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Investigations into active noise control (ANC) technique have been 
conducted with the aim of effective control of the low-frequency noise. 
In practice, however, the performance of currently available ANC 
systems degrades due to the effects of nonlinearity in the primary and 
secondary paths, primary noise and louder speaker. This paper 
proposes a hybrid control structure of nonlinear ANC system to 
control the non-stationary noise produced by the rotating machinery on 
the nonlinear primary path. A fast version of ensemble empirical 
mode decomposition is used to decompose the non-stationary primary 
noise into intrinsic mode functions, which are expanded using the 
second-order Chebyshev nonlinear filter and then individually 
controlled. The convergence of the nonlinear ANC system is also 
discussed. Simulation results demonstrate that proposed method 
outperforms the FSLMS and VFXLMS algorithms with respect to 
noise reduction and convergence rate. 

Keywords: Nonlinear active noise control, Chebyshev nonlinear filter, 
non-stationary noise, ensemble empirical mode decomposition. 

1 Introduction 
Active noise control (ANC) is based on the principle of destructive 
interference by generating an anti-noise with the same amplitude but 
inverse phase of the noise. The linear finite impulse response (FIR) 
filter with the filtered-x least mean square (FxLMS) algorithm is 
widely used for conventional ANC systems1. However, difficulties of 
the nonlinearities are often encountered in the primary and secondary 
paths, primary noise or the louder speaker system2. As a result, the 
performance of the ANC system degrades with respect to convergence 
rate and noise reduction. The adaptive filters, such as Volterra filter2-6, 
functional link artificial neural network (FLANN)7-12, and even mirror 
Fourier nonlinear (EMFN) filter13-14, have been designed and 
implemented in the ANC systems. 
Tan and Jiang2 designed a Volterra filtered-x LMS (VFXLMS) 
algorithm for the non-minimum phase of the secondary path, which 
achieved better performance compared to the standard FxLMS. Since 
this first study, many computationally efficient Volterra filters have 
been presented for nonlinear ANC systems3-5. To overcome the 
impulse noise in the nonlinear ANC system, Lu and Zhao6 developed a 
Volterra expansion model by minimizing the lp-norm of the 
logarithmic cost. The Volterra filter requires a large number of 
multi-dimensional coefficients for accurately modeling nonlinear 
systems, which has a large computational complexity. Only the 
second-order Volterra and third-order Volterra filters have been 
successfully applied in practical applications.  
To reduce the computational cost, Das and Panda7 proposed a novel 
filtered-s least mean square (FSLMS) algorithm using the FLANN 
structure. Some modified FLANN filters were then developed to 
improve the learning process, such as reduced feedback FLANN8, 
nonlinear neuro-controller based FLANN9, recursive FLANN10 and 
convex combination of two FLANN filters11. Nevertheless, the 
cross-terms, i.e. products of samples with different time delays were not 
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taken into account in their work7-11. Sicuranza and Carini12 proposed a 
generalized FLANN (GFLANN) by adding appropriate cross-terms to 
the FLANN filter. It is noted that the basis functions of FLANN and 
GFLANN filters do not satisfy the condition of the well-known 
Stone-Weierstrass approximation theorem15. Recently, the EMFN filter 
has been proposed and applied to the nonlinear ANC system, which 
can achieve better convergence rate and lower approximation error in 
presence of the strong nonlinearities13-14. The Chebyshev nonlinear 
(CN) filter, deduced by Alberto and Giovanni16, is a product of the first 
kind Chebyshev polynomial expansions of the input samples. It satisfies 
the requirement of the Stone-Weierstrass approximation theorem, which 
is suitable for any causal, time-invariant, finite-memory, continuous and 
nonlinear systems.  
This paper describes a hybrid control structure of nonlinear ANC 
system. It introduces the CN filter to control the non-stationary noise 
produced by rotating machinery on the nonlinear primary path. First of 
all, a fast version of ensemble empirical mode decomposition 
(EEMD)17 is used to decompose the non-stationary primary noise into 
intrinsic mode functions (IMFs). The IMFs are individually expanded 
using the second-order CN filter, the weights of which are updated by 
the LMS algorithm. It is demonstrated that the proposed algorithm is 
robust for the non-stationary noise and nonlinear primary path.  
The remaining part of the paper is organized as follows. Section 2 
presents the principle of proposed algorithm based on the real-time 
EEMD and adaptive CN filter. A set of simulations have been carried 
out in Section 3 to evaluate the performance of the proposed nonlinear 
ANC system. Finally, conclusions are drawn in Section 4. 

2 The Proposed Algorithm 
2.1 Hybrid Control Structure of Nonlinear ANC System 
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Figure 1. Schematic block diagram of the proposed algorithm. 

The basic block diagram of the nonlinear ANC system is shown in 
Figure 1. It comprises two processes, including noise decomposition 
using the real-time EEMD, and the CN filter expansion and weight 
update. In the figure, ( )x n  denotes the primary noise; ( )u n  denotes 
the output of the adaptive CN filters; ( )e n  denotes the error signal; 
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( )S z represents the transfer function of the secondary path; ˆ( )S z

represents the estimate of the secondary path; ( )jC n are the 

decomposed IMFs; ( )jV n are the filtered vectors of ( )jY n through

secondary path estimate ˆ( )S z . The primary noise after passing

through the nonlinear primary path is denoted as reference noise ( )d n , 

and the output ( )u n  after passing through the secondary path is 

referred to as secondary noise ˆ( )d n .

2.2 Nonlinear Primary Path Model 

Block-oriented model, consisting of a linear time-invariant (LTI) block 

and a static nonlinear block, is the most popular representation of 

nonlinear systems. This method reduces the number of coefficients and 

the size of the required memory. Figure 2 shows three types of Wiener, 

Hammerstein and LNL models3. In the ANC system, the LTI block is 

expressed by finite-impulse-response (FIR) filter, while the 

nonlinearity can be represented by a polynomial with fixed 

memoryless nonlinear function. 

(a)

(b)

(c)

Figure 2. Nonlinear primary path models: (a) Wiener (b) 

Hammerstein (c) LNL. 

As shown in Figure 2(a), the Wiener system consists of a LTI block 

followed by a static nonlinear block, expressed by 

1

( ) ( ) ( 1)
H

i
i

z n h n x n i
=

= − + (1) 

( ) ( ( ))d n f z n= (2) 

where ( )x n  is the primary noise; ( )z n  is the output of FIR filter; 

( )d n is the reference noise; H denotes order of the FIR filter; ( )ih n

denotes FIR filter coefficients; ( )f   denotes a nonlinear function. 

The Hammerstein system, shown in Figure 2(b), reverses the order of 

LTI and static nonlinear blocks in Wiener-based model, denoted by 

( ) ( ( ))z n f x n= (3) 

1

( ) ( ) ( 1)
H

i
i

d n h n z n i
=

= − + (4) 

The LNL system is a series connection of the Wiener and Hammerstein, 

with a static nonlinearity sandwiched between two LTI blocks, shown 

in Figure 2(c), given by 
1

1 1,
1

( ) ( ) ( 1)
H

i
i

z n h n x n i
=

= − + (5) 

2 1( ) ( ( ))z n f z n= (6) 

2

2, 2
1

( ) ( ) ( 1)
H

i
i

d n h n z n i
=

= − + (7) 

The nonlinear block is a continuous function expressed by Taylor 

expansion18, and the output of which is given by 

( ) ( ) ( )
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1 1 2

1 2
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−

=

− −

= = = = −

 = + − + + − 

  
= − −  

− −   



   

(8) 

where *T N  is an order. If 1T  , the primary path is nonlinear; 

otherwise, it is linear. 

The roller bearing is one of the key elements in rotating machinery. 

The generated noise becomes much more non-stationary under 

variable speed, especially for startup and shutdown, which can be 

expressed as 

( ) cos(2 )s q s qq
x n B qf n = + (9) 

where 
sf is a rotational frequency of the shaft; qB and q are

amplitude and initial phase of the q-th harmonic. 

Substituting Equation (9) into the power function ( )k  leads to 

when q=1, k=2 
2 2

2 1 1
1( ) cos(2 2 2 )

2 2
s s

B B
x n f n=   + +  (10) 

when q=1, k=3 
3 3

3 1 1
1 1

3
( ) cos(2 3 3 ) cos(2 )

4 4
s s s

B B
x n f n f n=   + +   +    (11) 

when q=1, k=4 
4 4 4

4 1 1 1
1 1

3
( ) cos(2 4 4 ) cos(2 2 2 )

8 2 8
s s s

B B B
x n f n f n=   + +   + +   

(12) 

The analytical expressions are obtained by 

( )

( )

, 1
1

, 1 ,0
1

cos 2 ( 2 2) ( 2 2) 2 1

( )

cos 2 ( 2 2) ( 2 2) 2

I

k i s
ik

s I

k i s k
i

d k i f n k i if k I

x n

d k i f n k i d if k I

=

=


 − +  + − + = −

= 
  − +  + − + + =






 

 

(13) 

where 1,2, ,i I= , *k N ; ,k id  are amplitudes of the harmonics; 

,0kd  are constant terms. 

Similarly, when 1q  , analytical expressions are given by 

'

, , ,0
1

( ) ' cos(2 ) '
I

k

s k i s k i k
i

x n d if n d
=

=   + +   (14) 

where 1,2, , 'i I= , 'I q k=  , *k N ; ,'k id  are the amplitudes of 

the harmonics; ,0'kd  are constant terms. Substituting Equation (14) 

into Equation (8) leads to the output signal given by 
'

, ,
1

( ) cos(2 ) ( )
I

k i s k i
i

z n g if n n  
=

=   + + (15) 

where ( )n  is a constant term. Compared to the primary noise, ( )sx n , 

it is found that the frequency components of the output signal passed 

through the nonlinear primary path contain some higher order 

harmonics. 

2.3 Noise Decomposition 

The EEMD is a popular method in the analysis of the non-stationary 

primary noise. Partition the data series of primary noise into windows, 

each sub-series thus would be processed by EEMD, sequentially, from 

left to right. The choice of the window length needs to satisfy the 

following two conditions: (a) Sufficiently long to result in reasonably 

stationary IMFs; (b) Short enough to ensure a shorter delay and fast 

response to the primary noise. Appropriate length can be adjusted in 

the experiments. The procedures are as follows: 

(1) Initialize the number of trials K, the amplitude of the added white

noise, and set the trial number 1i = . The generated white noise series
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( )in n is added to the primary noise to obtain the i-th trial by 

( ) ( ) ( )i ix n x n n n= + (16) 

(2) Decompose the noise-added signal into IMFs with the EMD as

, ,1
( ) ( ) ( )

J

i i j i Jj
x n n r n

=
= + (17) 

where 1,2,...,i K= , 1,2,...,j J= ; ,i j denotes the j-th IMF of the

i-th trial; , ( )i Jr n is a residue of the signal; J denotes the total number

of the decomposed IMFs by 

2= (log ( ))WJ fix N (18) 

where ( )fix   is an integral function; 
WN  denotes a length of the 

window. 

(3) Repeat the EMD decomposition K times with random white noise

to lead to an ensemble of IMFs. Finally, the j-th IMF is calculated by

,1

1 K

j i ji
IMF

K


=
=  (19) 

2.4 Weight Update 

To overcome the nonlinearity existing in the primary path, the IMFs 

are expanded using the CN filter based on the Chebyshev polynomial, 

which is a family of orthogonal polynomials generated by the 

following recursive relation 

n 1 1( ) 2 ( ) ( )n nT x x T x T x+ −=   + (20) 

where ( )nT x  is the Chebyshev polynomial of order n . For example, 

0( ) 1T x = , 
1( )T x x= , 2

2( ) 2 1T x x= − , 3

3( ) 4 3T x x x= − , 

4 2

4( ) 8 8 1T x x x= − + and 5 3

5( ) 16 20 5T x x x x= − + .  

For the j-th IMF ( )=[ ( ), ( 1), , ( 1)]T

j j j jC n c n c n c n N− − + , the 

expanded signal with a second-order CN filter is given by 



,0 ,1 ,2 , 1

0 0 0

1 1 1

2 2 2

1 1 1 1

( ) ( ), ( ), ( ), ( )

= [ ( )], [ ( 1)], , [ ( 1)],
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[ ( )], [ ( 1)], , [ ( 1)],

[ ( )] [ ( 1)], , [ ( 2)] [

T

j j j j j Q

j j j

j j j

j j j

j j j

Y n y n y n y n y n

T c n T c n T c n N

T c n T c n T c n N

T c n T c n T c n N

T c n T c n T c n N T c

−
 =  

− − +

− − +

− − +

− − +



1 1 1 1

1 1

( 1)],

[ ( )] [ ( 2)], , [ ( 3)] [ ( 1)],

[ ( )] [ ( 1)]

j

j j j j

T

j j

n N

T c n T c n T c n N T c n N

T c n T c n N

− +

− − + − +

− +

(21) 

where Q is the length of expanded signal. 

The output of j-th IMF controller is a convolution of the expanded 

signal and impulse response. The sum of all controllers is taken as an 

input of the louder speaker, given by 

1

( ) ( ) ( )
J

T

j j
j

u n W n Y n
=

=  (22) 

where the weight vector ,0 ,1 , 1( ) ( ), ( ), , ( )
T

j j j j QW n w n w n w n−
 =   . 

The error signal measured at the error microphone is a summation of 

reference noise and secondary noise by 

ˆ( ) ( ) ( )e n d n d n= + (23) 

with the secondary noise given by 
1

0

11

,
0 1 0

1 1

,
1 0 0

ˆ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

L

l
l

QL J

l j i j
l j i

QJ L

j i l j
j i l

d n s n u n s n u n l

s n w n l y n i l

w n s n i y n i l

−

=

−−

= = =

− −

= = =

=  = −

= − − −

= − − −



 

 

(24) 

where ( )s n  is an impulse response of the transfer function of the 

secondary path ( )S z

1 2 3 1

0 1 2 3 1( ) L

LS z s s z s z s z s z− − − − +

−= + + + + (25) 

where 
1z −

denotes a unit delay; L is an order of secondary path. 

Assumed the estimated secondary path ˆ( )S z  is the same as

secondary path ( )S z , the error signal is simplified as  

1

,
1 0 1

( ) ( ) ( ) ( ) ( ) ( ) ( )
QJ J

T

j i j j j
j i j

e n d n w n v n i d n W n V n
−

= = =

= + − = +  (26) 

where 
1

0

( ) ( )
L

j l j
l

v n s y n l
−

=

= −  and ( ) ( ), ( 1), , ( 1)
T

j j j jV n v n v n v n Q = − − + 
. 

The cost function is defined by the mean square error (MSE) of error 

signal by 

( ) 2( )J E e nn  =   (27) 

where  E  is an expectation operator. The gradient of cost function

is obtained by 
2( ) ( ) ( )

( ) 2 ( ) 2 ( ) ( )j j

j j j

J n e n e n
n e n e n V n

W W W

  
 =  = =

  
(28) 

Hence, the weight vector is updated using the steepest descent method 

by 

( ) ( ) ( ) ( )1 ( ) ( )
2

j j j j jW W n W n nn en n V


+ = −  = − (29) 

where   is a step-size. 

2.5 Convergence Analysis 

Substituting Equation (26) into Equation (29), the expectation of the 

weight vector ( )1jW n +  is given by

1

( 1) ( ) ( ) ( ) ( ) ( ) ( )
J

T

j j j j i i
i

W n W n E d n V n E V n V n W n 
=

  + = − −    
 (30) 

According to basic principle of the EEMD, the IMFs are orthogonal. 

Thus Equation (30) can be simplified as 

( )( 1) ( )j j j jW n I R W n P + = − − (31) 

where ( ) ( )T

j jj V n VR E n =    and ( ) ( )j jVP E d n n =   . 

When the ANC system achieves the steady state, ( 1) ( )j jW n W n+  . 

The optimal weight vector becomes 
* 1lim ( )j j j j

n
W W n R P−

→
= = − (32) 

Subtracting 
*

jW from Equation (31), the error of the weight vector 

is given by 

( ) ( ) ( ) ( )
1

1 11 0j j

n

j j j j j jjj jn n A I A nI R A I A     
+

− −   + −  −  = − = =    

(33) 

where ( ) ( ) *

j j jW Wn n = − ; 1

j j j jR A A−=  ; ,1 ,2 ,, , ,j j j j Qdiag     =  

is a diagonal matrix composed of the eigenvalues of jR . 

The convergence condition of Equation (33) is max1 1j−  . Thus, 

the step-size satisfying the convergence and stability of the proposed 

algorithm is given by 

max

1
0 


  (34) 

where max is the maximum eigenvalue.

3 Simulations and Discussions 

In this section, some simulations are conducted to demonstrate the 

effectiveness of the proposed nonlinear ANC structure, in comparison 

with the VFXLMS algorithm2 and FSLMS algorithm7. The sampling 

frequency is 3 kHz. The memory sizes of the FLANN, Volterra and 
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CN filters are chosen as 10N = . In the EEMD algorithm, 300WN = , 

50K = , and the amplitude of the added white noise is set as 0.2

times the standard deviation of primary signal.

The reference noise at the cancellation point is generated based on the 

following second-order polynomial model given by 

( ) ( 2) 0.8 ( 2) ( 2) 0.75 ( ) ( 3)d n z n z n z n z n z n= − + − − + − (35) 

5 6 7( ) 0.3 0.2H z z z z− − −= − + (36) 

The secondary path transfer function is given by 
2 3 4( ) 1.5S z z z z− − −= + − (37) 

3.1 Case 1 

The non-stationary primary noise is generated by using Equation (9). 

It consists of three shaft harmonics, with amplitudes and phases being 

of 
1 1.0B = , 

2 1.5B = , 
3 1.2B = ,

1 / 6 = , 
2 / 3 = − , 

3 / 2 = . 

The roller bearing experiences a run-up and run-down process with the 

speed curve given by [800 200sin(2 0.2 )] 60sf t= +   . Random 

noise is added with a signal-to-noise ratio of 3.7 dB, and the length of 

primary noise is 10 s. Figure 3 plots the mixed signal with the shaft 

harmonics and random noise, the STFT spectrogram of which is shown 

in Figure 4, with the ordinate being 0-100 Hz for better display. Clearly, 

three distinct harmonics exist in the time-frequency representation, 

varying with time in terms of the approximate sine. 

Figure 3. The simulated signal: (a) the shaft harmonics; (b) the 

random noise; (c) the mixed signal. 

Figure 4. The STFT spectrogram of the mixed signal. 

Figure 5. Spectra of the decomposed IMFs. 

Figure 5 shows the spectra of the decomposed IMFs for a computation 

window of the primary noise from 2701-3000 iterations. Since the 

EEMD has a property of binary filtering, the frequency band of the 

IMF is narrowed down with increasing the decomposition level. The 

third harmonic, second harmonic and fundamental harmonic 

components are separated from the mixed signal, approximately 

locating at the IMF4, IMF5 and IMF6 with peak values of 52.73 Hz,

35.16 Hz and 17.58 Hz respectively. In the decomposition process, the 

IMF becomes more simple and stationary. 

Figure 6 shows the error signal and PSD by using the FSLMS, 

VFXLMS and proposed algorithm with a step-size of -64 10 . To

better discern the curves behavior, the power spectral density (PSD) is

obtained by averaging over 20 independent runs and smoothed with a

window of length equal to 10 samples. As shown in Figure 6(a),

compared to the FSLMS and VFXLMS algorithms, the proposed

method exhibits the least residual error in steady-state, and provides a

faster convergence rate since the CN filter has orthogonal basis

functions for input signal. It can be seen from Figure 6(b), the FSLMS

achieves a large reduction of 12.8 dB at 10 Hz near the fundamental

harmonic, but ineffective for other frequencies of the primary noise. In

comparison, both the VFXLMS and proposed algorithm have a large

reduction below 150 Hz in the variation of the shaft harmonics, with

the latter having the largest reduction from 25-80 Hz.

Figure 7(a) plots the STFT spectrogram of the primary noise passing 

through the nonlinear primary path. Clearly, three higher order 

harmonics appear in comparison of the primary noise. Figures 7(b)-7(d) 

plot the STFT spectrograms of the error signal canceled by the FSLMS, 

VFXLMS and proposed algorithm respectively. The FSLMS effectively 

reduces the primary noise at the fundamental harmonic but inefficient 

for higher order harmonics. Compared to the FSLMS, the VFXLMS 

performs better since it exploits cross-terms in the nonlinear expansion 

with the second-order Volterra filter. It is obvious that the proposed 

method is effective at all the shaft harmonics and has the most 

reduction compared to the other algorithms for controlling the 

non-stationary noise. This suggests that the proposed algorithm is 

capable of compensating for nonlinear distortions such as the 

harmonics introduced by the nonlinear primary path. 
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Figure 6. Simulation results for Case 1: (a) error signal; (b) PSD. 

Figure 7. The STFT spectrogram: (a) reference signal; (b) FSLMS; (c) 

VFXLMS; (d) proposed algorithm. 

3.2 Case 2 

The primary noise was acquired from a roller bearing under run-up 

speed at a test rig, as illustrated in Figure 8, consisting of an AC motor, 

frequency converter, shaft, rolling element bearing and load controller. 

The shaft was driven by the AC motor, and the rotating speed was 

adjusted by the frequency converter. The load was regulated by 

governing the compression of the spring. Figure 9 shows the 

waveform of the primary noise with a length of 10 s. 

Figure 8. Experimental set-up: (a) the test rig; (b) the rolling element 

bearing. 
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Figure 9. The waveform of the non-stationary noise. 

The waveform and STFT spectrogram of the primary noise is shown 

in Figure 10. Obviously, the signal varies with time and has a 

characteristic of non-stationarity, containing some distinct shaft 

harmonics. Moreover, these harmonics approximately increase in a 

constant acceleration with time. 

Figure 10. The STFT spectrogram of the non-stationary noise. 

Figure 11 shows the results of error signal and PSD by using the 

FSLMS, VFXLMS and proposed algorithm with a step-size of 
-51 10 . The noise reduction of three methods in the entire frequency 

band is shown in Table 1. The VFXLMS has a reduction of 0.032 dB 

for the non-stationary primary noise, while the FSLMS exhibits a 

slightly better performance at some frequencies with a reduction of 

0.788 dB. The proposed algorithm can cancel the non-stationary noise 

to a greater extent on the nonlinear primary path, with more reductions 

of 3.107 dB and 3.863 dB compared to the FSLMS and VFXLMS. 

Besides, it provides the fastest convergence rate through about 4000 

iterations to reach the steady-state.  

Figure 11. Simulation results for Case 2: (a) error signal; (b) PSD. 

Table 1. Noise reduction of different methods (dB). 

Algorithm FSLMS VFXLMS Proposed 

method 

Overall 

frequency band 

0.788 0.032 3.895 

4 Conclusion 

This paper proposes a new algorithm based on the adaptive CN filter 

and EEMD for active control of the non-stationary primary noise on 

the nonlinear primary path. It has been shown that the noise becomes 

more stable and easily controlled by using the real-time EEMD 

decomposition. The adaptive CN filter has been demonstrated to 

accurately model the nonlinear primary path than the FLANN and 

Volterra filters. Simulations have been carried out to show that 

the proposed algorithm outperforms the FSLMS and VFXLMS in

noise reduction and convergence rate. 
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