length of the 

window. 

(3) Repeat the EMD decomposition K times with random white noise 

to lead to an ensemble of IMFs. Finally, the j-th IMF is calculated by 
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2.4 Weight Update 

To overcome the nonlinearity existing in the primary path, the IMFs 

are expanded using the CN filter based on the Chebyshev polynomial, 

which is a family of orthogonal polynomials generated by the 

following recursive relation 
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where ( )nT x  is the Chebyshev polynomial of order n . For example, 
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For the j-th IMF ( )=[ ( ), ( 1), , ( 1)]Tj j j jC n c n c n c n N- - + , the 

expanded signal with a second-order CN filter is given by 
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where Q is the length of expanded signal. 

The output of j-th IMF controller is a convolution of the expanded 

signal and impulse response. The sum of all controllers is taken as an 

input of the louder speaker, given by 
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where the weight vector ,0 ,1 , 1( ) ( ), ( ), , ( )
T
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The error signal measured at the error microphone is a summation of 

reference noise and secondary noise by 

Ĕ( ) ( ) ( )e n d n d n= +    (23) 

with the secondary noise given by 
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where ( )s n  is an impulse response of the transfer function of the 

secondary path ( )S z  
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where 
1z-  denotes a unit delay; L is an order of secondary path.  

Assumed the estimated secondary path Ĕ( )S z  is the same as 

secondary path ( )S z , the error signal is simplified as  
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The cost function is defined by the mean square error (MSE) of error 

signal by 
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where []E  is an expectation operator. The gradient of cost function 

is obtained by 
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Hence, the weight vector is updated using the steepest descent method 

by 

( ) () () ()1 ( ) ( )
2

j j j j jW W n W n nn en n V
m

m+ = - Ð = -    (29) 

where m is a step-size. 

 

2.5 Convergence Analysis 

Substituting Equation (26) into Equation (29), the expectation of the 

weight vector ( )1jW n+  is given by 
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According to basic principle of the EEMD, the IMFs are orthogonal. 

Thus Equation (30) can be simplifi ed as 
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where ( ) ( )T
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When the ANC system achieves the steady state, ( 1) ( )j jW n W n+ º . 

The optimal weight vector becomes 
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where () () *

j j jW Wn nd = - ; 1

j j j jR A A-= L ; ,1 ,2 ,, , ,j j j j Qdiag l l lè øL = ê ú 

is a diagonal matrix composed of the eigenvalues of jR .  

The convergence condition of Equation (33) is max1 1jml- <. Thus, 

the step-size satisfying the convergence and stability of the proposed 

algorithm is given by 

max

1
0 m

l
< <    (34) 

where maxl  is the maximum eigenvalue.  

 

3 Simulations and Discussions 

In this section, some simulations are conducted to demonstrate the 

effectiveness of the proposed nonlinear ANC structure, in comparison 

with the VFXLMS algorithm2 and FSLMS algorithm7. The sampling 

frequency is 3 kHz. The memory sizes of the FLANN, Volterra and 
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CN filters are chosen as 10N= . In the EEMD algorithm, 300WN = , 

50K= , and the amplitude of the added white noise is set as 0.2 

times the standard deviation of primary signal. 

The reference noise at the cancellation point is generated based on the 

following second-order polynomial model given by 

( ) ( 2) 0.8 ( 2) ( 2) 0.75 ( ) ( 3)d n z n z n z n z n z n= - + - - + -   (35) 

5 6 7( ) 0.3 0.2H z z z z- - -= - +    (36) 

The secondary path transfer function is given by 
2 3 4( ) 1.5S z z z z- - -= + -   (37) 

 
3.1 Case 1 

The non-stationary primary noise is generated by using Equation (9). 

It consists of three shaft harmonics, with amplitudes and phases being 

of 
1 1.0B = , 

2 1.5B = , 
3 1.2B = ,

1 / 6b p= , 
2 / 3b p=- , 

3 / 2b p= .  

The roller bearing experiences a run-up and run-down process with the 

speed curve given by [800 200sin(2 0.2 )] 60sf tp= + Ö Ö . Random 

noise is added with a signal-to-noise ratio of 3.7 dB, and the length of 

primary noise is 10 s. Figure 3 plots the mixed signal with the shaft 

harmonics and random noise, the STFT spectrogram of which is shown 

in Figure 4, with the ordinate being 0-100 Hz for better display. Clearly, 

three distinct harmonics exist in the time-frequency representation, 

varying with time in terms of the approximate sine. 

 

 
Figure 3. The simulated signal: (a) the shaft harmonics; (b) the 

random noise; (c) the mixed signal. 

 

Figure 4. The STFT spectrogram of the mixed signal. 

 
Figure 5. Spectra of the decomposed IMFs. 

 

Figure 5 shows the spectra of the decomposed IMFs for a computation 

window of the primary noise from 2701-3000 iterations. Since the 

EEMD has a property of binary filtering, the frequency band of the 

IMF is narrowed down with increasing the decomposition level. The 

third harmonic, second harmonic and fundamental harmonic 

components are separated from the mixed signal, approximately 

locating at the IMF4, IMF5 and IMF6 with peak values of 52.73 Hz, 

35.16 Hz and 17.58 Hz respectively. In the decomposition process, the 

IMF becomes more simple and stationary. 

Figure 6 shows the error signal and PSD by using the FSLMS, 

VFXLMS and proposed algorithm with a step-size of -64 10³ . To 

better discern the curves behavior, the power spectral density (PSD) is 

obtained by averaging over 20 independent runs and smoothed with a 

window of length equal to 10 samples. As shown in Figure 6(a), 

compared to the FSLMS and VFXLMS algorithms, the proposed 

method exhibits the least residual error in steady-state, and provides a 

faster convergence rate since the CN filter has orthogonal basis 

functions for input signal. It can be seen from Figure 6(b), the FSLMS 

achieves a large reduction of 12.8 dB at 10 Hz near the fundamental 

harmonic, but ineffective for other frequencies of the primary noise. In 

comparison, both the VFXLMS and proposed algorithm have a large 

reduction below 150 Hz in the variation of the shaft harmonics, with 

the latter having the largest reduction from 25-80 Hz. 

 

Figure 7(a) plots the STFT spectrogram of the primary noise passing 

through the nonlinear primary path. Clearly, three higher order 

harmonics appear in comparison of the primary noise. Figures 7(b)-7(d) 

plot the STFT spectrograms of the error signal canceled by the FSLMS, 

VFXLMS and proposed algorithm respectively. The FSLMS effectively 

reduces the primary noise at the fundamental harmonic but inefficient 

for higher order harmonics. Compared to the FSLMS, the VFXLMS 

performs better since it exploits cross-terms in the nonlinear expansion 

with the second-order Volterra filter. It is obvious that the proposed 

method is effective at all the shaft harmonics and has the most 

reduction compared to the other algorithms for controlling the 

non-stationary noise. This suggests that the proposed algorithm is 

capable of compensating for nonlinear distortions such as the 

harmonics introduced by the nonlinear primary path. 
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Figure 6. Simulation results for Case 1: (a) error signal; (b) PSD. 

 

 

 

 
 

 

 

 

  
Figure 7. The STFT spectrogram: (a) reference signal; (b) FSLMS; (c) 

VFXLMS; (d) proposed algorithm. 

 

3.2 Case 2 

The primary noise was acquired from a roller bearing under run-up 

speed at a test rig, as illustrated in Figure 8, consisting of an AC motor, 

frequency converter, shaft, rolling element bearing and load controller. 

The shaft was driven by the AC motor, and the rotating speed was 

adjusted by the frequency converter. The load was regulated by 

governing the compression of the spring. Figure 9 shows the 

waveform of the primary noise with a length of 10 s. 

 

 
Figure 8. Experimental set-up: (a) the test rig; (b) the rolling element 

bearing. 
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