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On Axisymmetric Longitudinal Wave Propagation in
Double-Walled Carbon Nanotubes

S.D. Akbarov1,2

Abstract: An attempt is made into the investigation of longitudinal axisymmetric
wave propagation in the DWCNT with the use of the exact equations of motion of
the linear theory of elastodynamics. The DWCNT is modeled as concentrically-
nested two circular hollow cylinders between which there is free space. The dif-
ference in the radial displacements of these cylinders is coupled with the van der
Waals forces and it is assumed that full slipping conditions occur on the inner sur-
face of the outer tube and on the outer surface of the inner tube. Numerical results
on the influence of the problem parameters such as the thickness/radius ratio, the
distance between the tubes of the DWCNT and the van der Waals forces on the
dispersion curves are presented and discussed. In particular, it is established that
new types of modes arise under propagation of axisymmetric longitudinal waves
as a result of the van der Waals interaction between the tubes of the DWCNT. The
limit values of the wave propagation velocity are also analyzed.

Keywords: axisymmetric longitudinal waves, double-walled CNT, wave disper-
sion, van der Waals forces

1 Introduction

During the last 20 years, after the discovery of carbon nanotubes (CNT) by Iijima
(1991), a lot of investigations were focused on studying the dynamics of the single
walled and multi-walled CNT (SWCNT and MWCNT) as structural elements (see
Natsuki et al (2008), Wang (2005), Wang et al (2006), Mahdavi et al (2011) and
references listed therein). Note that in these works the continuum approach, i.e.
the continuum mechanics of deformable solid bodies were employed in studying
the corresponding problems. Applicability areas of the continuum approach for the
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study of the mechanical behaviors of the CNT and other types of nanostructures
were discussed by Harik (2001), Guz and Rushchidsky (2003, 2012) and others.

Here we consider a brief review of the aforementioned works which relate to the
subject of the present paper. We begin this review with the paper by Wang (2005)
in which transverse wave propagation in a SWCNT is investigated by the use of the
nonlocal elasticity theory. The SWCNT is modeled as Euler-Bernoulli and Timo-
shenko beams with infinite length. The effect of a small scale coefficient on wave
dispersion is studied. Note that this small scale coefficient characterizes granular
distance. It is established that after a certain critical value of the wave number,
this coefficient begins to affect the character of the dispersion curves. Moreover,
it is established that an increase in the values of this coefficient causes the wave
propagation velocity to decrease.

In a paper by Wang and Varadan (2006), within the scope of the same assumptions
and theories used in the paper by Wang (2005), transverse vibration of the SWCNT
and DWCNT is studied. In analyzing the DWCNT, the double-beam theory is used
and the van der Waals interaction effect at the interface of the DWCNTs inner and
outer tubes is taken into account. The van der Waals interaction pressure at any
point between two adjacent tubes is modeled as a linear function of the deflection
jump at that point. Numerical results on the effect of the small scale coefficient on
the natural frequency for the simply supported SWCNT and DWCNT are presented
and discussed.

In a paper by Wang et al (2006), the Timoshenko beam model is used for free vi-
bration analyses of the MWCNT. The deflections of the adjacent tubes are coupled
due to the presence mentioned above of the van der Waals forces. For a solution to
the corresponding eigenvalue problems the differential quadrature method is em-
ployed. Numerical results on the natural frequencies for various end conditions
such as simply supported, clamped-clamped and clamped-simply supported condi-
tions are presented, mainly for the DWCNT.

Transverse wave propagation in a DWCNT conveying fluid and embedded within
an elastic medium was studied in a paper by Natsuki et al (2008). The DWCNT
is modeled as a Euler-Bernoulli beam-pipe, for which the equation of motion is
obtained from the force and moment balances, taking into account the fluid moving
velocity, fluid mass density and the mass density of the per unit axial length. The
deflection of nested tubes is considered to be coupled together through the van der
Waals forces between the inner and outer nanotubes. The action of the surrounding
elastic medium to the motion of the DWCNT is described by the Winkler spring
model. In particular, it is established that the DWCNTs’ conveying fluid has a
lower wave speed than the DWCNTs without fluid.
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The nonlinear vibration behavior of an embedded DWCNT is studied in a paper by
Mahdavi et al (2011) by considering the nonlinear van der Waals interactions be-
tween the outer tube and surrounding medium, and between adjacent tubes. Using
the Euler-Bernoulli and Timoshenko beam models, the relation between the deflec-
tion amplitude and the resonant frequency was derived. Moreover, in a paper by
Mahdavi et al (2011) the effects of axial load and the CNT size on the nonlinear
vibration of the embedded DWCNT was also examined.

It follows from the foregoing review that all the investigations related to the dynam-
ics of the CNT as well as to the dynamics of the MWCNT were made within the
scope of the approximate beam or shell theories. Consequently, the results of these
works are acceptable for the thin-walled CNT, i.e. for the cases where h/R� 1
(where h is the thickness of the CNT and R is the radius of the middle surface of
the CNT). However, according to Guz et al (2005), Liew et al (2004) and many
other references listed in these papers, there are many cases for which the relation
0.1 ≤ h/R≤ 0.25 takes place and in these cases the CNT cannot be considered as
thin-walled. Namely, in such cases, for investigation of the dynamics of the CNTs
and MWCNTs it is necessary to use the exact three-dimensional equations of the
theory of elastodynamics without any restrictions or simplifications assumed for
displacements and stresses.

Moreover, the aforementioned approximate theories describe only a few wave modes
and therefore these theories cannot be taken as sufficient for describing the dynam-
ics of thick-walled CNTs and MWCNTs nor for thin-walled CNTs and MWCNTs.

Taking the foregoing discussions into account, in the present paper an attempt is
made into the investigation of longitudinal axisymmetric wave propagation in the
DWCNT with the use of the exact equations of motion of the linear theory of elas-
todynamics. The DWCNT is modeled as concentrically-nested two circular hollow
cylinders between which there is free space. The difference in the radial displace-
ments of these cylinders is coupled with the van der Waals forces.

At the same time, the investigations carried out in the current paper can also be
considered as developments of the studies by the author and his students (see Ak-
barov and Guliev (2009, 2010), Akbarov and Ipek (2010, 2012), Akbarov et al
(2010, 2011) and Ozturk and Akbarov (2008, 2009a, 2009b)) related to axisym-
metric wave propagation in compound cylinders for the case described above.

2 Formulation of the problem

We consider a DWCNT which is modeled as concentrically-nested two circular
hollow cylinders with an infinite length between which there is free space (Fig.1).
We assume that on the inner surface of the outer tube (cylinder) and on the outer
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surface of the inner tube (cylinder) of the DWCNT, full slipping conditions occur.
At the same time, we assume that the difference between the radial displacements of
the adjacent surfaces of the tubes is resisted with the van der Waals forces. Suppose
that the radius of the middle surface of the free space cylinder is R; the thickness of
the outer and inner layers (cylinders) we denote through h(1) and h(2), respectively
(Fig. 1b), and the thickness of the interlayer free space we denote by d. For the
case under consideration, below we will use the subscriptions (1) and (2) to denote
the quantities related to the outer and inner cylinders respectively. We associate the
cylindrical Orθz and Cartesian Ox1x2x3 system of coordinates with the central line
of the DWCNT. We will use the cylindrical coordinates below.

a 

 

 

 

 

                                                        b 

 

Figure 1: The geometry of the DWCNT (a) and its cross section (b)

The materials of the constituents of the system under consideration are taken as
isotropic and homogeneous. According to Charlier and Michenaud (1993), we
suppose that full slipping conditions on the inner surface of the outer tube (i.e. at
r = R+d/2) and on the outer surface of the inner tube (i.e. at r = R−d/2) of the
DWCNT (Fig. 1) are satisfied. At the same time, according to Kelly (1981), we
assume that the van der Waals forces resist the interlayer radial displacements of
these adjacent tubes (layers).

Thus, within the scope of the foregoing conditions we investigate the axisymmet-
ric longitudinal wave propagation along the Oz axis (Fig. 1a) with the use of the
exact field equations and relations of the linear theory of elastodynamics. These
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equations and relations are:

The equations of motion
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The geometrical relations
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Note that equations (1)-(3) are satisfied within the framework of each constituent
of the system considered separately and in writing these equations the conventional
notation is used and will also be used below.

Now we consider formulation of the boundary and contact conditions. Thus, ac-
cording to the foregoing discussions we can write the following boundary condi-
tions on the outer surface of the outer tube (i.e. at r = R+ d/2+ h(1)) and on the
inner surface of the inner tube (i.e. at r = R−d/2−h(2)).
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Moreover, the contact conditions between the tubes are:
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Note that the second and third conditions in (6) are mathematical simulations of
full slipping on the inner surface of the outer tube and on the outer surface of the
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inner tube respectively. But the last condition in (6), according to the Lennard-
Joes model (see Kelly (1981)), is the mathematical simulation of the van der Waals
interaction between the tubes and the constant δw which has a stress dimension, and
is determined through the interaction energy potential per unit axial length between
the tubes. Moreover the values of the constant δw also depend on the curvature
(radius) of the interface surface.

This completes formulation of the problem on the axisymmetric wave propagation
in the DWCNT.

3 Method of solution

Substituting (2) and (3) into equation (1) we obtain the following equation of mo-
tion in displacement terms:
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According to the monograph by Guz (2004), we use the following representation
for the displacement:
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In (8) and (9) the following notation is used:
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We represent the function X(m) = X(m)(r,z, t) as

X(m) = X(m)
1 cos(kz−ωt). (11)

Substituting (11) into (9) and doing some mathematical manipulations we obtain
the following equation for X(m)
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In (15) J0(x) and Y0(x) are Bessel functions of the first and second kind of the
zeroth order, I0(x) and K0(x) are Bessel functions of a purely imaginary argument
and Macdonald function of the zeroth order, respectively.
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Thus, using (15), (14), (11), (8), (2) and (3) we obtain the following dispersion
equation from the conditions (4), (5) and (6):∥∥βi j

∥∥= 0, (16)

The expressions of βi j are given in Appendix A by formulae (A1) and (A2).

Note that the numerical results, which will be discussed below, on the dispersion
of the considered wave propagation are obtained from the numerical solution to
equation (16) and this solution is obtained by utilizing the well-known “bisection
method”. In this case, for fixed values of the problem parameters, for each value
of kR, the roots of the dispersion equation with respect to the wave propagation
velocity c, are found. In the present paper the main purpose of the numerical in-
vestigations is the study of the influence of the problem parameters, such as the
thickness of the tubes, the van der Waals forces and the thickness of the free space
cylinder on the lowest fundamental modes. However, for construction of the dis-
persion curves corresponding to these modes, it is necessary to use the certain N
number roots of equation (16). In this case, the graphs of the dependencies among
(c)1, (c)2,. . . , (c)N and kR create the net on the plane {kR,c}. Note that, in general,
the graph corresponding to the dependence between (c)n and kR is discontinuous
and contains parts related to the various dispersion modes. Consequently, under
construction of the dispersion curves, at first, we separate these parts from each
other and then group the parts which are continuations of each other and thus we
obtain the lowest fundamental modes’ dispersion curves.

4 Numerical results and discussions

Before analyzing the numerical results, we consider the possible changes in the
range of the problem parameters. As noted above, we assume that the material of
the hollow cylinders of which the DWCNT consists, is a CNT. According to works
by Harik (2001), Ru (2000, 2001), Ruoff and Lorents (1995), Guz and Rushchit-
sky (2012), Wang et al (2006), Xiao et al (2005) and others, the changing range
of modulus of elasticity E, the Poisson’s coefficient ν and the thickness of tubes
h(1)/R(= h(2)/R) is

1T Pa≤ E ≤ 1.2T Pa, 0.25≤ ν ≤ 0.35, 0.01≤ h(1)/R≤ 0.25. (17)

Moreover it follows from the foregoing references that the change range of the
constant δw which characterizes the van der Waals forces, is

0 < δw ≤ 9.92T Pa. (18)
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At the same time, the foregoing references show that the value of the interlayer
spacing under which the van der Waals forces are equal to zero is d ≈ 0.34nm. It
was established that 0.066nm≤ h(1) = h(2) ≤ 0.34, therefore we can suppose that

1≤ d/h(1) ≤ 5. (19)

Assume that the materials of the tubes are the same, i.e. E(1) = E(2), λ (1) = λ (2),
µ(1) = µ(2) and ν(1) = ν(2) = 0.25.

Introduce the parameter

F =
µ

δw
(1− h(1)

2R
d

h(1)
) (20)

through which we characterize the influence of the van der Waals forces on the
wave propagation velocity. Note that the value F = 0 corresponds to the case where
the van der Waals forces between the tubes of the DWCNT are equal to zero, and
the radial displacements of the tubes on the cylindrical surfaces which bound the
interlayer free space are equal to each other. But the value F = ∞ corresponds to
the case where the radial forces (stresses) acting on the cylindrical surfaces of the
tubes are equal to zero. Consequently, in the case where F = ∞ there is no contact
between the tubes of the DWCNT. According to the aforementioned references, we
assume that

0≤ F ≤ 15, (21)

because the numerical results show that in the cases where F > 15 an increase in
the values of the parameter Fcauses an insignificant change in the values of the
wave propagation velocity.

Before analyzing the numerical results we note that the corresponding algorithm
and PC programs were tested on the problems related to the longitudinal axisym-
metric wave propagation in circular solid and hollow compound cylinders consid-
ered in works by Rose (2004), Guz (2004), Akbarov and Ipek (2010, 2012) and
others.

Now we consider the numerical results obtained for the dispersion curves, i.e.
the curves illustrating the dependence between c/c2 and kR. These curves are
given in Figs. 2, 3 and 4 for the cases where h(1)/R(=h(2)/R) = 0.1, 0.15 and
0.2 respectively. The figures indicated by the lettersa, b and c relate to the cases
where d/h(1) = 1.0, 2.5 and 5 respectively. In each of these figures the results are
given for various values of the parameter F(20). It follows from observation of
the graphs that the lowest dispersion curves under consideration are separated into
three groups or modes. The first is similar to the first mode of the wave propa-
gation in the corresponding hollow or compound hollow cylinder. However, the
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c 

 Figure 2: Dispersion curves constructed for the case where h(1)/R =h(2)/R =0.1
under d/h(1) = 1 (a), 2.5 (b) and 5 (c)

character of the dispersion mode depends significantly on the values of the param-
eter F(20) which characterizes the van der Waals forces acting between the tubes
of the DWCNT. The mentioned dependence can be formulated as follows:

There exists such a value of the parameter F(denoted by F ′) before which (i.e.
under F < F ′) a certain zone stopband, determined as

(kR)′ < kR < (kR)′′ (22)

appears for the first group of modes. Note that the values of F ′, (kR)′ and (kR)′′

depend on h(1)/R(= h(2)/R) and on d/h(1). Moreover, note that the values of (kR)′

and (kR)′′ depend also on the parameter F and

((kR)′′− (kR)′)→ 0 as F → F ′−0. (23)
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a b 

c 

 Figure 3: Dispersion curves constructed for the case where h(1)/R =h(2)/R =0.15
under d/h(1) = 1(a), 2.5 (b) and 5 (c)

The results given in Figs. 2, 3 and 4 show that the wave propagation velocity of
the first group of modes increases (decreases) monotonically with kR under kR >
(kR)′′(under kR < (kR)′). Moreover, these results show that the values of (kR)′′ and
(kR)′ decrease with h(1)/R.

To estimate the influence of the parameter d/h(1)(i.e. the distance between the
tubes of the DWCNT) on the wave propagation velocity we consider the dispersion
curves constructed in the case where h(1)/R = 0.2 which are given in Fig. 5. Note
that in this figure the dispersion curves related to the corresponding hollow cylinder
(i.e. related to the case where the free space between the tubes is ignored and full
contact conditions are satisfied) and the dispersion curve related to the case where
d/h(1) = 0 and F = 0(full slipping) are also given. It follows from Fig. 5 and Figs.
2, 3 and 4 that the wave propagation velocity related to the first group of modes
decreases (increases) with d/h(1) (with F).
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                                                                a                                                                   b

c 

 Figure 4: Dispersion curves constructed for the case where h(1)/R =h(2)/R =0.2
under d/h(1) = 1(a), 2.5 (b) and 5 (c)

Now we consider the second and third groups of the wave propagation modes. Note
that these modes appear after certain cut off values of kR(denoted by (kR)c f ) and as
if there is some disconnection between the beginning points (i.e. at kR = (kR)c f ) of
the second and the third order dispersion curves. The length of these disconnection
parts is not large, but these parts mean that there are some intervals for c/c2 under
which the wave propagation under consideration does not exist for the second or
third group of curves or modes.

We introduce the notation cI , cII and cIII to indicate the wave propagation velocity
related to the first, second and third groups of modes. According to the results
given in Figs. 2, 3 and 4 we can write that

cI < cII < cIII for kR > (kR)c f . (24)
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Figure 5: Graphs illustrating the influence of the parameters F and d/h(1)on the
wave propagation velocity

Also, the results show that the dependence between cII and kR, as well as be-
tween cIII and kR are non-monotonic. This conclusion is observed clearly from
the graphs given in Fig. 6 which are constructed for the case where 0 < kR ≤ 30
under h(1)/R = 0.15 and d/h(1) = 1.0. Note that the graphs given in Fig. 6 are the
same ones given in Fig. 3a and constructed for 0 < kR≤ 10.

Thus, it follows from the foregoing results that cII(cIII) decreases (increases) mono-
tonically before a certain value of kR and cII(cIII) increases (decreases) monotoni-
cally after this value of kR with kR.

Analyses of the results show that the values of (kR)c f increase with d/h(1), but
the influence of the h(1)/R on the values of (kR)c f is insignificant. Moreover, the
analyses show that the values of cII(cIII) increase (decrease) with the parameter F .

Consider the limit values of cI , cII and cIII . As the velocities cII and cIII have a
meaning in the cases where kR > (kR)c f , therefore there are no limit values for the
velocities cII and cIII under kR→ 0. But the values of cI have finite limit values
as kR→ 0 and their magnitude depends on the parameters F , d/h(1) and h(1)/R.
Note that with F (i.e. as F → 15) the magnitude of the influence of the parameters
d/h(1) and h(1)/R on the limit values becomes insignificant.

According to the results given in Fig. 6 and similar results obtained for the cases
where h(1)/R = 0.1 and 0.2, we can write that

cI; cII → cR, cIII → c2 as kR→ ∞. (25)
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Figure 6: Illustration of the high wave number limit values of the wave propagation
velocity for the case where h(1)/R =h(2)/R =0.15 and d/h(1) = 1

In (25) cR is the velocity of the Rayleigh wave.

It follows from the foregoing results that the axisymmetric longitudinal waves with
an arbitrary velocity which is greater than zero can propagate in the DWCNT. How-
ever such propagation can occur after certain cut off values of the wave number
parameter. It should be noted that this particularity of the wave propagation is
typical for the DWCNT only and that it does not appear for the SWCNT, or for
compound cylinders, the constituents of which are ideally contacted. This is be-
cause it is known that the wave propagation in the SWCNT and in the compound
cylinders occurs after a certain minimal velocity. Thus, it follows from the fore-
going discussions that the aforementioned and other particularities indicated under
consideration of the numerical results and related to the wave propagation in the
DWCNT, are caused by the character of the contact relation between the tubes of
the DWCNT. Namely, these particularities are caused with the van der Waals forces
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resisting the jump of the radial displacements of the tubes.

Moreover, it means that the DWCNTs can be used as sensors for indicating the
waves with very low frequencies. In other words, the DWCNTs can be used as a
wave guide for the waves with arbitrary frequencies or propagation velocities.

The numerical results discussed above are also typical in the following sense. Ac-
cording to Wilson et al (2002), the density of the CNT can be taken as ρ = 1.4×
103kg/m3. As an example, we consider the case where E = 1.2T Pa and ν = 0.25
for which c2 = 1.85×104m/s. For the considered case, the obtained numerical re-
sults with respect to c/c2 must be estimated according to c2 = 1.85×104m/s. How-
ever, for traditional materials, such as steel and aluminum similar results must be
estimated according to c2 = 3210m/s(for steel) and c2 = 3110m/s(for aluminum).
Consequently, the ratio c/c2 for the CNT and for traditional materials must be
distinguished according to the foregoing values of c2 and according to the wave-
lengths, the values of which can be calculated from the values of kR, taking the
changing range R∼ 5nm−35nm into account.

5 Conclusions

Thus in the present paper, longitudinal axisymmetric wave propagation in the DWCNT
has been investigated by utilizing the exact equations of motion of the linear the-
ory of elastodynamics. This investigation has been made within the scope of the
following assumptions:

1. The DWCNT has been modeled as concentrically-nested two circular hollow
cylinders between which there is free space;

2. The difference in the radial displacements of these cylinders has been cou-
pled with the van der Waals forces;

3. Full slipping conditions are satisfied on the inner surface of the outer tube
and on the outer surface of the inner tube.

The foregoing conditions follow from the characteristic features of the DWCNT.
The numerical results presented and discussed above on the new type of disper-
sion curves with these features are found by utilizing the exact equations of motion
of the linear theory of elastodynamics. It should be noted that these conditions
were also assumed in the works carried out within the framework of the approxi-
mate beam and shell theories. However, these approximate theories cannot uncover
these new types of dispersion curves either in the quantitative or the qualitative
sense. Therefore, from the author’s point of view, for more detailed study and cor-
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rect understanding of the MWCNTs’ dynamical behavior it is necessary to use the
approach developed in the present paper for all related future investigations.

Appendix A

We write the expressions for calculation of the term βi j which enter the dispersion
equation (16)
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2

))
,

β36 = β35

(
s(1)3 ,χ

(1)
3

)
, β38 = β37

(
s(1)3 ,χ

(1)
3

)
,

β56 = β55

(
s(1)3 ,χ

(1)
3

)
, β58 = β57

(
s(1)3 ,χ

(1)
3

)
,

β65

(
s(1)2 ,χ

(1)
2

)
=− 1

δw
β35

(
s(1)2 ,χ

(1)
2

)
+

−s(1)2 J1

(
χ
(1)
2

)
,

s(1)2 I1

(
χ
(1)
2

)
,

,

β67

(
s(1)2 ,χ

(1)
2

)
=− 1

δw
β37

(
s(1)2 ,χ

(1)
2

)
+

−s(1)2 Y1

(
χ
(1)
2

)
,

−s(1)2 K1

(
χ
(1)
2

)
,

,
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β66 = β65

(
s(1)3 ,χ

(1)
3

)
, β68 = β67

(
s(1)3 ,χ

(1)
3

)
,

β75

(
s(1)2 ,χ

(1)
2h(1)

)
=



(λ (1)+2µ(1))

(
−
(

s(1)2

)2
1
2

(
J2

(
χ
(1)
2h(1)

)
− J0

(
χ
(1)
2h(1)

)))
+ λ (1)

γ(1)
s(1)2 J1

(
χ
(1)
2h(1)

)
+

λ (1)

2

(
β
(1)
1

(
s(1)2

)2(
J2

(
χ
(1)
2h(1)

)
− J0

(
χ
(1)
2h(1)

))
− s(1)2

γ(1)
J1

(
χ
(1)
2h(1)

)
−β

(1)
2 J0

(
χ
(1)
2h(1)

))
,

(λ (1)+2µ(1))

(
−
(

s(1)2

)2
1
2

(
I2

(
χ
(1)
2h(1)

)
+ I0

(
χ
(1)
2h(1)

)))
− λ (1)

γ(1)
s(1)2 I1

(
χ
(1)
2h(1)

)
+

λ (1)

2

(
β
(1)
1

(
s(1)2

)2(
I2

(
χ
(1)
2h(1)

)
+ I0

(
χ
(1)
2h(1)

))
+

s(1)2
γ(1)

I1

(
χ
(1)
2h(1)

)
−β

(2)
2 I0

(
χ
(1)
2h(1)

))
,

β85

(
s(1)2 ,χ

(1)
2h(1)

)
=



−µ(1)s(1)2 J1

(
χ
(1)
2h(1)

)
+ µ(1)

4

(
β
(1)
1

((
s(1)2

)3(
3J1

(
χ
(1)
2h(1)

)
− J3

(
χ
(1)
2h(1)

))
+

s(1)2
(γ(2))2 J1

(
χ
(1)
2h(1)

)
+

(
s(1)2

)2

2γ(2)

(
J2

(
χ
(1)
2h(1)

)
− J0

(
χ
(1)
2h(1)

))
+β

(1)
2 s(1)2 J1

(
χ
(1)
2h(1)

))
,

µ(1)s(1)2 I1

(
χ
(1)
2h(1)

)
+ µ(1)

4

(
β
(1)
1

((
s(1)2

)3(
3I1

(
χ
(1)
2h(1)

)
+ I3

(
χ
(1)
2h(1)

))
−

s(1)2
(γ(2))2 I1

(
χ
(1)
2h(1)

)
+

(
s(1)2

)2

2γ(2)

(
I2

(
χ
(1)
2h(1)

)
+ I0

(
χ
(1)
2h(1)

))
−β

(1)
2 s(1)2 I1

(
χ
(1)
2h(1)

))
,

β77

(
s(1)2 ,χ

(1)
2h(1)

)
=



(λ (1)+2µ(1))

(
−
(

s(2)2

)2
1
2

(
Y2

(
χ
(2)
2h(2)

)
−Y0

(
χ
(2)
2h(2)

)))
+ λ (1)

γ(1)
s(1)2 Y1

(
χ
(2)
2h(2)

)
+

λ (1)

2

(
β
(2)
1

(
s(2)2

)2(
Y2

(
χ
(2)
2h(2)

)
−Y0

(
χ
(2)
2h(2)

))
− s(2)2

γ(1)
Y1

(
χ
(2)
2h(2)

)
−β

(2)
2 Y0

(
χ
(2)
2h(2)

))
,

(λ (1)+2µ(1))

((
s(2)2

)2
1
2

(
K2

(
χ
(2)
2h(2)

)
+K0

(
χ
(2)
2h(2)

)))
+ λ (1)

γ(1)
s(2)2 K1

(
χ
(2)
2h(2)

)
+

λ (1)

2

(
β
(2)
1

(
s(2)2

)2(
I2

(
χ
(2)
2h(2)

)
+ J0

(
χ
(2)
2h(2)

))
+

s(2)2
γ(1)

I1

(
χ
(2)
2h(2)

)
−β

(2)
2 I0

(
χ
(2)
2h(2)

))
,

β87

(
s(1)2 ,χ

(1)
2h(1)

)
=
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−µ(1)s(1)2 Y1

(
χ
(1)
2h(1)

)
+ µ(1)

4

(
β
(1)
1

((
s(1)2

)3(
3Y1

(
χ
(1)
2h(1)

)
−Y3

(
χ
(1)
2h(1)

))
+

s(1)2
(γ(2))2 Y1

(
χ
(1)
2h(1)

)
+

(
s(1)2

)2

2γ(2)

(
Y2

(
χ
(1)
2h(1)

)
−Y0

(
χ
(1)
2h(1)

))
+β

(1)
2 s(1)2 Y1

(
χ
(1)
2h(1)

))
,

−µ(1)s(1)2 K1

(
χ
(1)
2h(1)

)
+ µ(1)

4

(
β
(1)
1

((
s(1)2

)3(
3K1

(
χ
(1)
2h(1)

)
+K3

(
χ
(1)
2h(1)

))
+

s(1)2
(γ(2))2 K1

(
χ
(1)
2h(1)

)
+

(
s(1)2

)2

2γ(2)

(
K2

(
χ
(1)
2h(1)

)
+K0

(
χ
(1)
2h(1)

))
+β

(1)
2 s(1)2 K1

(
χ
(1)
2h(1)

))
,

βn6 = βn5

(
s(1)3 ,χ

(1)
3h(1)

)
, βn8 = βn7

(
s(1)3 ,χ

(1)
3h(1)

)
,

βn1 = βn2 = βn3 = βn4 = 0, n = 7,8. (A1)

In relation to (A1) the following notation is used:

χ
(n)
2 = kR(n)

∣∣∣ζ (n)
2

∣∣∣ , χ
(n)
3 = kR(n)

∣∣∣ζ (n)
3

∣∣∣ , s(n)2 =
∣∣∣ζ (n)

2

∣∣∣ , s(n)3 =
∣∣∣ζ (n)

3

∣∣∣ , n= 1,2,

R(1) = R+
d
2
, R(2) = R− d

2
, γ

(n) = kR(n)

χ
(2)
2h(2)

= kR

(
1− h(2)

R
(1+

d
2h(2)

)

)∣∣∣ζ (2)
2

∣∣∣ , χ
(2)
3h(2)

= kR

(
1− h(2)

R
(1+

d
2h(2)

)

)∣∣∣ζ (2)
3

∣∣∣ ,
χ
(1)
2h(1)

= kR

(
1− h(1)

R
(1− d

2h(2)
)

)∣∣∣ζ (1)
2

∣∣∣ , χ
(1)
3h(1)

= kR

(
1− h(1)

R
(1− d

2h(2)
)

)∣∣∣ζ (1)
3

∣∣∣ ,
β
(n)
1 =

λ (n)+2µ(n)

λ (n)+µ(n)
, β

(n)
2 =

µ(n)

λ (n)+µ(n)
− c2

(c(n)1 )2− (c(n)2 )2
. (A2)

Moreover, note that in (A1) the expressions given through the functions Jn(x) and

Yn(x)( the functions In(x) and Kn(x)), relate to the case where
(

ζ
(1)
m

)2
> 0 (where(

ζ
(1)
m

)2
< 0).
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