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Abstract: On the basis of harmonic mapping theory, a mobile grid technology is applied 
to computational fluid dynamics (CFD). Starting from the observation that standard 
fixed-grid techniques often fail in addressing problems with large deformations, we 
elaborate a new algorithm relying on the software COMSOL Multiphysics 5.3a to solve 
the coupling of the mobile grid equation and the governing differential equations for fluid 
flow. The motion of water in a water tank when the tank waggles is simulated. We 
demonstrate that this technology can be implemented without a significant increase in the 
computational cost with respect to standard numerical methods. 

Keywords: Harmonic mapping, mobile grid, computational fluid dynamics, large 
deformation. 

1 Introduction 
The phenomenon of fluid flow exists in the nature and various fields of engineering 
extensively, and all these processes are supported by the fundamental laws of physics 
such as conservation of mass, conservation of momentum, and conservation of energy, 
and namely, it needs to meet a certain governing differential equation. Computational 
fluid dynamics is the analysis and calculation conducted on the system of isophase 
physical phenomena including fluid flow and heat conduction by computer numerical 
calculation and image display. The basic thought of CFD can be summarized as replacing 
the physical fields (such as pressure field and velocity field) on the original time domain 
and spatial domain by a series of collection of variable values on a finite number of 
discrete points, and through a certain principle and method, the algebraic equation set 
about the relationship among the field variables on these discrete points is established, 
and then, the approximate value of the field variables gained by the algebraic equation set 
is solved [Zhou (1995); Huang and Russell (2011); Huang and Kamenski (2017)], and 
namely, the primary problem of CFD is to discretize these differential equations 
controlling fluid flow, dividing the solution area into the grid model which is convenient 
for solving. The conventional CFD discrete method includes finite difference method, 
finite element method and finite volume method, and among which, the finite volume 
method is applied most widely [Versteeg and Malalasekera (1995)]. They all have the 
methods for dividing the grid respectively, and it is collectively called as grid generation 
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technique. The conventional discrete method is to divide the solution domain into 
uniform grid, while in the actual application, the problems appear frequently, such as grid 
large deformation, great changes happened by some physical quantities in a very small 
area, including fluid-solid coupling boundary, laminar flow, shear layer in turbulence, as 
well as explosion, and for these problems, the reasonable accuracy is hard to reach if 
adopting the simple uniform grid solution, and therefore, it is extremely important to 
generate the computational grid which matches with the problems. 

2 Governing equations of fluid dynamics and its solutions 
2.1 Governing differential equation of fluid dynamics 
Any flow problem must meet the law of conservation of mass. This law can be described 
as that the increase of mass of fluid element per unit time equals to the net mass flowing 
into the element at the same time. According to this law, the mass conservation equation 
can be gained: 
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In the equation, ρ is fluid density; u , v and w are the components of velocity vector in 
three directions of x, y and z; t  is time. 
Any fluid shall meet the law of conservation of momentum. This law can be described as 
that the rate of change of fluid momentum with respect to time in element equals to the 
sum of external forces acting on the element. According to this law, the famous Navier-
Stokes equation can be gained: 

( ) ( ) F
t

ρ ρ ρ τ∂
+ ⋅∇ = ∇ − + +

∂
u u u I                                                                        (2) 

In the equation,u is velocity vector; I is unit matrix; τ is viscous stress tensor of fluid; 
F is the volume force of fluid, while∇ is Hamilton operator. 
Any fluid shall meet the law of conservation of energy. This law can be described as that 
the increase rate of element energy equals to the sum of net heat absorption of the 
element and external acting on the element. According to this law, the energy 
conservation equation can be gained: 
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In the equation, T  is the absolute temperature of fluid; cp is specific heat capacity of 
fluid; k is the heat transfer coefficient of fluid; ST is the internal heat source of fluid and 
the parts of fluid mechanical energy transferring into the heat energy because of action of 
clay, and sometimes, it is called as viscous dissipation term. 
The Eqs. (1), (2) and (3) are the differential equations controlling fluid flow, and 
essentially, the process of solving computational fluid dynamics is to solve the above 
partial differential equation set. 
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2.2 Headings 
No matter for the fluid flow problem or the fluid heat transfer problem, and no matter for 
the steady state problem or the transient problem, the solution process of CFD is as 
follows: 
a. Establish governing differential equation and confirm initial boundary value condition; 
b. Divide computational grid and generate the calculation node;  
c. Establish discrete equations, and substitute into the initial boundary value condition;  
d. Give solution control parameters and solve the discrete equation; 
e. Judge whether the solution is convergence. No, go to b; yes, go to f; 
f. Show the output calculation results. 
From the above process, it can be seen that essentially, CFD is the partial differential 
equation set of solution Eqs. (1)-(3), while the emphasis and difficulty is the subdivision 
of solution domain grid. Under a certain situation, the traditional grid technology can 
well simulate the fluid flow issue (such as the aerodynamic characteristics of objects), 
however, for some specific issues (such as the large deformation of grid), no matter how 
highly accurate the numerical method is, if the grid condition does not match with the 
actual problem, the gained numerical solution will completely distorted. That is to say, 
the grid technology plays the same role for the accuracy of the numerical solution of 
partial differential equation as what the numerical method does. 

3 Mobile grid technology 
3.1 Advantages of mobile grid technology and its basic thoughts 
As one of the adaptive grid, mobile grid technology was proposed by Liao et al. [Liao 
and Anderson (1992)] in 1992, and later, it was widely applied by some scholars into the 
field of partial differential equations, achieving a certain effect [Song and Quan (2004); 
Li, Liu and Ma (2004)]. In the calculation of fluid of large deformation of grid, the 
traditional Lagrange method and Euler method have deficiencies: although Lagrange 
method possesses the advantages of being capable of accurately distinguishing the 
interface of matter, the grid intersecting caused by large deformation will cause the 
calculation interrupting; in the Euler method, the geometrical shape of grid is good, but 
the problems such as interface tracking at boundaries, hybrid grid and reconstruction are 
hard to process. Mobile grid method is a method for solving the evolution equation, and it 
timely adjusts the density and shape of grid according to changes of physical solution. 
Mobile grid based on Arbitrary Lagrange-Euler method (for short: ALE) can both 
accurately distinguish material interface and keep geometrical features of grid, and 
therefore, when solving the large deformation of grid, it has the incomparable advantages. 
The features of ALE are to determine the characteristics of grid with the characteristics of 
solution in the solution area, and to constantly update the grid in the solution process, 
thus to make it automatically match with the solution. For realizing this process, a kind of 
mobile grid method based on harmonic mapping needs to be applied [Li, Tang and Zhang 
(2001); Li, Tang and Zhang (2002)], and the basic thought of this method is to totally 
separate the grid deformation with the solution of governing differential equation, thus, it 
only needs to construct a control function which suits for our problems. In this process, it 
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needs to introduce a logic area, the motion of grid is realized by changing the physical 
area to logical area, and the physical area is the actual fluid area which needs to be solved. 

3.2 Harmonic mapping 
The most critical and difficult point of mobile grid method is to find grid mapping or grid 
transformation which meets a certain condition. Harmonic mapping is put forward by 
Fuller in the 1940s, and later, it was widely applied into the field of mathematical physics 
and adaptive grid field [Gowrisankar and Natesan (2013)] and the definition on harmonic 
mapping is as follows: 
For two n dimension calculation fields DP and DL, a smooth mapping is 
given: : p LD Dξ → , and its energy density is: 

21( )( ) ( ), ( ) ( )
2 p pe x d x x D e C Dξ ξ ξ ∞=   ∈ , ∈                                                          (4) 

The energy of mapping ξ is the integration of energy density: 
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In the equation, Dp and DL are the physical area and logical area respectively of the 
calculation area. 
The energy functional: the critical point of : ( , )p LE C D D R∞ → is called as harmonic 
mapping. Lagrange- Euler equation of energy functional is as follows: 
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In the equation ∆ is Laplace-Beltrimi operator; ijG is Rieman measurement of local 
coordinate system nx ; k

αβΓ is coefficient of connection on pD . 

From the above derivation, it can be seen that the essence of harmonic mapping is the 
promotion of harmonic function and minimal manifolds [Li (2010)]. Hamilton, Schoen, 
et. al established relatively complete theorem of existence and uniqueness of harmonic 
mapping [Hamilton (1975); Schoen and Yau (1978)], and presented the corresponding 
conditions. The conclusion of existence uniqueness is beneficial for avoiding the 
calculation interrupting caused by the interlacing of grids. 

3.3 Control function 
Control function is a given positive definite function matrix on solution domain, and it is 
the key factor for generating mobile grid. Control function can be used to control the 
quality of the grid in variational form and couple the grid with the physical solution of the 
solution domain, and at that time, control function can be used to measure the physical 
quantity on the physical region, while the metric matrix on the physical region can be 
taken as the inverse element of control function. The general principle for the 
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construction of control function is that the gradient of numerical solution is used for 
judging which parts’ solution in solution domain changes fast, thus the grids can be 
centralized on those parts. The general form of the control function constructed by 
gradient is: 

22 2 21M u u u Iα β γ= + + ∇ + ∇                                                                       (7) 

In the equation,α , β and γ are positive parameters; I is unit matrix;∇ is Hamilton operator. 
It also constructs control function by connecting control function with error estimation 
[Chen and Liu (2016)]: 
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= +                                                              (8) 

In the equation, ( , )ne x t is the function about error indicator e . 

It also constructs control function in virtue of directional derivative: 
( , ) ( / )if X t g u l I= ∂ ∂                                                                                            (9) 

Their principles are the same with the control function about gradient. 

3.3 Movement of grid 
For the specific realization method of changes from physical region Dp of the solution 
region to DL of logic region, it is to confirm the mapping situation of fluid on boundaries 
first after having selected logic region DL and given a uniform partition T (suppose its 
node as xi) on flow field DP, then the mapping on this boundary is used for the limitation 
of a given hemeomorphism φ  on boundary, then it solves Possion equation set 

0 (1 )
pp

k k
DD

k nξ ξ φ ∂∂
∆ =       =       ≤ ≤，                                                            (10) 

According to the above equation, a logic grid can be gained, the solution of Eq. (10) 
changes the physical region Euclid measurement of the solution domain into induction 
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∑  of logic region. Large amounts of numerical experimentation 

showed that [Cao, Huang and Russell (2001)] for the physical region of the same solution 
domain, selecting different logic region will not generate significant influences on the 
calculation results. 
If it wants to complete the movement of grid, it still needs to be realized through the 
moving vector fields. It assumes the corresponding physical grid of t moment is tT (its knot 

is i
tX ), and through calculating control function M, it solves elliptic equation set on grid tT . 
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And namely, it can gain the image i
tξ of the node i

tX  of flow field grid under the 
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harmonic mapping, and furthermore, its difference with the logic grid *i i i
tδξ ξ ξ= − is 

gained. In virtue of the changed first derivative from logic grid to flow field grid, it is 
interpolated as a shard vector field on flow field grid, thus, the movement direction ,*iXδ  
of each node on the flow field is gained, and therefore, the node of flow field grid is 
updated as: 

,*: i i
t tX X Xη δ= + ⋅                                                                                                   (12) 

In the equation, η  is the step length of the grid movement. Therefore, the grid of the 
solution domain reaches the goal of updating. The procedure of applying mobile grid 
method into CFD numerical simulation is as follows: 

Solving control differential 
equations at t=tn

Solving equation  (11)  
to obtain ξ*

2
(0)*

L
Tolξ ξ− <

Computing grid vectors      
using ξ* -ξ(0)

Updating mobile grid 
based on vectorsδx

No

Solving control differential 
equations at t=tn+1

Obtain the flow field 
distribution at t=tn+1

Yes

 

Figure 1: The program flow chart of applying mobile grid method into CFD 

4 Numerical simulation example-apply mobile grid technology to simulate the waggling 
of water in the water tank 
4.1 The model background 
During the process of water tank tilting and shaking, the water in the water tank rocks 
back and forth under the action of gravitational vector, because there are no constraints 
on liquid level, its deformation is huge and irregular, it is almost unable to solve with the 
conventional uniformed fixed grid, while this kind of problem can be well solved if we 
apply mobile grid technology. In this case, computational fluid dynamics module (CFD 
module) and mobile grid module (ALE module) in multiple physical field coupling 
software COMSOL Multiphysics 5.3a are applied to simulate the movement rule of water 
in the water tank. As the first global truly COMSOL Multiphysics, it adopts the mode of 
modeling based on partial differential equation, and therefore, it has its unique 
advantages when handling with the problems of mobile grid and governing equation 
coupling. The model parameters are: the rectangular tank, its height is enough, there is a 
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certain amount of water inside, the solution domain length is 1m, width is 0.4 m, the 
density of water is 1000 kg/m3, the viscosity is 1.01×103 pa*s, and the maximum angle of 
inclination of tank swing is 4°. The fluid is Newtonian fluid, the model adopts one-way 
laminar flow model, and it does not give consideration to heat conduction process. 
According to grid’s own powerful grid division function, it is freely divided into 
triangular gird, and the initial grid of its solution domain is shown in the following figure: 

 
Figure 2: The initial grid model of the solution domain 

4.2 Boundary condition of the CFD and mobile grid 
After the solution domain of the control equation is determined, it needs to set up the 
boundary condition of governing differential equation and mobile grid. The confirmation 
of fluid governing differential equation boundary condition: as shown in the Fig. 2, the 
left boundary, right boundary and lower boundary of rectangle are the sliding wall liquid 
level’s boundary condition; the upper boundary is the free liquid level, and for opening 
the boundary, the normal stress is zero. 
The definition of mobile grid’s boundary condition: as shown in Fig. 2, for the left 
boundary and right boundary of the rectangular region, the specified grid displacement is 
zero in horizontal direction, and in vertical direction, it is free deformation; for the lower 
boundary, the specified grid is zero on both horizontal direction and vertical direction; for 
the free liquid level, it adopts the boundary coordinate system, and the speed at the 
specified grid normal is “u*nx+v*ny”, and namely, the horizontal speed u and the vertical 
speed v of the grid are decomposed to normal, and the tangential velocity is not restricted. 
Through the above setting, it is actually couple the mobile grid with the solution region, 
when conducting the transient analysis, the grid will generate a deformation after every 
time substep passes, and after updating, the grid model will become the initial condition 
of the next time substep, and time and again, the deformation condition of grid within a 
certain period can be gained. 
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4.3 Simulation results and analysis 
In this case, the transient solver provided by software is adopted for solving, the 
simulation time is 5 s, and the time step is 0.1 s. Among which, the velocity vector and 
grid deformation figure of the time t being 1.1 s, and 1.7 s respectively is shown in the 
following figure: 

     
(a) t=1.1 s                                                         (b) t=1.7 s 

Figure 3: Grid distribution and velocity vector 

From Fig. 3, it can be seen that when the water tank waggles, the liquid in the tank also 
rocks back and forth under the action of gravitational vector. In this case, the COMSOL 
Multiphysics is applied for coupling mobile grid with the governing differential equation of 
fluid flow, and the deformation condition of grid is used for truly simulating the movement 
condition of water in water tank. For the movement of grid, it is just the adjustment of grid 
node position, while the node number of the data structure of grid node will not change, and 
therefore, the memory overhead in the computer can be saved largely, the calculation time 
is shorten, and the debugging of the program also becomes much simpler. 
Through the mobile grid technology，we can also track the movement condition of the free 
liquid level, and as shown in Fig. 4, the relation of elevation of the left-end liquid level and 
the elevation right-end liquid level of rectangle changing as time is shown as follows: 

 
Figure 4: The elevation of the left-end and right-end liquid level of solution domain 
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From Fig. 4, it can be seen that when the elevation of the left-end free liquid level reaches 
the wave crest, the elevation of the right-end free liquid level reaches the trough, and vice 
versa; the elevation of the left-end liquid level is exactly one phase different from the 
elevation of the right-end liquid level, which conforms to the actual situation. Through 
this case, it explains that it is feasible and reasonable to apply the mobile grid technology 
into computational fluid dynamics. 

5 Conclusion 
CFD issue can ultimately summarized as the issue of solving partial differential equations, 
and therefore, we can introduce a powerful tool for solving the partial differential equation: 
mobile grid technology. mobile grid has the advantages that the conventional fixed grid 
cannot compare with, and applying it into the numerical simulation field of CFD, it can 
well solve the large deformation problem of the flow region widely existed in the nature, 
and moreover, in the simulation process, it does not change the node and grid number, and 
there is no extra expense for the computer resources. Therefore, mobile grid technology has 
the wide application prospect in the research field of numerical simulation of CFD. 

Acknowledgement: This work was financially supported by the National Natural 
Science Foundation of China (51808201). 

References 
Cao, W. M.; Huang, W. Z.; Russell, R. D. (2016): Comparison of two-dimensional r-
adaptive fnite element methods using various error indicators. Mathematics and 
Computers in Simulation, vol. 56, no. 2, pp. 127-143. 
Chen, Y.; Liu, L. B. (2016): An adaptive grid method for singularly perturbed time-
dependent convection-diffusion problems. Communications in Computational Physics, 
vol. 20, no. 5, pp. 1340-1358. 
Gowrisankar, S.; Natesan, S. (2013): The parameter uniform numerical method for 
singularly perturbed parabolic reaction-diffusion problems on equidistributed grids. 
Applied Mathematics Letters, vol. 26, no. 11, pp. 1053-1060. 
Hamilton, R. (1975): Harmonic Maps of Manifolds with Boundary. Springer Press. 
Huang, W.; Kamenski, L. (2017): On the mesh nonsingularity of the moving mesh pde 
method. Mathematics of Computation, vol. 113, no. 5, pp. 42-54. 
Huang, W.; Russell, R. D. (2011): Adaptive Moving Mesh Methods. Springer Press. 
Li, R.; Tang, T.; Zhang, P. W. (2001): Moving mesh methods in multiple dimensions 
based on harmonic maps. Journal of Computational Physics, no. 170, pp. 562-588. 
Li, R.; Liu, W.; Ma, H. P. (2004): Moving mesh method with error-estimator-
basedmonitor and its applications to static obstacle problem. Journal of Scientific 
Computing, vol. 21, no. 1, pp. 31-35. 
Li, R.; Tang, T.; Zhang, P. W. (2002): Moving mesh finite element algorithm for 
singular problems in two and three space dimensions. Journal of Computational Physics, 
no. 177, pp. 562-588. 



366                                                                           FDMP, vol.15, no.4, pp.357-366, 2019 

Li, Y. G. (2010): The Application of Moving Mesh Method for Unsteady Seepage 
Computations (Ph.D. Thesis). Nanhua university, China. 
Liao, G. J.; Anderson, D. (1992): A new approach to grid generation. Applicable 
Analysis, vol. 44, no. 3, pp. 285-298. 
Schoen, R.; Yau, S. T. (1975): On univalent harmonic maps between surfaces. 
Inventiones Mathematicae, no. 44, pp. 265-278.  
Song, S. H.; Quan, H. Y. (2004): A nonoscillatory finite volume method for 2D 
hyperbolic conservation laws on unstructured meshes. Journal of Numerical Methods and 
Computer Applications, vol. 2004, no. 3, pp. 161-164. 
Versteeg, H. K.; Malalasekera, W. (1995): An Introduction to Computational Fluid 
Dynamics: the Finite Volume Method. England and Longman Scientific & Technical Press. 
Zhou, X. Y. (1995): Computational Hydraulics. Tsinghua University Press. 


	On the Application of a Mobile Grid Technology to Computational Fluid Dynamics
	Zhiyuan Cheng0F , 2, *, Yulan Wang1 , Yingang Wang2 and Qiong Nie2

	5 Conclusion
	References:

