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Abstract: In this study, a recently developed peridynamic lattice model called the “State-
based Peridynamic Lattice Model” (SPLM) is improved and demonstrated. In the SPLM, 
rather than as a continuum, solids are simulated using a close-packed lattice of 
peridynamically interacting particles. The new SPLM approach advances the SPLM 
model by improving the damage and plasticity models. Elasticity, plasticity and damage 
are coupled in this approach. A robust method for damage initiation is developed. A new 
damage model called the “two-spring damage model” allows damage to localize to a 
single lattice particle, thus allowing highly localized damage (cracks) to emerge in a 
realistic manner. A plasticity model that includes hardening, softening, and damage due 
to plasticity is proposed and demonstrated. Peridynamic boundary effects are modeled 
efficiently and reasonably. The improved SPLM method is then employed to simulate 
three common concrete laboratory tests: Uniaxial tension, uniaxial compression, and the 
Brazilian split cylinder test. The SPLM results are then compared with results from the 
earlier SPLM model, with simplified classical predictions, and with laboratory results. By 
solving the same benchmark problems using various lattice rotations and lattice spacings, 
the approach is demonstrated to be sufficiently objective to be a useful engineering tool 
to predict the essentially random behavior of concrete laboratory specimens. The 
improved SPLM demonstrates significant improvements over the previously published 
version and is found to simulate concrete structures accurately and efficiently using far 
less computational effort than comparable computational simulation methods. 
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1 Introduction 
In 2000, an alternative approach to classical continuum mechanics, introduced by Silling 
[Silling (2000)], called the “peridynamic” model was proposed. The peridynamic model 
uses nonlocal interparticle force interactions and thus avoids an assumption of 
differentiability of the displacement field. In this theory, a nonlocal pairwise peridynamic 
force function, which is a function of reference and deformed particle positions, is assumed. 
In the initial approach [Silling (2000)], later called the “bond-based peridynamic model”, 
the pairwise force function between two interacting particles was assumed to be a function 
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only of the relative positions between the interacting pair of particles. The bond-based 
model was found to be insufficiently general, forcing a specific Poisson’s ratio, and 
lacking the capability to adequately model isochoric plastic deformations. In Gerstle et al. 
[Gerstle, Sau and Silling (2007)], these shortcomings were partially resolved by the 
development of the “micropolar bond-based peridynamic model” which includes 
rotational degrees of freedom. Also, in 2007, a second continuum peridynamics approach, 
called the “state-based peridynamic model”, was published [Silling, Epton, Weckner et al. 
(2007)]. In the state-based approach, the pairwise peridynamic force function is not only 
a function of the positions of the two adjacent interacting particles, but is also a function 
of other neighboring particles within a local neighborhood. The state-based model 
allowed for entirely general solid models, without the limitations of the bond-based 
methods. However, compared to the bond-based methods, the state-based approach is 
more complex. In addition, due to requiring many more particles in the computation of 
the pairwise force function, the computational cost of the state based approach is much 
higher than that of the bond-based model. Some recent and useful studies of continuum 
peridynamics are found in Silling et al. [Silling and Askari (2005); Macek and Silling 
(2007); Silling and Lehoucq (2010); Mitchell, Silling and Littlewood (2015); Silling, 
Littlewood and Seleson (2015); Seleson and Littlewood (2016); Rabczuk and Ren (2017); 
Silling (2017); Silling, Parks, Kamm et al. (2017); Foster and Xu (2018); Hattori, 
Trevelyan and Coombs (2018); Pasetto, Leng, Chen et al. (2018)]. 
In both the bond-based and the state-based peridynamic approaches, the reference 
material space is treated as a continuum. Hence, Silling’s methods are continuum 
peridynamic models. In 2015, Gerstle [Gerstle (2015)] presented state-based 
peridynamics using a lattice. The proposed method is called the “State-Based 
Peridynamic Lattice Model” (SPLM). In the SPLM, the material reference domain is 
represented by a finite number of particles in a regular lattice configuration. With the 
SPLM, the topological neighborhood of each particle is assumed to remain invariant 
throughout the simulation. The peridynamic force functions in the SPLM are explicitly 
designed to minimize the required number of neighbors within the material horizon of 
each particle. Thus, the SPLM, while not perfectly objective, is much more efficient, in 
terms of computational effort, than the continuum peridynamic approach. Further studies 
showed that the initial published version [Gerstle (2015)]  of the SPLM was insufficiently 
objective: the simulations including damage and plasticity did not accurately match 
classical solutions, did not accurately replicate experimental behavior, did not converge 
well with lattice refinement, and were somewhat sensitive to lattice rotation, translation, 
and particle spacing.   
In this study, improved SPLM peridynamic force functions are developed and 
demonstrated. In the new model, a single damage variable is associated with the particle 
instead of with the bonds; thus, we call this damage model a particle-based isotropic 
damage model. The new “two-spring” damage model has the capability of modelling 
more localized stretch states and consequent damage than in the previous SPLM model. 
The two-spring damage model allows adjacent particles with greatly differing damage 
and stretch states to interact in a reasonable way. A suitable hardening and softening 
plasticity model, including damage caused by excessive plastic work, is also proposed. 
An improved SPLM explicit dynamic solution algorithm is also presented.  
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The improved SPLM is then demonstrated, using plain stress simulations of three 
common concrete laboratory tests. The results are compared with those of classical 
approaches and with the behavior of laboratory tests. The approximate objectivity of the 
approach is demonstrated by simulating each test with varying SPLM lattice rotations.  
The SPLM simulation results demonstrate sufficient realism and superior computational 
efficiency in modelling concrete structures. While we recognize that the SPLM is not 
absolutely objective in the sense of tensor mathematics and continuum mechanics, the 
SPLM approach “exploits an engineer’s tolerance for imprecision” (to paraphrase a quote 
by Zadeh [Zadeh (1973)], is reasonably objective, is physically realistic, and is more 
computationally efficient than other computational models presented in the literature of 
which we are aware. Once correctly calibrated, the SPLM recognizes the meso-
mechanical size scale of the material being modeled and requires no tedious (and 
ultimately unhelpful) convergence studies. 

2 Improved State-based Peridynamic Lattice Model (SPLM) 
In this section, the main differences between the continuum and discrete peridynamic 
formulations are demonstrated, and a revised formulation of the SPLM is proposed and 
discussed.  
Continuum state-based peridynamic theory was initially proposed by Silling et al. [Silling, 
Epton, Weckner et al. (2007)] as an alternative to classical continuum mechanics methods. 
Roughly following reference [Silling, Epton, Weckner et al. (2007)], the peridynamic 
equation of motion of particle 𝑿 is expressed as 

𝜌(𝑿)�̈�(𝑿, 𝑡) =  ∫ 𝒇𝑿𝑿′𝐻𝒙
𝑑𝑉𝑿′ + 𝑩(𝑿, 𝑡),                                                                    (1) 

where 𝑿 and 𝑿′ are the initial, reference position vectors of two neighboring particles 
within the peridynamic horizon 𝐻𝑿  of particle 𝑿, 𝜌(𝑿) is the mass density associated 
with particle 𝑿  in the reference configuration, 𝒙  is the deformed position vector of 
particle 𝑿, 𝑩 is the externally applied body force vector, 𝑡 is time, and 𝒇𝑿𝑿′  is a function 
called the “pairwise force function”, described in terms of force states as 
𝒇𝒙𝒙′ =  𝑻[𝑿, 𝑡]〈𝑿′ − 𝑿〉 − 𝑻[𝑿′, 𝑡]〈𝑿 − 𝑿′〉.                                                              (2) 
Here, 𝑻 is a “force state”, which is a vector function of the deformation of all the bonds 
connected to particle 𝑿 in the neighborhood 𝐻𝑿 of particle 𝑿. The mathematical notation 
𝑻[𝑿, 𝑡]〈𝑿′ − 𝑿〉 means that the force state, 𝑻, is acting on particle 𝑿, at time 𝑡, and on the 
reference bond 〈𝑿′ − 𝑿〉.  In this paper, following Gerstle [Gerstle (2015)], we employ a 
revised definition of the force state 𝑻  that is more suitable for a lattice reference 
configuration. We also propose a revised definition of the pairwise force function,  𝒇𝒙𝒙′, 
that is more general than what is employed by Silling (Eq. (2)) and more proper when 
incorporating localized damage and plasticity.  
The constitutive peridynamic equation of motion (Eq. (1)) is based upon the following 
assumptions: 
(1) Particle 𝑿 moves in accordance with Newton’s second law. 
(2) The topology of the particles surrounding particle 𝑿  does not change during the 
motion. 
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(3) The peridynamic family of particle 𝑿 is a continuum. In other words, the reference 
material domain is assumed to be a continuum. 
(4) The pairwise force function (𝒇), or essentially force state (𝑻), is Reimann integrable, 
and the integral in Eq. (1) converges uniformly [Silling, Epton, Weckner et al. (2007)]. 
The state-based peridynamic approach, proposed by Silling et al. [Silling, Epton, 
Weckner et al. (2007)], is a more general formulation than classical continuum mechanics 
because, by employing an appropriate peridynamic constitutive model, it can simulate 
both continuous and discontinuous deformation fields. Silling presented state-based 
peridynamics as an alternative continuum approach because it is developed based upon a 
continuum reference domain. However, the state-based continuum peridynamic model 
must be discretized to be of practical use. Usually discretized using a particle lattice, the 
continuum model requires very many lattice particles be included in the family of each 
particle. In addition, as cracks evolve, very many peridynamic bonds spanning the crack 
trajectory must be fully broken to represent a discrete crack. 
Classically, structural models have been defined using crisp analytical surface boundaries. 
This is a mathematical convenience that may not accurately represent realistic boundaries 
of solids. With peridynamics, representation of these artificially crisp boundaries is a 
modelling burden that is neither helpful nor necessary. Indeed, particles in the structure 
that are closer than the material mesoscale to an (artificially assumed) analytical 
boundary cannot be considered to consist of the same material as the part of the structure 
that is far (compared to the mesoscale) from the boundary. Classical solid mechanics 
assumes that the representative volume element is infinitesimal, but this is a reasonable 
assumption neither for solids with mesoscale not much smaller than the macroscale, nor 
for solids that crack. We dispense completely with the explicit concept of “analytical 
boundary” when using a particle lattice to model a structure. Boundaries emerge naturally 
because lattice particles are missing neighbors initially, as well as because during the 
simulation lattice particles may become connected to fully damaged bonds. Thus, as 
damage develops within a lattice body, new boundaries may emerge naturally. 
Emergence of boundaries is much more difficult with classical continuum representations. 
In this study, a lattice-based material space for the state-based peridynamic theory is 
employed. Consider a spherical (circular in 2D) peridynamic family 𝐻𝑖, centered upon 
lattice particle i, with radius (material horizon) 𝛿. Depending upon the material horizon 𝛿, 
the “family” of particle i includes a finite number,𝑁𝑃𝑖 , of particles interacting with i. An 
ordered list of lattice particles is called the “neighbor-list of particle i” (this list does not 
include particle i). It is assumed that particles not in the family of particle i will not have 
any force interaction with particle i. In the SPLM approach it is assumed that particle i 
interacts with each particle within its family via a bond. The acceleration of particle i at 
time step n,  �̈�𝑖𝑛 = �̈�(𝑿𝑖, 𝑡𝑛), is calculated as  

𝑚𝑖�̈�𝑖𝑛 = ∑ (𝑭𝒃)𝑖𝑗𝑛
𝑁𝑃𝑖
𝑗=1 + 𝑩𝑖

𝑛.                                                                                           (3) 

Eq. (3) is the SPLM discrete equation of motion. In Eq. (3), 𝑚𝑖 is the mass of particle 𝑖, 
𝑁𝑃𝑖 is the total number of particles within the family of particle i, 𝑩𝑖

𝑛 is the body force 
acting on particle 𝑖 at time step 𝑛, and (𝑭𝒃)𝑖𝑗𝑛  is the bond force acting on particle 𝑖 in the 
direction of deformed bond 𝑖𝑗, and at time step 𝑛.  
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In the improved SPLM, in the time-discretized explicit dynamic approach, the bond force 
between particles 𝑖 and 𝑗, (𝑭𝒃)𝑖𝑗𝑛 , at time step 𝑛 is assumed to be a function 𝚽 of force 
states (𝑭𝒔)𝑖𝑗𝑛−1 and (𝑭𝒔)𝑗𝑖𝑛−1 computed at time step 𝑛 − 1: 

(𝑭𝒃)𝑖𝑗𝑛 = 𝚽�(𝑭𝒔)𝑖𝑗𝑛−1, (𝑭𝒔)𝑗𝑖𝑛−1�.                                                                        (4)  
By computing the bond forces from the force states calculated in the previous time step 
(rather than in the current time step), we ensure that the computed bond forces are 
independent of the order in which the particles are visited within a given time step. Because 
with an explicit time integration approach the time steps must be very small to satisfy the 
dynamic stability criterion, this approximation is found to be acceptable, as particle 
positions and state variables vary little from one time step to the next. Also, if a state 
variable does jump from one time step to the next, it makes little difference in precisely 
which time step the jump occurs, as the time steps are so small. No iterations are performed 
within a given time step; we use a strictly Eulerian time integration approach. 
The definition of the force state  (𝑭𝒔)𝑖𝑗𝑛  in SPLM is discussed in Section 2.1. The function 
𝚽 in the SPLM satisfies the following conditions. Firstly, Newton’s third law is satisfied 
so that (𝑭𝒃)𝑖𝑗𝑛 = −(𝑭𝒃)𝑗𝑖𝑛 . Secondly, the bond forces (𝑭𝒃)𝑖𝑗𝑛  are assumed to be collinear 
with the deformed particle positions. Finally, the force state, (𝑭𝒔)𝑖𝑗𝑛 , is not a function only 
of the attributes of particles 𝑖 and 𝑗, but also of the attributes of all of the lattice particles 
within in the family of particle 𝑖.  

2.1 Linear-elastic SPLM 
The hexagonal lattice (in 2D), and the face-centered cubic lattice (in 3D) are chosen 
because of their high degree of symmetry [Gerstle (2015)]. In this paper, for simplicity, 
and without loss of generality, we consider only the 2D case. With the 2D hexagonal 
lattice, as shown in Fig. 1, the simplest neighbor list of particle i possesses six potential 
neighbors. Except for missing lattice neighbors on the boundary, the number of neighbors 
for each interior particle is  𝑁𝑝𝑖 = 6. The radius of the horizon of every particle is fixed 
as the lattice spacing, 𝐿0. The finite volume associated with each particle is ∆𝑉𝑖 = ∆𝑉 =
(√3 2⁄ )𝑡𝐿02, shown in Fig. 1a, where 𝑡 is the thickness of the 2D body.  
The bond force between two particles takes on the minimum of the absolute value of the 
two force states evaluated with respect to the two connected particles, with due respect to 
sign, except that if the signs of the two force states are different, the average of the two 
force states is used. This modification to the original state-based theory [Silling, Epton, 
Weckner et al. (2007); Gerstle (2015)] is advantageous if the  difference in damage, and 
hence force states, between adjacent lattice particles is large. 
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Regarding the lattice topology, the bonds are numbered from 1 to 6 in the order shown in 
Fig. 1, thus simplifying the computations. Opposing bonds are called complementary 
bonds. Thus, Bonds 1 and 2 are complementary, etc.  
The bond forces (𝑭𝒃)𝑖𝑗𝑛  are calculated from bond states (𝑭𝒔)𝑖𝑗𝑛−1 in Eq. (4) as 

(𝑭𝒃)𝑖𝑗𝑛 = 𝚽�(𝑭𝒔)𝑖𝑗𝑛−1, (𝑭𝒔)𝑗𝑖𝑛−1� =

                     �
𝑚𝑖𝑛��(𝐹𝑠)𝑖𝑗𝑛−1�, �(𝐹𝑠)𝑗𝑖𝑛−1�� × 𝑠𝑖𝑔𝑛((𝐹𝑠)𝑖𝑗𝑛−1) 𝑖𝑓 (𝐹𝑠)𝑖𝑗𝑛−1  × (𝐹𝑠)𝑗𝑖𝑛−1 > 0

1
2
�(𝐹𝑠)𝑖𝑗𝑛−1 + (𝐹𝑠)𝑗𝑖𝑛−1� 𝑖𝑓 (𝐹𝑠)𝑖𝑗𝑛−1 ×  (𝐹𝑠)𝑗𝑖𝑛−1 ≤ 0

 

 (5) 
In the original linear-elastic SPLM [Gerstle (2015)], the force state (𝑭𝒔)𝑖𝑗  acting on 
particle i in direction of particle j, is assumed as a linear combination of the elastic stretch 
(𝑆𝑒)𝑖𝑗  between i and j, as well as of the summation of the stretches of all the other bonds 
in the horizon of particle i. Hence,  (𝐹𝑠)𝑖𝑗  is defined as 

(𝐹𝑠)𝑖𝑗 = 𝑎(𝑆𝑒)𝑖𝑗 + 𝑏 ∑ (𝑆𝑒)𝑖𝑚6
𝑚=1 ,                                                                       (6) 

where the peridynamic elastic constants 𝑎 and 𝑏 are associated with particle i, and (𝑆𝑒)𝑖𝑗  
is the elastic stretch in bond ij, defined as 

(𝑆𝑒)𝑖𝑗 = (𝑆𝑇)𝑖𝑗 −
1
2
�(𝑆𝑃)𝑖𝑗 + (𝑆𝑃)𝑗𝑖 � ,                                                                    (7) 

where (𝑆𝑇)𝑖𝑗  and (𝑆𝑃)𝑖𝑗   are, respectively, the total stretch and the plastic stretch between 
particles i and j. Note that for the linear elastic case, the plastic terms in Eq. (7) are null. 
The total stretch, (𝑆𝑇)𝑖𝑗 , is defined based on the current length, 𝐿, and reference length, 
𝐿0, of the bond between particles i and j, as 

(𝑆𝑇)𝑖𝑗 = �𝐿−𝐿0
𝐿0

 �
𝑖𝑗

 ,                                                                                                    (8) 

a 

𝒋𝒋  (= 𝟏𝟏) 
 

𝟑𝟑 𝟓𝟓 

𝟐𝟐 

𝟒𝟒 𝟔𝟔 

i 

Plastic Element 

Spring 

Damper 

(b) (a) 

Figure 1: General re-formulated SPLM model. (a) Lattice topology and bond numbering 
order. The associated volume of the particle i (= ∆𝑽𝑽) is shown in gray. (b) SPLM elasto-
plastic damage model including two serial springs, a plastic element, and an internal 
damper within each bond 
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where 𝐿 = �(𝑥𝑗 − 𝑥𝑖)2 + (𝑦𝑗 − 𝑦𝑖)2   and 𝐿0 = �(𝑋𝑗 − 𝑋𝑖)2 + (𝑌𝑗 − 𝑌𝑖)2 , and where 

(𝑥,𝑦) and (X,Y) are, respectively, the coordinates of the particles in the current and the 
reference configurations. The force-stretch relation is expressed in matrix form as 
𝑭𝑺𝑖 = 𝑲𝑖𝑺𝒆𝑖,                                                                                                             (9) 
where 
𝑭𝑺𝑖 = �(𝐹𝑠)𝑖𝑗 �6×1

= �(𝐹𝑠)𝑖1, … , (𝐹𝑠)𝑖𝑗 , … , (𝐹𝑠)𝑖6�,    

𝑺𝒆𝑖 = �(𝑆𝑒)𝑖𝑗 �6×1
= �(𝑆𝑒)𝑖1, … , (𝑆𝑒)𝑖𝑗 , … , (𝑆𝑒)𝑖6�, 

and the micro-elastic stiffness matrix associated with particle i, 𝑲𝑖, is 

𝑲𝑖 = 𝑲 =

⎣
⎢
⎢
⎢
⎡
𝑎 + 𝑏 𝑏
𝑏 𝑎 + 𝑏 ⋯ 𝑏         𝑏

        𝑏
⋮               ⋱                 ⋮
𝑏       
𝑏      𝑏

⋯ 𝑎 + 𝑏 𝑏
𝑏 𝑎 + 𝑏⎦

⎥
⎥
⎥
⎤

6×6

.                                         (10) 

Given a global XY Cartesian coordinate system, the kinematic stretch-strain relationship, 
assuming homogeneous small strain deformations, is derived as 

𝑆𝑖𝑗 = �𝑁𝑥𝑖𝑗�
2
𝜀𝑥 + �𝑁𝑦𝑖𝑗�

2
𝜀𝑦 + 𝑁𝑥𝑖𝑗𝑁𝑦𝑖𝑗𝛾𝑥𝑦,                                                          (11)         

and in matrix form as 
𝑺𝑖 = 𝑵𝑖𝜺𝑖,                                                                                                             (12) 
where the stretch vector is 𝑺𝑖 = �𝑆𝑖𝑗�6×1

= �𝑆𝑖1, … , 𝑆𝑖𝑗 , … , 𝑆𝑖6� , the strain vector is 
𝜺𝑖 = �𝜀𝑥 , 𝜀𝑦, 𝛾𝑥𝑦�𝑖, and the transformation matrix, 𝑵𝑖, is defined as 

𝑵𝑖 =

⎣
⎢
⎢
⎢
⎢
⎡(𝑁𝑥𝑖1)2

⋮
�𝑁𝑥𝑖𝑗�

2

⋮
(𝑁𝑥𝑖6)2

�𝑁𝑦𝑖1�
2

⋮
�𝑁𝑦𝑖𝑗�

2

⋮
�𝑁𝑦𝑖6�

2

𝑁𝑥𝑖1𝑁𝑦𝑖1
⋮

𝑁𝑥𝑖𝑗𝑁𝑦𝑖𝑗
⋮

𝑁𝑥𝑖6𝑁𝑦𝑖6⎦
⎥
⎥
⎥
⎥
⎤

6×3

.                                                                       (13)  

Here, 𝑁𝑥𝑖𝑗  is the direction cosine between bond ij and the x-axis in the reference 
configuration, and so on. 
To find the peridynamic elastic constants 𝑎 and 𝑏 for a finite volume ∆𝑉𝑖  of a linear-
elastic solid in terms of the classical elastic moduli 𝐸 and  𝜈  associated with particle 𝑖, 
the strain energies stored by equivalent volumes of the classical linear-elastic model and 
the SPLM particle are assumed to be identical under the equivalent deformation states:  

𝛿𝑊𝐶𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙 = 𝛿𝑊𝑆𝑃𝐿𝑀; therefore  𝝈𝑖𝑇𝛿𝜺𝑖∆𝑉𝑖 =  1
2
𝑭𝑺𝑖

𝑇𝑳0𝑖𝛿𝑺𝒆𝑖,                               (14)  

where 𝛿𝑺𝒆𝑖 and 𝛿𝜺𝑖  are, respectively, the kinematically equivalent elastic stretch states 
and strain vectors, 𝝈𝑖 = �𝜎𝑥,𝜎𝑦, 𝜏𝑥𝑦�𝑖  is the classical Cauchy stress, and 𝑳0𝑖  is the 
diagonal reference bond length matrix 
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𝑳0𝑖 =

⎣
⎢
⎢
⎢
⎡
𝐿0 0 ⋯ 0
0
⋮ ⋱ ⋮

0
0 ⋯ 0 𝐿0⎦

⎥
⎥
⎥
⎤

6×6

= 𝐿0𝑰      (for the 2D case).                                    (15)  

By substituting Eq. (12) into Eq. (14) and recognizing that 𝛿𝜺 is arbitrary and therefore 
can be dropped from both sides of the equation, we obtain the relation for the stress at 
particle 𝑖: 
𝝈𝑖 =  𝑴𝑖𝑭𝑺𝑖,                                                                                                   (16) 

where 𝑴𝑖 = 1
2∆𝑉𝑖

𝑳0𝑖𝑵𝑖
𝑇 . From the classical linear-elastic theory [Sadd (2009)], the 

stress-strain relation is 
𝝈𝑖 = 𝑫𝜺𝑖,                                                                                                                (17) 
where 𝑫3×3  is the classical plane strain or plane stress elastic stiffness matrix. By 
substituting Eq. (9) into Eq. (16), and equating Eqs. (16) and (17); the following 
constitutive relation for particle 𝑖 is derived 
𝑫 = 𝑴𝑖𝑲𝑖𝑵𝑖  .                                                                                                        (18) 
For particles in the reference configuration and in the bulk material, Eq. (18) represents a 
system of equations, with 9 equations and 2 unknowns: The SPLM peridynamic elastic 
moduli 𝑎 and 𝑏. Assuming a linear elastic isotropic material, the peridynamic micro-
elastic constants are functions of Young’s modulus 𝐸 and the Poisson’s ratio 𝜈.  
We ignore the fact that boundary particles have fewer bonds, and assume that 𝑲 is valid 
for all the horizons in the domain. Further, we associate the same material volume (∆𝑉) 
with all the particles in reference configuration (including boundary particles), and 
assume an invariant N matrix (Eq. (13)). Finally, we solve Eq. (18) to obtain the 
peridynamic elastic constants 𝑎 and 𝑏 for plane stress as  

𝑎 = 2𝐸𝐿0𝑡
√3(1+𝜈) , 𝑏 = 𝐸𝐿0𝑡(1−3𝜈)

6√3(𝜈2−1) ,                                                                                  (19) 

(note the factor of 2 error for 𝑏 in Gerstle [Gerstle (2015)]), and for plane strain as 

𝑎 = 2𝐸𝐿0𝑡
√3(1+𝜈) , 𝑏 = 𝐸𝐿0𝑡(1−4𝜈)

6√3(2𝜈−1)(𝜈+1)
 ,                                                                               (20) 

where E is Young’s modulus, 𝜈 is Poisson’s ratio, t is the material thickness, and 𝐿0 is the 
reference lattice spacing. As can be seen, with the SPLM, the elastic constants 𝑎 and 𝑏 are 
obtained with reference to the lattice, and without the need for solving integral equations 
over a continuum domain. If the deformations are small, homogeneous, and far from a 
boundary, the SPLM elastic solution is linear and matches the classical elastic solution. 
However, the SPLM simulates large gradients of the deformation field in a reasonable 
manner that is not matched by small-deformation classical linear elasticity theory. Although 
the elastic bond forces are linearly related to bond stretches, because bond rotations may be 
large, the presented elastic SPLM forces are not linear with respect to particle positions 
because the bond stretches are not linearly related to particle positions.  
The SPLM exhibits physically plausible boundary effects, which can be refined based 
upon experimental evidence. This is different from classical elasticity, which (without 
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modification) does not include boundary effects, even where they might physically exist. 
As the lattice spacing decreases, the boundary effects have a decreasing effect upon the 
overall elastically stored energy. 

2.2 SPLM plasticity model 
In this section, a plasticity model for the SPLM is presented. The yield criterion, flow 
rule, and model for the evolution of the yield surface, including both plastic hardening 
and plastic softening, are described. The plasticity model developed here is similar to the 
classical  𝐽2 plasticity model, with an evolving Von Mises yield surface. In the SPLM, the 
plasticity model is expressed in terms of bond forces and plastic bond stretches, rather 
than in terms of stresses and strains. Because the lattice model has a built-in localization 
limiter (the lattice spacing 𝐿0), plastic softening can be accommodated, unlike with the 
classical plasticity model, where softening plastic strains become unbounded. 
In classical continuum theory, the stress tensor,𝝈, is decomposed in terms of deviatoric, 
𝝈𝑑 , and hydrostatic, 𝝈ℎ , stresses as 𝝈 =  𝝈𝑑 + 𝝈ℎ . The hydrostatic stress 𝝈ℎ  is the 
average of the diagonal components (normal components) of the stress tensor 𝝈ℎ =
1
3
�𝑡𝑟(𝝈)�𝑰; therefore, the deviatoric stress tensor is expressed as 

𝝈𝑑 = 𝝈 − 𝝈ℎ = 𝝈 − 1
3

(𝑡𝑟(𝝈)) 𝑰.                                                                          (21) 

In the SPLM linear-elastic model, the relation between the classical stress vector, 𝝈, and 
the force state vector is expressed using Eq. (16) as 𝝈 = 𝑴𝑭𝑺, and the stress components 
of 𝝈 can therefore be expressed in terms of the force state. Thus, the equivalent deviatoric 
stress tensor 𝝈𝑑 in terms of the force state 𝑭𝑺 can be computed. Finally, the equivalent 𝐽2 
plasticity for SPLM is defined as one-half of the L2 norm of the equivalent deviatoric 
stress tensor as 

𝐽2 =  1
2
‖𝝈𝑑‖2 .                                                                                (22) 

The yield condition is implemented by defining a yield indicator 

𝑌 = 𝐽2
��𝐹𝑌𝑒𝑓𝑓�

2/3�
 ,                                                                                                      (23) 

where 𝐹𝑌𝑒𝑓𝑓  is the current uniaxial yield stress. The yield condition is reached when 
𝑌 ≥ 1. 
The linear plastic hardening (see Fig. 3c) as well as time-dependent plastic softening are 
modelled via the effective yield function, 𝐹𝑌𝑒𝑓𝑓: 

�
𝐹𝑌𝑒𝑓𝑓𝑛+1 = 𝑚𝑎𝑥 �𝐹𝑌𝑒𝑓𝑓𝑛  ,𝑓𝑦 + �𝑓𝑢 −𝑓𝑦

𝜀𝑢𝑙𝑡
� 𝜀p𝑒𝑓𝑓

𝑛 �      𝑖𝑓  𝜀p𝑒𝑓𝑓
𝑛 < 𝜀𝑢𝑙𝑡

𝐹𝑌𝑒𝑓𝑓𝑛+1 = 𝜗𝐹𝑌𝑒𝑓𝑓𝑛                                                         𝑖𝑓   𝜀p𝑒𝑓𝑓
𝑛 ≥ 𝜀𝑢𝑙𝑡

         (24) 

where 𝑓𝑦 and 𝑓𝑢  are, respectively, the classical yield strength and ultimate strength of the 
material, 𝜀𝑢𝑙𝑡  is the ultimate failure strain, 𝜗  is a rate-dependent plastic softening 
parameter (set to 0.99), and the effective plastic strain, 𝜀p𝑒𝑓𝑓, is defined as 
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𝜀p𝑒𝑓𝑓 = �𝜀𝑝1
2 − 𝜀𝑝1𝜀𝑝2 + 𝜀𝑝2

2   ,                                                                        (25) 

where 𝜀𝑝1 and 𝜀𝑝2 are the principal plastic strain components. 

To calculate the plastic flow, the incremental plastic stretch (∆𝑆𝑃)𝑖𝑗  is computed. This  
approach was initially introduced by Gerstle [Gerstle (2015)], and an improved version is 
presented in this study. It is assumed that in analogy to Eq. (21), the plastic flow is 
proportional to the deviatoric components of the bond force vector, as follows. 
𝑭𝒃𝑑𝑒𝑣 = 𝑭𝒃 − 𝐹𝑏𝑎𝑣𝑔 .                                                                                             (26)  

Here, 𝑭𝒃𝑑𝑒𝑣 is the deviatoric part of the bond force vector, 𝑭𝒃 is the bond force vector 
(from Eq. (5)), and 𝐹𝑏𝑎𝑣𝑔 is the average of the components of 𝑭𝒃, defined as 

𝐹𝑏𝑎𝑣𝑔 = 𝑎𝑣𝑔(𝑭𝒃) = 1
6
∑ (𝐹𝑏)𝑖𝑗6
𝑗=1 .                                                                         (27) 

The incremental plastic stretch vector in the time step, ∆𝑺𝑷 = [(∆𝑆𝑃)𝑖𝑗 ]6×1 , is then 
computed as 

∆𝑺𝑷 = ∆𝜆 𝑭𝒃𝑑𝑒𝑣
�𝑭𝒃𝑑𝑒𝑣�2

 ,                                                                                                 (28) 

where  

∆𝜆 =  𝑚𝑖𝑛 (∆𝑆𝑝𝑚𝑎𝑥, 𝑓𝑦
𝐸

 (𝑌 − 1)).                                                                          (29) 

Here, ∆𝜆 is the SPLM flow parameter, analogous to Levy-Mises flow constant from the 
classical theory, E is Young’s module and 𝑓𝑦 is the yield strength of material. ∆𝑆𝑝𝑚𝑎𝑥 =
0.01 is a maximum permissible plastic stretch increment per time step, necessary to 
preserve stable plastic deformation behavior during plastic softening. Finally, the plastic 
stretch of particle bond 𝑖𝑗, at time step 𝑛 + 1, (𝑆𝑃)𝑖𝑗𝑛+1, is computed as 

 (𝑆𝑃)𝑖𝑗𝑛+1 = (𝑆𝑃)𝑖𝑗𝑛 + (∆𝑆𝑃)𝑖𝑗𝑛 ,                                                                                  (30) 
and by substituting Eq. (30) into Eq. (7), the elastic stretch of bond 𝑖𝑗 is calculated. Each 
particle in the lattice stores its six plastic bond stretches, as well as its current effective 
yield stress 𝐹𝑌𝑒𝑓𝑓, as state variables. 

 2.3 Two-spring damage model 
In this section, a novel “two-spring” damage model that enables damage localization and 
crack formation is proposed for the SPLM. In this model, an elastic bond is approximated 
as two equal  (undeformed) length serial springs. The damage parameter 𝜔𝑖, assumed as a 
scalar, is associated with the lattice particle 𝑖 instead of with bond 𝑖𝑗, as has typically 
been assumed in continuum peridynamics. In this isotropic, particle-based scalar damage 
model, the damage parameter 𝜔𝑖 evolves as a function of the force state and the stretch 
state. Because the damage in two adjacent particles may be quite different, this model 
allows for differential stretches in the two half-bonds connecting the particles, as shown 
in Fig. 2. Thus, the stretch states of two neighboring particles, and hence their damage 
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paramters, may be very different. If either particle 𝑖 or particle 𝑗 is fully damaged, the 
bond force is null. 

                                      
Figure 2: Representation of a peridynamic bond by two serial springs 

Fig. 2 shows two serial springs of undeformed length 𝐿𝑖 = 𝐿0
2�  and 𝐿𝑗 = 𝐿0

2�  
representing a bond of undeformed length 𝐿0. The force-displacement relations of the 
two springs are defined by 𝐹𝑖 = 𝑘𝑖∆𝑖= 𝑘𝑖𝑆𝑖𝐿𝑖 and 𝐹𝑗 = 𝑘𝑗∆𝑗= 𝑘𝑗𝑆𝑗𝐿𝑗. Force equilibrium 
of the two springs mandates that 𝐹𝑖 = 𝐹𝑗  and the kinematics of the spring system requires 
that ∆ = ∆𝑖 + ∆𝑗. Using these equations, the ratio of displacements of two serial springs is 
obtained as 
∆𝑗
∆𝑖

=   𝑘𝑖
𝑘𝑗

 .                                                                                                           (31) 

Also, the equivalent stiffness of the serial springs system, 𝑘𝑒𝑞, is derived as 
1
𝑘𝑒𝑞

= 1
𝑘𝑖

+ 1
𝑘𝑗

    and   𝑘𝑒𝑞 = 𝑘𝑖𝑘𝑗
𝑘𝑖+𝑘𝑗

 ,                                                                                (32) 

and the relationship between the stretch of each half-bond and the overall bond stretch 𝑆𝑖𝑗 
is obtained as 

𝑆𝑖 = � 2𝑘𝑗
𝑘𝑖+𝑘𝑗

� 𝑆𝑖𝑗        and           𝑆𝑗 = � 2𝑘𝑖
𝑘𝑖+𝑘𝑗

� 𝑆𝑖𝑗 .                                                      (33) 

We assume that the stiffness of each half spring is related to the damage in the associated 
particle: 

𝑘𝑖 = (1 −𝜔𝑖)
𝑎𝑖

�𝐿0 2� �
 and 𝑘𝑗 = �1 −𝜔𝑗�

𝑎𝑗
�𝐿0 2� �

                                                          (34) 

Assuming that 𝑎𝑖 = 𝑎𝑗 = 𝑎 , we define the modified stretch state 𝑆𝑖𝑗∗  at particle 𝑖  as  

𝑆𝑖𝑗∗ = � 2𝑘𝑗
𝑘𝑖+𝑘𝑗

� 𝑆𝑖𝑗 = �
2�1−𝜔𝑗��

2𝑎
𝐿0
�

(1−𝜔𝑖)�
2𝑎
𝐿0
�+�1−𝜔𝑗��

2𝑎
𝐿0
�
� 𝑆𝑖𝑗 = �2�1−𝜔𝑗�

2−𝜔𝑖−𝜔𝑗
� 𝑆𝑖𝑗.                         (35) 

The modified elastic stretch state of particles i and j, (𝑆𝑒∗)𝑖𝑗  and (𝑆𝑒∗)𝑗𝑖 , accounts for 
differing stiffnesses of damaged particles i and j. For boundary particles having bonds 𝑗 
with no neighbors, the damage 𝜔𝑗 is assumed to be unity. If both 𝜔𝑖 = 1 and 𝜔𝑗 = 1, 
then we assume that the modified bond stretch 𝑆𝑖𝑗∗ = 𝑆𝑖𝑗 . Note that if particle 𝑖  is 

𝒌𝒌𝒊𝒊 

𝒌𝒌𝒋𝒋 

𝒊𝒊 

𝒋𝒋 
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undamaged and particle 𝑗 is fully damaged, then 𝑆𝑖𝑗∗ = 0, and that if particle 𝑖 is fully 
damaged and particle 𝑗 is undamaged, then 𝑆𝑖𝑗∗ = 2𝑆𝑖𝑗.  
We now express the force state at particle 𝑖 in terms of the modified elastic stretch state 
as 

(𝐹𝑠)𝑖𝑗 = (1 −𝜔𝑖) �𝑎�𝑆𝑒 �𝑖𝑗
∗

+ 𝑏∑ �𝑆𝑒 �𝑖𝑚
∗6

𝑚=1 � .                                                   (36) 

In the case of no damage, Eq. (36) simplifies to Eq. (6).  

 
Figure 3: Mechanical behavior of concrete defined in SPLM and the definition of the 
damage parameters. (a) Bilinear uniaxial tensile strength- 𝐶𝑂𝐷  (tension softening) 
relation. (b) Tensile damage parameter, 𝜔𝑡-CODeq relation. (c) Compressive stress verus 
strain relation with linear hardening. (d) Compressive damage parameter, 𝜔𝑐 , versus 𝜔𝑡 

Tensile damage 𝜔𝑖  initiates at particle 𝑖  when the maximum positive principal stress 
component exceeds the tensile strength 𝑓𝑡′ and the minimum of the other principal stress 
components exceeds −𝜚𝑓𝑡′. The parameter 𝜚 is called the tension-compression parameter 
which incorporates the multiaxial state of stress into the damage initiation criterion in a 
simple way (without need for defining a more complicated failure surface). The tensile 
damage parameter, 𝜔𝑖 , evolves in a manner similar to the Hillerborg fictitious crack 
model [Hillerborg, Modéer and Petersson (1976)]. The evolution of tensile damage 
(tension softening) of concrete is simulated via the bilinear tensile strength-COD curve 
shown in Fig. 3a.  
By calculating the principal strain components associated with particle i (𝜀1∗ and 𝜀2∗) based 
upon the modified stretch state (𝑆𝑒∗)𝑖𝑗  (using Eq. (12)), the equivalent crack opening 
displacement (𝐶𝑂𝐷𝑒𝑞) associated with particle i is calculated as   

�𝐶𝑂𝐷𝑒𝑞� = 𝐿0𝜀crack∗ ,                                                                                              (37)  
where 𝜀crack∗  is the elastic crack band strain defined as 

𝜀crack∗ = �𝜀1∗
2 − 𝜀1∗𝜀2∗ + 𝜀2∗

2.                                                                                          (38) 
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Note that with this definition of the equivalent crack opening displacement (𝐶𝑂𝐷𝑒𝑞), 
once damage 𝜔𝑖 has initiated at a particle, the damage can grow even under compressive 
strain conditions. This allows damage, once initiated, to evolve in both tensile and 
compressive regimes as are found in multiaxial problems such as the Brazilian split 
cylinder test. To avoid unrealistic damage and plasticity initiation from the boundaries 
due to artificially high stresses computed on the boundary particles; we introduce a 
boundary parameter,𝛽1 , with which the artificially high stress computed at boundary 
particles is reduced. Setting 𝛽1 less than unity retards crack initiation at boundaries. 
Depending on whether the bond is under tension or compression, the damage parameter 
𝜔𝑖 evolves as follows:  If (𝑆𝑒)𝑖𝑗 ≥ 0, then 𝜔𝑖 = (𝜔𝑡)𝑖 and 
(𝜔𝑡)𝑖 =

⎩
⎪⎪
⎨

⎪⎪
⎧ 0                                                                                              𝑖𝑓    𝐶𝑂𝐷𝑒𝑞 < 0

1 − � 𝑓𝑡′

𝐸𝐶𝑂𝐷1𝜀crack
∗ � �𝐶𝑂𝐷1 + (𝛾 − 1)𝐶𝑂𝐷𝑒𝑞�                            𝑖𝑓   0 ≤ 𝐶𝑂𝐷𝑒𝑞 < 𝐶𝑂𝐷1

         1                                                                                                          𝑖𝑓   𝐶𝑂𝐷𝑒𝑞 ≥ 𝐶𝑂𝐷𝑐

,   

 (39) 
else if (𝑆𝑒)𝑖𝑗 < 0, then 𝜔𝑖 = (𝜔𝑐)𝑖 and 

(𝜔𝑐)𝑖 =

⎩
⎪
⎨

⎪
⎧�(𝜔)𝑖 −��𝜔𝑡𝑐𝑟�𝑖

1−��𝜔𝑡𝑐𝑟�𝑖

𝑖𝑓   (𝜔𝑡)𝑖  > �𝜔𝑡𝑐𝑟�𝑖

0 𝑖𝑓   (𝜔𝑡)𝑖  ≤ �𝜔𝑡𝑐𝑟�𝑖

                                                     (40) 

Here, (𝜔𝑡)𝑖 and (𝜔𝑐)𝑖 are, respectively, the tensile and compressive damage parameters 
associated with  particle i,  E is the Young’s modulus, 𝑓𝑡′ is the tensile strength, 𝛾𝑓𝑡′ is the 
tensile damage constant at the “knee”, 𝐶𝑂𝐷𝑐 is the critical crack opening displacement, 
and 𝐶𝑂𝐷1 is the crack opening displacement at the “knee”,  as shown in Figs. 3a and 3b. 
The tensile damage parameter, 𝜔𝑡, varies in a nonlinear fashion and grows to unity as the 
equivalent crack opening displacement 𝐶𝑂𝐷𝑒𝑞  increases. When 𝐶𝑂𝐷𝑒𝑞  reaches 𝐶𝑂𝐷0 , 
the damage parameter immediately jumps to a finite value, rather than gradually 
increasing from zero (as shown in Fig. 3b). In Eq. (40), 𝜔𝑡𝑐𝑟 is the critical tensile damage 
parameter which is assumed as the threshold for initiating partial compressive damage. 
Note that the damage behavior due to cyclic loading steps is not studied in this paper. 
However, changing the state of particles as they go from tension to compression regimes 
(and vice versa) is recognized and modelled using the compression damage parameter  𝜔𝑐.  
As can be seen from the proposed formulation, elasticity, plasticity and damage are 
coupled in this model. 
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 2.4 Numerical implementation of SPLM 
In this section, the numerical implementation of the improved SPLM method is briefly 
discussed and the important issues regarding the new algorithm are expressed and 
elaborated.  
The form of a particle family in the re-formulated SPLM approach is shown in Fig. 1b. 
Considering Fig. 1b, the SPLM equation of motion, defined in Eq. (3), can be re-written 
(including damping) as  

�̈�𝑖𝑛 = 1
𝑚𝑖
�∑ �(𝑭𝒃)𝑖𝑗𝑛 +  𝑑𝑖𝑗𝑛 �𝑭𝒅𝒂𝒎𝒑𝒊𝒊𝒏𝒕�𝑖𝑗

𝑛 �6
𝑗=1 + �𝑭𝒅𝒂𝒎𝒑𝒆𝒙𝒕�𝑖

𝑛 +𝑩𝑖
𝑛�,                    (41) 

where both internal and external damping forces, 𝑭𝒅𝒂𝒎𝒑𝒊𝒊𝒏𝒕  and 𝑭𝒅𝒂𝒎𝒑𝒆𝒙𝒕 , are now 
included. In the new SPLM, the damping force depends upon the damage. Calculation of 
damping forces is similar as in the initial SPLM (more details can be found in Gerstle 
[Gerstle (2015)]). However, to improve the simulation of dynamic effects on the post-peak 
region, the internal damping force 𝑭𝒅𝒂𝒎𝒑𝒊𝒊𝒏𝒕 is multiplied by a factor, 𝑑𝑖𝑗 . The factor 𝑑𝑖𝑗  is 
defined, based upon Eqs. (32) and (34), as 𝑑𝑖𝑗 = 2(1 −𝜔𝑖)(1 −𝜔𝑗) (2 −𝜔𝑖 − 𝜔𝑗)⁄ . As 
damage increases, the damping coefficient decreases. Thus, when either of the particles 
connected by a bond becomes fully damaged, the damping force is reduced to zero. 
After calculating �̈�𝑖𝑛 from Eq. (41), the velocity of particle 𝑖, �̇�𝑖𝑛+1, is calculated using a 
first order forward difference as 
 �̇�𝑖𝑛+1 = �̇�𝑖𝑛 + Δ𝑡�̈�𝑖𝑛 ,                                                                                            (42) 
and the position of particle 𝑖, 𝑿𝑖𝑛+1, is calculated using a first order backward difference, 
as  
𝑿𝑖𝑛+1 =  𝑿𝑖𝑛 +  Δ𝑡�̇�𝑖𝑛+1.                                                                                           (43) 
where Δ𝑡 is the time step (the critical time step, Δ𝑡crit, is derived in Gerstle [Gerstle 
(2015)]). One of the main differences between the new SPLM formulation and the initial 
version is the method for storing particle attributes. In the re-formulated SPLM algorithm, 
the values of the bond forces, damage parameters, and plastic stretches are calculated and 
stored in the two consecutive time steps 𝑛-1 and 𝑛 . This ensures that the computed 
particle responses are independent of the order in which the particles are visited within a 
given time step. 

3 Example simulations 
In this section, three plain concrete benchmark problems are simulated: The uniaxial 
tension specimen, the uniaxial compression specimen, and the Brazilian split cylinder, 
shown in Fig. 4. 
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Each problem is simulated with the re-formulated plain-stress SPLM approach described 
in this paper (SPLM-2018) and compared with the results of the previous version [Gerstle 
(2015)] (SPLM-2016). To investigate the objectivity of the method, each problem is 
simulated using three different lattice rotations. The results are compared, as far as 
possible, to classical elasticity/plasticity/fracture mechanics methods. Typical material 
properties for normal-strength concrete are used [ACI Committee 318 (2014)]. The 
simulation parameters are shown in Tab. 1. All the simulations in this study were 
conducted on a single-core laptop and each simulation finished in less than three minutes. 

Table 1: Classical and SPLM parameters used for example problems 
Parameter Symbol Value Units 
Young’s modulus, shown in Fig. 3c E 25 GPa 
Mass density 𝝆 2323 Kg/m3 

Poisson’s ratio 𝝂 0.2 - 
Critical tensile damage parameter, shown in Fig. 3a 𝝎𝒕𝒄𝒓 0.8 - 
Plastic strain at which complete damage occurs, shown in Fig. 3c 𝜺𝒑𝒍𝒂𝒔𝒕(𝒖𝒍𝒕) 0.003 - 
Internal material damping ratio 𝝃𝒊𝒊𝒏𝒕𝒆𝒓𝒏𝒂𝒍 0.2 - 
External damping ratio 𝝃𝒆𝒙𝒕𝒆𝒓𝒏𝒂𝒍 0.2 - 
Yield strength, shown in Fig. 3c 𝒇𝒚 22.98 MPa 
Ultimate strength, shown in Fig. 3c 𝒇𝒖 27.58 MPa 
Tension-compression parameter 𝝔 6.0 - 
Boundary parameter 𝜷𝟏𝟏 0.2 - 
Tensile strength causing damage initiation, shown in Fig. 3a 𝒇𝒕 2.62 MPa 
Crack opening displacement at knee of curve, shown in Fig. 3a 𝑪𝑶𝑫𝟏𝟏 2x10-5 m 
Critical crack opening displacement, shown in Fig. 3a 𝑪𝑶𝑫𝒄 2x10-4 m 
Ratio of stress at “knee” to 𝒇𝒕, shown in Fig. 3a 𝜸 0.25 - 

Figure 4: Schematic of the problem domains and boundary conditions of the considered 
concrete specimens. (a) Uniaxial tension, (b) Uniaxial compression, (c) Brazilian split 
cylinder 

(a) (b) (c) 
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 3.1 Uniaxial tension and compression specimens 
A rectangular concrete specimen 0.3 m high by 0.15 m wide by 0.15 m thick is subject to 
uniaxial loading. The lattice spacing is 𝐿0 = 0.01 𝑚 . The boundary conditions are 
defined such that the bottom boundary is fixed in the vertical direction only, and a 
smoothly time-varying displacement 

∆𝑦(𝑡) =   �Δ𝑚𝑎𝑥
2
� �1 − cos � 𝜋𝑡

𝑡𝑟𝑎𝑚𝑝(𝑒𝑛𝑑)
��                                                                (44) 

is applied to the top boundary, as shown in Fig. 4a. The displacement boundary 
conditions are applied to all lattice particles within 𝐿0 of top and within 𝐿0 of the bottom 
of the specimen (shown in the Fig. 5 by green particles).  
In Eq. (44), Δ𝑚𝑎𝑥  is the maximum applied displacement assumed to be calculated as 
Δ𝑚𝑎𝑥 = 1.5𝐶𝑂𝐷𝑐  for the tension problem and Δ𝑚𝑎𝑥 = −6𝐶𝑂𝐷𝑐  for the compression 
problem; 𝑡𝑟𝑎𝑚𝑝(𝑒𝑛𝑑) = 0.8𝑡𝑒𝑛𝑑, and 𝑡𝑒𝑛𝑑 is calculated based on the fundamental period of 
vibration of the specimen and the time stepping increment (more details can be found in 
[Gerstle (2015)]). The fundamental period of the each specimen is calculated from a 
linear elastic modal analysis. For these problems, a fundamental period of 0.00035 s is 
estimated. The time step is Δ𝑡crit = 6.55 × 10−7 𝑠 is used and the simulations employ 
77000 time steps. The uniaxial tension and compression problems are simulated with 
both the SPLM-2016 and the SPLM-2018 methods; each with varying lattice rotations of 
0o, 15o, and 30o, including for each lattice rotation 605, 595, and 569 particles, 
respectively. The cracking patterns obtained for each lattice rotation are shown in Figs. 5 
and 6, and the calculated force-displacement curves are shown in Figs. 7 and 8. In Figs. 5 
and 6, in addition to damage, the effective plastic strains (Eq. (25)) are displayed. The 
particles having 𝜀p𝑒𝑓𝑓 > 𝜀𝑢𝑙𝑡 are fully black, and the non-black particles have not yielded. 
The results show significant improvements (specifically in post-peak region) in SPLM-
2018; as well as a better match with the expected classical solutions. In the compression 
problem, shear bands due to softening plasticity are evident in the simulation results (see 
gray scale colored particles in Fig. 6). Each simulation required less than three minutes 
using a single-core laptop computer. 

 3.2 Brazilian split cylinder 
In this problem, a circular cylinder of diameter 0.15 m and thickness 0.15 m, subjected to 
external compression forces across its diameter, is simulated. The lattice spacing is 
𝐿0 =0.005 m. The boundary conditions are shown in Fig. 4c. The same time varying 
displacement (Eq. (44)) is applied at top and bottom of the Brazilian split cylinder models. 
The specified displacement boundary conditions are applied to the particles at the top and 
bottom of the specimen (the green particles shown in Fig. 10), to emulate the loading plates. 
This problem is also solved with both SPLM-2016 and SPLM-2018; each with three 
different lattice rotations of 0o, 15o, and 30o, with 839, 841, and 843 particles, respectively, 
for each lattice rotation. The fundamental period is calculated as 0.0002321 s. The time step 
is Δ𝑡crit = 3.27 × 10−7𝑠, and the simulations employ 113500 timesteps. The calculated 
force-displacement curves are shown in Fig. 9, and the damage and plasticity fields 
obtained for each lattice rotation are shown in Fig. 10. The plastically yielded particles are 
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shown in black. These results demonstrate the superiority and robustness of the re-
formulated SPLM method with respect to SPLM-2016. In addition, a lattice refinement 
study is performed for the zero-rotation models with a lattice spacing of 0.01 m, 0.005 m, 
and 0.0025 m including a total number of 213, 839, and 3315 particles, respectively. The 
obtained cracking patterns are shown in Fig. 11 and the force-displacement relations are 
shown in Fig. 12.  

(a)                                (b)                             (c) 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Cracking patterns for uniaxial tension problem at the final time step, for 
SPLM-2018, with lattice rotations of: (a) 0o, (b) 15o, and (c) 30o 

(a)                             (b)                              (c) 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6: Cracking patterns for uniaxial compression problem at the final time step, for 
SPLM-2018, with lattice rotations of: (a) 0o, (b) 15o, and (c) 30o (Gray scale color shows 
the effective plastic strain) 
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Figure 7: Comparison between SPLM-2016 and SPLM-2018 for uniaxial tension 
problem 
 
 
 
 
 
  
 
 
 
 
 
 
 
 

Figure 8: Comparison between SPLM-2016 and SPLM-2018 for uniaxial compression 
problem 

 

(a) SPLM-2016 

(b) SPLM-2018 

(a) SPLM-2016 

(b) SPLM-2018 
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Figure 9: Comparison between SPLM-2016 and SPLM-2018 for Brazilian split cylinder 
problem 

 
Figure 10: Simulated cracking patterns for Brazilian split cylinder problem at the final 
timestep, for SPLM-2018, with lattice rotations of: (a) 0o, (b) 15o, and (c) 30o 

(a) (b) (c) 

(a) SPLM-2016 

(b) SPLM-2018 
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Figure 11: Simulated cracking patterns for Brazilian split cylinder problem at the final 
timestep, for SPLM-2018, with:  (a) 𝐿0 = 0.01 m, 𝑁𝑠𝑡𝑒𝑝𝑠 =  56800 (b) 𝐿0 = 0.005 
m, 𝑁𝑠𝑡𝑒𝑝𝑠 = 113500  and (c) 𝐿0 = 0.0025 m, 𝑁𝑠𝑡𝑒𝑝𝑠 = 226900 

 

 

 

 

 

 

Figure 12: Lattice refinement study (SPLM-2018) for Brazilian split cylinder problem 
(Lattice rotation angle of 0°) 
 3.3 Comparison with the experimental data 
The efficiency and practicality of SPLM in modelling concrete is demonstrated by 
reviewing the literature related to the mechanical properties of concrete and comparing it 
with the simulation results from the SPLM. 
The statistical variation in compressive strength of apparently identical normal-strength 
concrete samples is shown in Fig. 13 [Wight (2016)]. As can be seen, for the uniaxial 
compressive strength tests of 176 nominally identical samples, there is a distribution of 
tested strengths. The mean strength is 27.17 𝑀𝑃𝑎 (almost the same as 𝑓𝑢 =27.58  𝑀𝑃𝑎  
employed in our SPLM examples), and the coefficient of variation is 15%; which 
represents average control based on the ACI Committee 214 standard [Aci Committee 
214 (1956)]. To compare the SPLM simulation results with laboratory results, 31 uniaxial 
compression simulations are performed, with lattice rotation angles varying from 0o to 

(a) (b) (c) 
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30o with an increment of 1o, and the normal distribution of the results are plotted in Fig. 
13. The coefficient of variation from the SPLM simulations is 1.74% and the mean 
compressive strength is 28.27 𝑀𝑃𝑎. Comparing distribution of results from SPLM with 
the distribution in standard tests, the SPLM demonstrates a more than sufficient level of 
objectivity in predicting the compressive strength of concrete.  
Large discrepancies in the splitting tensile strength of concrete are also apparent as 
shown in Fig. 14, where, as can be seen, for a compressive strength of 27.58 𝑀𝑃𝑎 (for 
ordinary concrete), the splitting tensile strength varies approximately from 1.4 𝑀𝑃𝑎 to 
3.5 𝑀𝑃𝑎 . The classical equation for calculating the peak load of the Brazilian split 
cylinder test based on the splitting tensile strength is 𝑃𝑚𝑎𝑥 = (𝜋𝑙𝑟𝑓𝑐𝑡′ )/(1 − 𝛽2)1.5 , 
where 𝑙  is the specimen length, 𝑟  is the radius, 𝛽 = (𝑤𝑏/2𝑟), 𝑤𝑏  is the width of the 
loading block (here, 𝑤𝑏= 𝑟/3), 𝑓𝑐𝑡′  is the splitting tensile strength, and 𝑃𝑚𝑎𝑥 is the peak 
load [Rocco, Guinea, Planas et al. (2001)]. Based on our input data, the experimental 
peak load falls in the range from 50  𝐾𝑁  to 130 𝐾𝑁 . 𝑃𝑚𝑎𝑥  obtained from the SPLM 
results is approximately 98 𝐾𝑁 (Figs. 9 and 12), falling squarely within the range of the 
laboratory results. In addition, Fig. 14 shows the range of the splitting tensile strengths of 
the 31 SPLM simulations. Clearly, the SPLM simulation results more than satisfy the 
level of objectivity needed. To emphasize the computational efficiency of the SPLM 
method, note that all the mentioned 31 simulations were computed in less than ten 
minutes on a single-core laptop machine.  

 
Figure 13: Distribution of compressive strengths of ordinary concrete (after [Wight 
(2016)]) 
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Figure 14: Relationship between splitting tensile strengths and compression strengths 
(after [Wight (2016)]) 

Varying crack propagation patterns are common in concrete experimental tests. Fig. 15 
shows the cracking results from Brazilian split cylinder tests performed at the University 
of New Mexico and other available cracking patterns from the literature [Chen, Ge, Zhou 
et al. (2017)]. The experimental results illustrate the tortuosity and randomness of the 
cracking. Comparing Fig. 15 with Fig. 10, the SPLM predicts sufficiently objective and 
realistic cracking and damage patterns. 

 
Figure 15: Crack propagation patterns observed in the Brazilian split cylinder test 

4 Conclusions 
In this study, the formulation of an improved state-based peridynamic lattice model 
(SPLM) has been presented. We introduced a novel “two-spring damage model” and an 
improved hardening-softening-damage plasticity model within the SPLM framework. We 
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used the reformulated SPLM to simulate three common concrete laboratory tests using 
varying lattice rotations and lattice spacings. We then compared the SPLM simulation 
results with those of classical solutions and laboratory results. The outcomes of this study 
are summarized as follows. 
(1) The SPLM is an engineering simplification of continuum state-based peridynamics, 

based upon a lattice of discrete particles (or alternately, an extension of the 
conventional theory of lumped-mass spring systems, incorporating state-based 
peridynamics concepts). The advantages of the SPLM method are listed as follows. 
(a) Unlike continuum peridynamics and other continuum-based methods, the 
assumption of continuity of the problem domain is unnecessary. (b) The SPLM is 
more computationally efficient than continuum peridynamics, requiring fewer 
particles in each particle’s family than continuum peridynamic methods; (c) The 
SPLM formulation is relatively simple. Implementation of damage and plasticity 
models is convenient and computationally efficient within the SPLM framework. 

(2) With the SPLM some objectivity is sacrificed. Although SPLM increases the 
computational efficiency of the approach, it is not entirely objective. The lattice 
model, with lattice spacing of approximately the aggregate size, is sufficient for 
modeling the geometry and behavior of concrete structures.  

(3) While not objective in the continuum sense, the SPLM produces simulation results 
that are sufficiently objective to be useful in predicting the observed behaviors of 
concrete tests in the laboratory. As shown in Figs. 13 and 14, a perfectly objective 
mathematical model would be no more useful than the SPLM in predicting the 
physical behavior of concrete specimens, which is manifestly random. 

(4) A robust coupled elastic-plastic-damage model is successfully implemented for 
SPLM. Despite the robustness of the approach, some of the presented models are 
crude and in the first stage of implementation; and can be refined in the future work. 

(5) In the re-formulated SPLM algorithm, calculating and storing the bond forces, 
damage parameters, and plastic stretches are accomplished in two consecutive time 
steps. This guarantees that the computed particle responses are independent of the 
order in which the particles are visited within a given time step. One may call this 
algorithm a “lazy time integration algorithm” which seems to be necessary to obtain 
algorithmically objective results. 

(6) The two-spring damage model (proposed for the SPLM framework) is a novel idea in 
peridynamic modeling. This model allows highly localized damage to emerge and 
form cracks as narrow as one lattice particle in width.  

(7) The new version of SPLM is more accurate, more objective, and in general more 
reliable than the previous model in Gerstle [Gerstle (2015)]. The simulation results 
demonstrate that the new SPLM is capable of simulating many essential behaviors of 
concrete and produces results similar to laboratory test results. 

(8) The changing state of particles as they go from compression to tension regimes (and 
vice versa), after evolution of damage and plasticity, is recognized and improved in 
this study; such behaviors are complex and important physical phenomena.  

(9) Despite demonstrating similar pre-peak and post-peak behaviors for different lattice 
rotations and lattice spacings, the SPLM produced somewhat variable, yet plausible, 
cracking patterns. Such variability is also observed in laboratory tests.  
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This paper has demonstrated that the SPLM is potentially a useful tool for simulating the 
behavior of concrete structures under mechanical loading. 
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