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Abstract   Diagnosis is the recognition of the nature and cause of a certain phenomenon. 

It is generally used to determine cause and effect of a problem. Machine fault diagnosis is 

a field of finding faults arising in machines. To identify the most probable faults leading 

to failure, many methods are used for data collection, including vibration monitoring, 

thermal imaging, oil particle analysis, etc. Then these data are processed using methods 

like spectral analysis, wavelet analysis, wavelet transform, short-term Fourier transform, 

high-resolution spectral analysis, waveform analysis, etc., The results of this analysis are 

used in a root cause failure analysis in order to determine the original cause of the fault. 

This paper presents a brief review about one such application known as machine learning 

for the brake fault diagnosis problems.   

Keywords:  Vibration analysis, machine learning, feature extraction, feature selection, 

feature classification, Brake fault diagnosis. 

1   Introduction 

Brakes are one of the most important control components which bring the vehicle to rest 

within a reasonable distance even under the most adverse conditions. It is also desirable 

that the retardation should be smooth and the rate of retardation should be proportional to 

the pedal effort. This means that whilst the effort required by the driver to operate the 
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brakes shall not be excessive. The brake system should be very reliable to promote the 

highest degree of safety on the road. Hence, an efficient brake system is responsible for 

the safety and stability of the vehicle. However, there are moving components involved; 

they are bound to get faulty due to various reasons, viz. wearing, air leak, fade, etc. When 

such things occur, the effectiveness of the brake reduces resulting in accidents. Hence, it 

is necessary that they are monitored all the time and diagnosed when faults occur. 

Monitoring of brakes is a separate area of concern in the contemporary automotive world. 

There are many analysis techniques, such as shock pulse method, wear debris analysis, 

acoustic emission, vibration analysis are available for the fault diagnosis problem. The 

review about one such analysis techniques is discussed in the following sections. 

The shock pulse method is basically a vibration-monitoring technique. The impacts 

caused by damage in rolling element, such as bearings, brakes, gears, etc., generate shock 

pulses in the ultrasonic frequency band (Butler, 1973). The shock pulse method gives an 

indication of the condition of rotating components by measuring the magnitude of the 

mechanical impacts. These shock pulses can be measured using special accelerometers. 

However, it does not give much of diagnostic information. Wear debris analysis is the 

study of component wear particles in the lubricant to determine the condition of the 

machine parts (Hunt and Trevor, 1993). Excessive concentration of the wear particles in 

the lubricant signifies abnormal wear. It is relatively less costly; however, it is an off-line 

process and does not give much diagnostic information. The phenomenon of sound 

generation in materials under stress is termed as acoustic emission (AE). When a 

structure is subjected to an external stimulus, localized sources trigger the release of 

energy in the form of stress waves which propagate to the surface. Plastic deformation of 

cracks is the main sources of AE in metals. AE can detect the growth of subsurface 

cracks (Roberts and Talebzadeh, 2003). AE requires sophisticated signal processing 

systems. The whole system for fault diagnosis is more costly compared to systems based 

on vibration. The condition of moving components of a machine is assessed from the 

amount and nature of vibration, they generate. Deterioration in brake condition produces 

an increase in vibration level. Thus, an increase in the overall level of the vibration 

indicates a mechanical deterioration of one or more elements of the brake. Because the 

vibration waveform will contain a spectrum of frequencies associated with the various 

brake elements, knowledge of the frequencies within the spectrum at which a significant 

increase in vibration level has occurred can help to diagnose the causes of the 

deterioration (Luo, Osypiw, Irle, 2000). A comparative study suggests vibration signal as 

a suitable tool for the fault diagnosis problem compared to AE Signals (Al-Ghamd and 

David Mba, 2006). 

2   Vibration analysis 
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Vibration analysis is one of the main methods in fault diagnosis. A review of the works in 

the area of vibration analysis for condition monitoring of brake components forms the 

theme of this section. The review of the literature made under the subsections of 

conventional methods, time domain analysis and frequency domain analysis and pattern 

recognition are described below. 

2.1   Time domain analysis 

Time domain analysis is the analysis of mathematical functions or physical signals with 

respect to time. A time-domain graph shows how a signal changes over time, whereas a 

frequency-domain graph shows how much of the signal lies within each given frequency 

band over a range of frequencies. There are many techniques available for the analysis. 

Some of the frequently used techniques have been discussed in this section. 

2.1.1   Overall vibration level 

Measuring overall vibration level over a broad band of frequencies is one of the most 

basic vibration techniques. The trend of overall vibration level is plotted against time and 

it acts as an indicator of deterioration. The overall level is often referred to as the signal 

RMS value. As peak is significantly affected by noise, RMS level is generally preferred 

in machine condition monitoring applications. The overall RMS level is a good indicator 

of machine condition in the case of simple machines, although it does not give much of 

diagnostic information. However, the same is not suited for complex machinery. In fact, 

localized faults here may go undetected until a significant secondary damage or 

catastrophic failure occurs (Colin Mercer, 2001). 

2.1.2 Wave shape metrics 

Faults which produce short-term impulses such as bearing faults may not significantly 

alter the overall vibration level; however, may cause a statistically significant change in 

the shape of the signal. With a number of fault types, the shape of the signal is a better 

indicator of damage than the overall vibration level. 

Crest factor or kurtosis is often used as a non-dimensional measure of the shape of the 

signal. Both of these signal metrics increase in value as the ‗spikiness‘ of the signal 

increases (i.e., as the signal changes from a regular continuous pattern to one containing 

isolated peaks). Kurtosis, being a purely statistical parameter, is usually preferable to 

crest factor in machine condition monitoring applications; for the same reasons, RMS is 

preferable to peak. However, the crest factor is in more widespread use because meters 

which record crest factor are more common and affordable than kurtosis meters. The 

wave shape metrics will not detect faults unless the amplitude of the vibration from the 
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faulty component is large enough to cause a significant change in the total vibration level 

of the signal. This limits their use. 

2.1.3 Time synchronous averaging 

Time synchronous averaging is used to eliminate signal components that are not 

synchronous with the shaft rate of rotation. Eliminated components include electrical 

noise, bearing vibrations and vibrations related to other shafts or nearby machinery. The 

idea of TSA is to take ensemble average of the raw signal over a number of evolutions in 

an attempt to remove or reduce noise from other sources, so as to enhance the signal 

components of interest. This constitutes a pre-processing of the vibration signal and 

hence, can add to the reliability or authenticity of other techniques (Miller, 1999; Dalpiaz 

et al., 2000; Badaoui, 2001). 

2.1.4 Descriptive Statistics 

Descriptive statistics is the discipline of quantitatively describing the main features of a 

collection of information or the quantitative description itself. Descriptive statistics 

summarize a sample, rather than use the data to learn about the population that the sample 

of data is thought to represent. Some measures that are commonly used to describe a data 

set are measures of central tendency and measures of variability or dispersion. Measures 

of central tendency include the mean, median and mode, while measures of variability 

include the standard deviation (or variance), the minimum and maximum values of the 

variables, kurtosis, and skewness (Prem S. Mann, 1995).  

2.1.5 Time series modeling  

A time series is a sequence of data points, typically consisting of successive 

measurements made over a time interval. Time series analysis comprises methods for 

analyzing time series data in order to extract meaningful statistics and other 

characteristics of the data. The main idea of time series modeling is to fit the waveform 

data to a parametric time series model and extract features based on this parametric 

model. There are two popular mathematical models, namely, Auto-Regressive (AR) 

model and the Auto-Regressive Moving Average (ARMA) model. Upadhyaya (1980) 

compared the prediction error of an ARMA model of the observed multivariate signal in 

both faults free and fault situation as a decision base to detect sensor faults. Auto-

regressive (AR) model is established by time difference and vibration amplitude. As the 

AR model utilized the mathematical method for fitting the variable, the AR coefficients 

represent the signal features and can be used to determine the fault types (Bailllie and 

Mathew, 1996). Dron, RasolofondraibeL, Couet, Pavan., (1998) developed a method for 
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fault detection in ball bearings based on the estimation of an autoregressive model for the 

vibration signals and compared the first and second order statistical properties of the 

estimation error. Poyhonen, Jover, Hyotyniemi (2004) applied AR model to vibration 

signals collected from an induction motor and used the AR model coefficients as 

extracted features. In practice, however, application of the AR model or ARMA model is 

difficult due to the complexity in modeling, especially the need to determine the order of 

the model (Andrew et al, 2006). Among these techniques, descriptive statistics are 

successfully used to extract information as features from the vibration signal in many 

fault diagnosis study (Sakthivel, Sugumaran, Babudeva senapathy, 2010, 2012; 

Sugumaran and Ramachandran, 2011; Jegadeeshwaran and Ramachandran, 2015).  

2.2    Frequency domain analysis 

The vibration signal from a machine can be looked upon as its signature. Every 

component with its own spring-mass properties has its own characteristic frequency / 

frequencies; excitation of these contributes to the overall signature. As such the vibration 

level is only a total indicator of machine condition. A better approach will be to segregate 

vibration into distinct frequency regions and identify the vibration changes in each such 

region separately. In a way this amounts to the characteristic frequencies being given 

importance. In turn, this can lead to more specific information regarding machine 

condition. The frequency domain analysis techniques are centred on this idea. The 

principal advantage of the frequency domain analysis is that the repetitive nature of the 

vibration signal is clearly displayed as peaks in the frequency spectrum at the frequencies 

where the repetition takes place. This allows for faults, which usually generate specific 

characteristic frequency responses, to be detected early, diagnosed accurately and trended 

over time as the condition deteriorates. However, the disadvantage of the frequency 

domain analysis is that a significant amount of information may be lost during the 

transformation process. This information is non-retrievable unless a permanent record of 

the raw vibration signal has been made. Frequency domain analysis is otherwise known 

as ‗spectral analysis‘. It is commonly used for fault diagnosis of rotary machines (Randall, 

1982, 1987), (Fansen K. and Ruheng, 2004). The characteristic defect frequency of 

vibration of different components can be computed for the machines operating at constant 

speed. The change in level of frequency of a particular band (or frequencies) can be 

associated to a component of a machine. In the case of component level condition 

monitoring study, the change in the level of frequency of a particular band can be 

associated with a particular condition of the component. The change in the level of 

frequency of a particular band gives an indication of the type of fault, thus providing 

required diagnostic information.  



 

 

48  Copyright © 2017Tech Science Press                 SDHM, vol.12, no.1, pp.43-67, 2017 

2.2.1 Fast fourier transform 

In practice, the vibration signal is acquired and converted to digital form by a data 

acquisition system. The Discrete Fourier Transform is used to transform this signal into a 

digital form to the frequency domain. An efficient algorithm was introduced by Cooley 

and Tukey (1965) to perform DFT called Fast Fourier Transform (FFT). It is used in 

many of the modern spectrum analyzers, which converts the time domain signal into the 

frequency domain signal. There are many frequency domain analysis, namely band-pass 

analysis, shock pulse (spike energy), enveloped spectrum, signature spectrum, and 

cascades (waterfall plots). These are described in the subsequent sections. 

2.2.1.1   Band-pass analysis 

The frequency spectrum gives earlier warnings than monitoring overall vibration. The 

level of overall vibration only increases after an increasing component has become the 

highest peak in the spectrum. Whenever an increase of the baseline (reference) level is 

detected, a further analysis is carried out for fault diagnosis. The frequency range in 

which the levels have exceeded gives an indication of what type of faults to expect 

(Taylor, 1980; Mathew and Alfredson, 1984; Dadbin and Wong, 1991). The band-pass 

analysis involves filtering the vibration signal above or below specific frequencies in 

order to reduce the amount of information presented in the spectrum to a set band of 

frequencies. These frequencies are typical where fault characteristic responses are 

anticipated. Changes in the vibration signal outside the frequency band of interest are no 

displayed (Rades, 2008). 

2.2.1.2  Spike energy 

Spike Energy is a measure of the intensity of energy generated by repetitive mechanical 

impacts of pulses that occur as a result of surface flaws or insufficient lubrication to 

machine components. These impacts tend to excite the resonance response of machine 

components. A signal measured near rotating machine elements appears as periodic 

spikes of high-frequency energy and can be measured by accelerometers (Sheam and 

Taylor, 1990; Julien and Ming, 1995, Xu, 1995).   

2.2.1.3   Envelop analysis 

It is a signal processing technique, which uses a filter and rectification pre-processing of 

a standard accelerometer signal to reveal the bearing defects at its fundamental frequency. 

Hence it is referred to as the high-frequency resonance technique (Mc Fadden and Smith, 

1984; Mignano, 1997). In this technique, an analog filter is used to extract the resonance 

excited by the bearing fault from the frequency spectrum and the detector detects the 
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envelope. In the modern signal analysis, the useful part of the frequency spectrum is 

extracted through zooming around the resonance excited by the bearing defects. Hilbert 

transform is used to generate the envelope of the signal. The spectrum of the envelope is 

calculated to show the repetition frequency of the fault generated pulses.    

2.2.1.4 Shock pulse method (SPM) 

A shock pulse involves the analysis of the high frequency (ultrasonic) shock waves 

generated by metal to metal impacts in a rotating bearing, where most of the information 

about bearing damage can be found (Butler, 1973). Shock waves that result from metal to 

metal contact are short duration bursts of energy that travel at the speed of sound through 

the material (Lundy, 2006). As the wave travels, it dissipates energy through the structure, 

thereby reducing the wave pulse. The SPM is designed to detect the weak shock pulse 

signals using an accelerometer with a natural frequency of 36 kHz, ideally placed very 

close to the subject bearing. In fact, a patented design called Tandem-Piezo is used which 

enables the accelerometer to measure accurately both shock pulse and vibrations. A 

bandpass filter with 36 kHz shock pulse signal is used to isolate the shock pulse from 

vibration. Finally, the waveform is converted to analog pulses (Lee, 2015). This process 

provides a signal that can be processed to determine bearing condition.  

2.2.2 Higher-order spectra 

High-order spectrum, i.e., bi-spectrum or tri-spectrum, can provide more diagnostic 

information than power spectrum for non-Gaussian signals. The use of higher-order 

spectra in vibration signal is of three folds.  

(a) To extract information deviating from Gaussian (normality): The higher order 

spectra have an important property of being identically zero for a zero – mean Gaussian 

process. Thus a non-zero bi-spectrum can be used to measure deviation from normality. 

In a normal status, the vibration signal of the mechanical system is Gaussian distribution. 

When faults emerge, the vibration signal will deviate from normality. Thus, the bi-

spectrum is very sensitive to the working conditions of machinery. 

(b) To analyze the vibration signals of machinery: It often necessary to know 

whether the signals contain a second order harmonic. Some faults such as misalignment, 

bowl shaft, cracked shaft, etc., can be monitored using second order harmonic. This 

second order harmonic is then tested using power spectrum averaging. However, the 

power spectrum averaging gives the biased estimates of the power spectrum.  So it fails 

to test weak harmonics in low signal to noise cases, while the bi-spectrum can provide 

much better results. 

(c) To detect and characterize the non-linear properties: When faults emerge in 
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mechanical systems, the signal will be displayed as a non-linear state. This quadratic 

nonlinearity will create a quadratic phase coupling. The degree of phase coupling 

describes machinery fault through bi-coherence spectrum study.       

In the literature, higher-order spectrum has been identified as higher-order statistics 

(Wang and Too, 2002). This term has its origin in the fact that bi-spectrum and tri-

spectrum are actually the Fourier transforms of the third- and fourth-order statistics of the 

time waveform, respectively. Bi-spectrum analysis has been shown to have wide 

application in machinery diagnostics for various mechanical components (Yang et al., 

2002) and systems (Parker et al., 2000; Choe and Fei, 1995; Arthur and Penmaan, 1995). 

2.2.3 Cepstral analysis 

Cepstrum has the capability to detect harmonics and sideband patterns in power spectrum. 

There are several versions of the definition of cepstrum (Harris and Piersol, 2002). 

Amongst them, the most commonly used version is power cepstrum. The power cepstrum 

is defined as the inverse Fourier transform of the logarithmic power spectrum (Boogert, 

1963). In the power cepstrum, cepstral analysis is done in the quefrency domain and 

gives a measure of periodic structures in the spectrum. This series of harmonically related 

structures are reduced to predominantly one ‗quefrency‘ at the reciprocal of the harmonic 

spacing. A high value of quefrency points to a spectrum envelope with fast changes of 

power spectrum density resulting from a large number of harmonics, whereas a low value 

of quefrency testifies to the envelope changing slowly, which results from the small 

number of harmonics. Cepstral analysis has proved to be a useful tool in the detection of 

bearing faults (Boogert, 1963), determination of voice pitch in speech analysis (Luke, 

1969; Mathew, 1989) etc., The periodicity of the excitation is commonly evident in the 

‗quefrency‘ domain; however, in the frequency domain, it appears as a number of low-

level sidebands (separated by the frequency of the impulses and centered about each of 

the resonant frequencies) which are often difficult to detect. 

2.2.4 Fault detection 

A fault is an unexpected change or malfunction in a system. The term ‗fault detection‘ is 

defined as the process of finding the condition of the bearing - good or faulty. Fault 

diagnosis is a closely associated term. It is defined as the process of identifying the 

condition of the element under study and cause of the problem. Key fault detection 

techniques are presented in this sub-section. Fault diagnosis techniques are presented in 

subsequent sections. 

2.2.4.1  Spectral comparison 
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A component like bearing can be considered to be in a good working environment when 

by itself it is free of faults and is playing its assigned role in the machinery under 

normally accepted working conditions. The baseline power (magnitude square) spectrum 

is taken for the vibration signal under these conditions. This ‗baseline‘ spectrum is used 

as a reference for evaluating subsequent power spectra taken at regular intervals 

throughout the machine life under similar operating conditions (Mathew, 1989). The 

comparison is usually done on a logarithmic amplitude scale. An increase of 6 - 8 dB 

above the baseline is considered significant while increase beyond 20 dB is considered as 

a serious problem (Randall, 1985). 

2.2.4.2  Spectral trending 

Spectral trending (Mingsian et al., 2005; Xiamin et al., 2012) gives an indication of the 

rate of fault progression. In its simplest form, spectral trending involves trending of the 

changes in the amplitude of all (or a number of selected) spectral lines over time. For 

complex machines, this can often involve a large number of data, resulting in information 

overload due to a large number of significant spectral lines. To simplify the detection 

process, several parameters based on the spectrum have been proposed which provide 

statistical measures of spectral differences. Such spectral parameters and their 

performance in detection and diagnosis of bearing faults are reported in the literature 

(Mechefske and Mathew, 1991). It is reported that a number of these parameters 

performed well in the detection of the faults. However, they are not of much significance 

vis-à-vis diagnostic information. 

2.2.5 Fault diagnosis 

The process of diagnosis is performed with spectral comparison and trending; typically, 

only the frequencies identified as having significant changes are analyzed in detail for 

diagnostic purposes. The vibration spectrum of even relatively simple machines can be 

quite complex due to the multiple harmonic structures of the vibration from various 

components. The expected spectral differences associated with various bearing faults are 

discussed by Su and Lin (1992). Faults such as large wear and unbalance, are distributed 

faults causing a significant change in the mean amplitude of the vibration at discrete 

frequencies; these can be diagnosed easily. These faults manifest themselves as changes 

in a few associated frequencies in the spectrum. Eccentricity and misalignment cause 

low-frequency sinusoidal modulation resulting in an increase of sidebands of certain 

frequencies (depends on the component to be diagnosed) and their harmonics. Localized 

faults create short impulsive vibration, which transforms into a large number of low 

amplitude frequencies in the spectrum; they are difficult to diagnose or even detect.   
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3   Fault diagnosis through vibration analysis 

Condition monitoring (CM) is predictive maintenance process which monitors the 

condition of machinery. This can be achieved through an instrumentation technique such 

as machinery vibration analysis. Vibration analysis is the most commonly used method 

for diagnosing rotating machines. The frequency of the vibrations can also be mapped in 

order to identify failures; since certain frequencies will only be present when conditions 

that indicate an impending defect are present. Comparison of the vibration spectra of 

faulty condition signal versus good condition signal will provide the information required 

to make a decision when maintenance is required. 

Vibrations can be measured using seismic or piezo-electric transducers and eddy-current 

transducers from the majority of critical machines. The measuring method of the 

vibration signal is a complex process that requires specialized training and experience. 

Exceptions are state-of-the-art technologies that do the vast majority of data analysis 

automatically and provide information instead of data. These frequencies correspond to 

certain mechanical components. The location and the problem nature can be identified by 

examining the individual frequencies present in the signal. These frequencies correspond 

to certain mechanical components. Most vibration analysis instruments today utilize a 

fast Fourier transform (FFT) which converts the vibration signal from its time domain 

representation to its equivalent frequency domain representation. However, frequency 

analysis (sometimes called Spectral Analysis or Vibration Signature Analysis) is only one 

aspect of interpreting the information contained in a vibration signal. 

In many industrial applications, the vibration signal is used in many fault related studies. 

In a study for detecting faults in rotating machine, elements describe a device for 

detecting damage to rotators such as ball bearings (Noda, 1977). Mechanical oscillations 

are converted into an electrical signal and the peak value of this electric signal is detected. 

In another study, a roller bearing having a hairline fracture which will generate periodic 

vibrations each time the fracture contacts another machine element generating periodic 

vibrations were measured by using a vibration transducer attached to the machine (Hicho, 

1992). The transducer converts vibration signal into an electrical signal which is filtered 

to obtain selected frequencies of the electrical signal. The filtered electrical signal is then 

converted into a frequency spectrum by a fast Fourier transform. Random or spurious 

components are eliminated leaving only frequency components that are representative of 

the machine at given running speed. Corresponding frequency components are averaged 

and the highest average amplitude value is used as a bearing condition indicator. In 

another study for finding faults in machines include a fault detection system for detecting 

mechanical faults of machines that have one or more rotating elements (Robinson et al., 

1999). The system also includes a vibration sensor for sensing vibrations generated by at 
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least targeted rotating machine elements during machine operation to produce a vibration 

signal. 

Vibration signal was successfully used to monitor the tire pressure in an automobile. In 

this system, a MEMS-based triaxial accelerometer was used to acquire the vibration 

signal (Hemanth Mithun Praveen and Sugumaran, 2015). In another study, vibration 

signal was successfully implemented to monitor the single point cutting tool (Shalet, 

Elangovan, Jegadeeshwaran, Sugumaran., 2014). The application of vibration analysis 

was implemented in various conditions monitoring system such as centrifugal pump fault 

diagnosis (Sakthivel et al., 2010), tool wear monitoring (Sanidhya Painuli, Elangovan, 

Sugumaran, 2014), bearing fault diagnosis (Hemantha Kumar, Ranjit Kumar, Amarnath, 

Sugumaran, 2014) and brake fault diagnosis (Jegadeeshwaran and Sugumaran, 2013).    

These vibration data can be analyzed as a frequency domain data or time domain data 

using above mentioned techniques. Moreover, the nature of the vibration signal arising 

from the brake system is periodic and random. Due to wear and tear, the vibration signals 

obtained from an automobile brake system will not be a stationary one. Data modeling 

through machine learning approach can solve such problems to a greater extent. Due to 

wear and tear, the vibration signals obtained from a machine component will not be a 

stationary one. Data modeling through machine learning approach can solve such 

problems to a greater extent (Jin et al., 2012). 

4   Machine learning 

In early 1975, the goal of fault diagnosis was to store the vibration spectrum and to 

provide graphical tools so that the analyst can quickly access the data and determine the 

problem with the machine. Due to the advancement in computer technology, acquisition, 

storage and processing of a large amount of data have become practical. Most of the data 

acquisition systems are capable of logging real-time data in digital form reliably. The 

technological development that goes into the memory devices makes it possible to reduce 

the cost and size required to store large data. Today‘s technology provides the memory 

devices with much more reliability. The processors with high processing speed allow 

engineers to solve complex problems. Many of the machine learning methods are 

iterative in nature and they require such high-speed processors. The aforesaid 

developments accelerate the application of machine learning methods for solving 

problems in real time. Fault diagnosis is one of the application areas, where machine 

learning methods are widely used.  

Machine learning approach can be implemented through the following sequential steps. 

Feature extraction, feature selection, and feature classification. There are many features 

available namely, statistical features (Sugumaran and Ramachandran, 2007; 
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Jegadeeshwaran and Sugumaran, 2015), histogram features (Sakthivel, Indira, Nair, 

Sugumaran, 2011; Sugumaran and Ramachandran, 2011) and wavelet features (Soman 

and Ramachandran, 2005; Muralidharan and Sugumaran, 2012). The required features 

were extracted from the vibration signals through feature extraction technique. 

4.1   Feature extraction 

Statistical analysis of vibration signals yields different parameters which provide the 

physical characteristics of time domain data. Research work reported by McFadden and 

Smith (1984). Statistical analysis of vibration signals with different parameter 

combinations was used to elicit information regarding bearing faults. Such procedures 

use allied logic often based on physical considerations. A fairly wide set of these 

statistical parameters was selected as a basis for the study. They are mean, standard error, 

median, standard deviation, sample variance, kurtosis, skewness, range, minimum, 

maximum, and sum. In this study, these parameters were extracted from vibration signals 

and used as features. 

Observing the magnitude of the time domain signal, it is found that the range of vibration 

amplitude varies from class to class. A better graph to show the range of variation is the 

histogram plot. A histogram is a graphical representation of the distribution of numerical 

data. It is an estimate of the probability distribution of a continuous variable (quantitative 

variable) and was first introduced by Karl Pearson. To construct a histogram, the first 

step is to "bin" the range of values—that is, divide the entire range of values into a series 

of intervals—and then count how many values fall into each interval. The bins are 

usually specified as consecutive, non-overlapping intervals of a variable. The information 

derived from a histogram plot can be used as features in the fault diagnosis. A 

representative sample from each brake condition (class) is taken and the histogram is 

plotted. 

Autoregressive-moving-average (ARMA) models are mathematical models of the 

autocorrelation in a time series. ARMA models can be used to predict the behavior of a 

time series of past values alone. Such a prediction can be used as a baseline to evaluate 

the possible importance of other variables to the system. ARMA models are widely used 

for prediction of economic and industrial time series (Kashyap and Rangasami, 1982). 

Wavelets are mathematical functions that cut up data into different frequency 

components, and then study each component with a resolution matched to its scale. They 

have advantages over traditional Fourier methods in analyzing physical situations where 

the signal contains discontinuities and sharp spikes. As a mathematical tool, wavelets can 

be used to extract information from many different kinds of data, including – but 

certainly not limited to – audio signals, images, and vibration signals. Sets of wavelets 
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are generally needed to analyze data fully. A set of "complementary" wavelets will 

decompose data without gaps or overlap so that the decomposition process is 

mathematically reversible. Thus, sets of complementary wavelets are useful in wavelet-

based compression/decompression algorithms where it is desirable to recover the original 

information with minimal loss. 

4.2   Feature selection 

The process of selecting the best features from a pool of features is called ‗feature 

selection‘. The good feature will have feature values with minimum variation within a 

class and maximum variation between the classes. The main idea of feature selection is to 

choose a subset of input variables by eliminating features with little or no predictive 

information. Feature selection can significantly improve the comprehensibility of the 

resulting classifier models and often build a model that generalizes better to unseen 

points. The features can be any measure of data points or the signal; however, the 

relevance of them will depend on how well they help in the process of classification. 

Many techniques are used for feature selection. Some of them are principal component 

analysis (PCA) (Suykens, Van Gestel, Vandewalle, De Moor, 2003), genetic algorithm 

(GA) (Samanta, Al-balushi, Al-araim, 2003), decision tree (DT) (Sakthivel et al., 2010). 

Among them, Principle Component Analysis (PCA), decision tree and attribute evaluator 

are widely used.  

Principal component analysis (PCA) is one of the widely used multidimensional features 

transformation tools. In PCA, the amount of information is measured in terms of variance. 

PCA is the preferred choice because it is a simple and non-parametric method for 

extracting relevant information from datasets. The goal of PCA is to reduce the 

dimensionality of the data while retaining as much as possible of the variation in the 

original dataset. PCA is a technique that can be used to simplify a dataset. 

A decision tree is a graph that uses a branching method to illustrate every possible 

outcome of a decision. It is a tree-based knowledge methodology used to represent 

classification rules (Sugumaran and Ramachandran, 2011). Decision trees are typically 

built recursively, following a top-down approach. A standard decision tree consists of a 

number of branches. One branch is a chain of nodes from the root to a leaf, and each node 

involves one attribute. The incidence of an attribute in a tree provides the information 

about the importance of the associated. The c4.5 algorithm is a widely used one to 

construct decision trees.  

4.3   Feature classification 

The classifier is a function which maps a set of inputs from feature space to its 
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corresponding classes. In the present study, the classifier maps the set of extracted 

features to the condition of the machine components such as bearings, pump impellers, 

gears, and brakes. In practice, pattern classification can be carried out using many 

classifiers. The following sections describe briefly about the commonly used classifiers.  

The condition of the brake system (good or faulty) is basically fuzzy in nature. All the 

faults do not occur instantly. In that case, there is no threshold value (crisp data) based on 

which the decision on the condition of the brake component (whether it is in a good 

condition or a faulty condition) can be taken. The problems of this kind can be modeled 

using fuzzy logic more closely (Zeng and Wang, 1991; Huang et al., 1997; Huaqing 

Wang and Peng Chen, 2007). For brake fault diagnosis, fuzzy logic with statistical 

features provides better classification accuracy as 96.5 % (Jegadeeshwaran and 

Sugumaran, 2015).  

If the training features are separated without errors by an optimal hyperplane, the 

expected error rate on a test sample is bounded by the ratio of the expectation of the 

support vectors to the number of training vectors. The smaller the size of the support 

vector set, more general the above result will be. Further, the generalization is 

independent of the dimension of the problem. In such case a hyperplane is not possible; 

the next best is to minimize the number of misclassifications whilst maximizing the 

margin with respect to the correctly classified features. Originally, support vector 

machines were designed for binary classification (Quinlan, J. Ross, 1986; Hsu and Lin, 

2002). Currently, there are several methods that have been proposed for multi-class 

classification, such as ‗‗one-against-one‘‘, ‗‗one-against-all‘‘, and directed acyclic graph 

(DAG) (Wang, 1989; Sakthivel et al., 2010). A kernel function is an integral part of the 

SVM and contributes in obtaining an optimized and accurate classifier (Yang and Zhang, 

2005). A kernel function serves as a separating function, a hypersurface which optimally 

separates input data into two classes involving minimal support vectors. The support 

vectors are data points in input space lying on the kernel function hypersurface. There is 

no formal way to decide, which kernel function is suited to a class of classifier problem 

(Qingbo, Ruqiang, Fanrang, Ruxu, 2009). Most commonly used kernels are Radial Basis 

Function (RBF), polynomial, linear, multilayer perceptrons and sigmoid. SVM with both 

statistical and histogram features gives 100% classification accuracy for the roller bearing 

fault diagnosis (Sakthivel et al., 2010). For centrifugal pump fault diagnosis, SVM 

generates 100 % accuracy (Sakthivel et al., 2009). The same is applied for brake fault 

diagnosis also. SVM with statistical achieves 98.36 % (Jegadeeshwaran and Sugumaran, 

2015).  

One implementation of artificial immune systems called Clonal selection algorithm 

(CLONALG) inspired by the clonal selection theory of acquired immunity. Given the 

background, theory and an application of CLONALG to engineering applications, a new 
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clonal selection inspired classification algorithm called Clonal Selection Classification 

Algorithm (CSCA) has been designed. The clonal selection theory is a theory to describe 

the diversity of antibodies used defends the organism from invasion (William E. Paul, 

1991). An antibody is a molecule produced by B lymphocyte cells that can neutralize a 

single antigen. Each B lymphocyte (white blood cell) creates unique or customized 

antibodies of a specific type. The theory, when originally proposed was a point of 

contention and competed with another model called template theory. Today, the Clonal 

selection theory is seen as fact given the overwhelming amount of empirical evidence. An 

artificial immune system technique that is inspired by the functioning of the Clonal 

selection theory of acquired immunity is CSCA (Clonal selection Classification 

Algorithm). CSCA performs better with Statistical a feature which gives 98.36 % 

classification accuracy for brake fault diagnosis (Jegadeeshwaran and Sugumaran, 2015).   

Ensemble methods are often able to generate more accurate classifiers than the individual 

multiclass classifiers. They may be very slow or difficult to implement. As an alternative, 

it is common practice to transform multiclass problems into multiple two-class ones. The 

dataset is decomposed into several two-class problems, the algorithm is run on each one, 

and the outputs of the resulting classifiers are combined. Ensemble of Nested Dichotomy 

(END) is one such important technique which can be used as a learning algorithm to deal 

with multiclass problems directly. In multi-class problems, it is possible to obtain an 

ensemble, by combining binary classifiers. Lin Dong et al., developed a method to 

improve runtime for the multi-class problem using END (Lin Dong et al., 2005). Another 

study reported a method to improve the classification accuracy further using forests of 

nested dichotomies (Rodríguez et al., 2010). The nested dichotomy algorithm was 

successfully implemented for the brake fault diagnosis problem in 2015 (Jegadeeshwaran 

and Sugumaran, 2014). 

Rough set theory deals with the analysis of this classificatory property of a set of objects. 

The main goal of the rough set is to synthesize an approximation of concepts from 

acquired data. Large data sets acquired from measurements or from human experts may 

represent vague knowledge, for instance, uncertain or incomplete knowledge. Rough set 

theory provides the means to discern and classify objects in data sets of this type when it 

is not possible to divide the objects into defined categories. In rough set theory, 

knowledge is represented as a dataset in information systems. If a new attribute which 

represents some classification of the objects is added in the information system, then the 

system is called as a decision system. In most of the cases, not all of the knowledge in an 

information system is necessary to divide the objects into a class. In these cases, it is 

possible to reduce the knowledge. Reducing the knowledge results in reducts. Hence a 

minimal set of attributes is called as Reduct. The discernibility function is a conjunction 

of all the entries in the discernibility matrix that are not the empty set. The results of 
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conjunction or simplification are the possible reducts for the information system. It is also 

possible to generate a discernibility function from the discernibility matrix for one of the 

objects in the information system. The possible reducts for the particular object are 

obtained by simplifying this conjunction. From the reducts computed from the 

discernibility matrix, the decision rules are generated for classification of the objects. The 

objective is to generate a minimal number of possibly shortest rules or basic minimal 

covering rules for all the cases. For a monoblock centrifugal pump, bearing fault 

diagnosis, the rough set theory was successfully studied (Sakthivel et al., 2010). 

The task of classifying objects in artificial intelligence is hard because often the data may 

be noisy or having irrelevant attributes. Many different approaches have been tried with 

varying success. Some well-known schemes and their representations include ID3, which 

uses decision trees (Quinlan; 1986; Quinlan, 1989) and the instance-based learners IB1 - 

IB5 (Aha et al., 1991; Aha., 1992). These schemes have demonstrated excellent 

classification accuracy over a large range of domains. However, these instance-based 

algorithms lack to handle real-valued attributes and attributes with missing values. Many 

schemes which handle real feature values are extended to cope with symbolic attributes 

in an ad-hoc manner. Thus, a unified approach is very much needed to handle both real 

attributes and symbolic attributes. Hence, an instance based K Star learner was used to 

perform the brake fault diagnosis study (Jegadeeshwaran and Sugumaran, 2014).  

Best first decision tree learning tree produces good performance models. When building 

models, decision tree algorithms separate instances from the root node to the terminal 

nodes. While performing classification, the decision tree algorithms start at the root node, 

test the attribute, and then move down to the tree branch corresponding to the value of the 

attribute. This process is repeated until a terminal node is reached. The classification of 

the terminal node is the predicted value for the instance. The best-first decision tree 

learning expands the ―best‖ node first. It generates fully expanded tree for a given set of 

data. Splitting criteria are designed to measure node impurity in order to find the best 

node. The goal of splitting is to find the maximal decrease of impurity at each node. The 

decrease of impurity is calculated by subtracting the impurity values of successor nodes 

from the impurity of the node. Information and Gini index are the two extensively used 

criteria in best-first decision tree learning (Quinlan, 1986). In information theory, the 

decrease in impurity is measured by the information gain. Similarly, the decrease in 

impurity is measured by the Gini gain in Gini index (Breiman et al., 1983).  

There are many machine learning algorithms which have been studied for the various 

component fault diagnosis problems. Amongst them, Naïve Bayes (Muralidharan and 

Sugumaran, 2012), Bayes net (Hemantha Kumar, Ranjit Kumar, Amarnath and 

Sugumaran, 2014), rough set (Sakthivel, Sugumaran and Binoy B. Nair, 2012), random 

forest (Babu Devasenapati and Ramachandran, 2012), ripple down rule learner (Shirazi H. 
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and Sammut C. A., 2008), part classifier (Frank E. and Witten I. H., 1998), locally 

weighted learning (Englert Peter, 2012) have been tried for the various components fault 

diagnosis problems. 

5   Future scope 

There are some more machine learning approaches which have not been even tried for the 

fault diagnosis study. Artificial Immune Recognition System (AIRS), Variational Mode 

decomposition, ant minor.  

Artificial Immune Systems (AIS) can be defined as computational systems motivated by 

theoretical immunology and observed immune functions, principles, and models, which 

are useful for problem-solving. Artificial immune recognition system [AIRS] is an area 

of study committed to the development of computational models based on the principles 

of the biological immune system (BIS). It is a budding area that explores and employs 

different immunological mechanisms to solve computational problems. BIS is a complex, 

adaptive, highly distributive learning system with several mechanisms for defense against 

pathogenic organisms. It employs several alternatives and complementary mechanisms 

for protection against foreign pathogens. The immune system learns, through adaptation, 

to distinguish between dangerous foreign antigens and the body‘s own cells or molecules. 

Clearly, nature has been very efficient in creating organisms that are capable of defending 

themselves against a wide variety of pathogens such as microbes, fungi, and parasites. 

The powerful information – processing capabilities of the immune system, such as 

feature extraction, pattern recognition, learning, memory, and its distributive nature 

provides rich metaphors for its artificial counterpart. Immune-inspired models have been 

developed in an attempt to solve complex real-world problems such as abnormality 

detection, pattern recognition, data analysis (clustering), function optimization, fault 

classification and computer security. Timmis and Neal (2001) experimented with 

resource limited artificial immune systems. In particular, they developed the concept of 

an artificial recognition ball (ARB), which has the same representation as a B cell, 

however, it may stand for any number of indistinguishable B cells. Each ARB represents 

a certain number of the B cells or resources, and the total number of resources of the 

system is bounded. AIRS (Artificial Immune Recognition System) is a novel immune 

inspired supervised learning algorithm using clonal selection, affinity maturation, and 

affinity recognition balls (ARBs) which gives a scope for a better machine learning 

algorithm for brake fault diagnosis study (Watkins and Timmis, 2004). 

Variational Mode Decomposition (VMD) decomposes the signal into various modes or 

intrinsic mode functions using the calculus of variation.  Each mode of the signal may 

have compact frequency support around a central frequency.  VMD tries to find out these 
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central frequencies and intrinsic mode functions centered on those frequencies 

concurrently using an optimization methodology called ―alternating direction multiplier 

method (ADMM)‖ (Konstantin Dragomiretskiy and Dominique Zosso, 2014).  The 

original formulation of the optimization problem is continuous in the time domain. Since 

the classification accuracy fully depends on the condition of the signal, the raw signal 

obtained from the brake setup cannot be used directly for analysis due to noise. It is 

essential to improve the condition of the signal through some preprocessing techniques. 

Hence a new preprocessing technique can be used to decompose the signal into various 

modes or intrinsic mode functions (IMFs) using calculus variations. The modes may have 

compact frequency support around the central frequency. ADMM is used as an 

optimization tool to find such central frequencies concurrently. The main purpose of 

decomposing a signal is to identify various components (descriptive statistical features) 

of the signal. This work may focus on a new algorithm - variational mode decomposition 

(VMD), which extracts different modes present in the signal. The extracted statistical 

feature modes can be classified using the various machine learning algorithm. 

Referring to the literature study, the machine learning approach has been proposed for a 

brake system under static condition (constant brake force and constant speed) and the 

results are satisfactory ((Jegadeeshwaran and Sugumaran, 2013). Hence, this review 

suggested that the same machine learning approach can be implemented on the real-time 

model (Ex. Brake system of a car) considering all possible driving conditions. The fault 

diagnosis model can be implemented for a brake system by developing an onboard 

diagnostic model which states the condition of the vehicle directly. An onboard 

diagnostic model consists hardware and software for extracting features from the 

acquired vibration signals. The feature selection and feature classification, displaying the 

condition of the brake system are the ongoing research attempts which have been carried 

out in this automobile brake fault diagnosis study. 

6   Conclusions 

The machine learning approaches have been successfully studied for monitoring the 

machine components such as gears, tool condition, bearing faults, pump impeller faults, 

wind turbine blade faults, brake faults, etc. Based on the above review, there are many 

scopes for the machine learning approaches in the fault diagnosis field. The study proved 

that the suitably extracted statistical and histogram information can be used for 

diagnosing the brake faults. Based on this information, the decision about the action to be 

carried out can be scheduled. This will provide an effective fault diagnosis model which 

states the condition of the brake system. The application of machine learning can be 

extended for monitoring the brake condition on a real-time brake system which is an 

ongoing attempt.    
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