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Assessing the Forecasting of Comprehensive Loss Incurred by 
Typhoons: A Combined PCA and BP Neural Network Model 

Shuai Yuan1, Guizhi Wang1, *, Jibo Chen1 and Wei Guo2   

Abstract: This paper develops a joint model utilizing the principal component analysis 
(PCA) and the back propagation (BP) neural network model optimized by the Levenberg 
Marquardt (LM) algorithm, and as an application of the joint model to investigate the 
damages caused by typhoons for a coastal province, Fujian Province, China in 2005-2015 
(latest). First, the PCA is applied to analyze comprehensively the relationship 
between hazard factors, hazard bearing factors and disaster factors. Then five integrated 
indices, overall disaster level, typhoon intensity, damaged condition of houses, medical 
rescue and self-rescue capability, are extracted through the PCA; Finally, the BP neural 
network model, which takes the principal component scores as input and is optimized by 
the LM algorithm, is implemented to forecast the comprehensive loss of typhoons. It is 
estimated that an average annual loss of 138.514 billion RMB occurred for 2005-2015, 
with a maximum loss of 215.582 in 2006 and a decreasing trend since 2010 though the 
typhoon intensity increases. The model was validated using three typhoon events and it is 
found that the error is less than 1%. These results provide information for the government 
to increase medical institutions and medical workers and for the communities to promote 
residents’ self-rescue capability.  
 
Keywords: Typhoon, PCA, BP neural network model, comprehensive loss, LM 
algorithm. 

1 Introduction 
Meteorological disasters have caused numerous fatal disasters to life and serious damage 
to property every year, and according to China marine disaster bulletin, typhoons alone 
account for approximately 25% of live disasters and 94% of property loss in China. 
Particularly, the situation usually becomes the most dangerous along the coast. For 
example, in 2013 typhoons in China’s coastal cities hit 1380.34 million people, caused 
121 fatalities, and resulted in a direct loss of 152.45 billion RMB according to China 
marine disaster bulletin. With the acceleration of the urbanization process, while the 
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number of deaths by typhoons is decreasing, the comprehensive economic loss exhibits 
an increasing trend. 
As such, disaster assessment becomes a critical part of prevention and reduction 
strategies, and the assessment result is widely regarded as an important basis for the 
rescuing operations including the distribution of emergency foods and relief funds. 
Consequently, disaster assessment is of great practical significance for disaster 
prevention, disaster reduction, safeguarding economic development, and maintaining 
people’s lives and property. 
The typhoon problem was drawn an attention as early as in 1920’s which [Pielke and 
Landsea (2008)] employed a method of normalization the damages to study the trend of 
typhoons in the United States, linking social economic factors with typhoons, and results 
showed that population and currency factors were important for typhoon damages. 
Mille first studied typhoon rainstorms quantitatively [Mille (1958)] through the hurricane 
model and found that the rainstorm and wind speed are the direct factors affecting the 
typhoon strength. Emanuel built the Carnot Cycle model [Emanuel (1987)] to estimate 
the maximum pressure intensity of typhoons, where the results of empirical analysis have 
showed that the wind speed and the pressure were associated with large intensity changes 
of typhoons. 
Later, the recent works [Lu (1995)] built a disaster damage assessment model based on 
the number of collapsed houses, direct economic loss, and the area of affected farmland. 
The results showed that the assessment error for typhoons was less than 5%. Powell 
established a typhoon disaster assessment model [Powell and Houston (1996)] for 
estimating the damage by measuring typhoon landing and destroying infrastructure. After 
that, studying the damage caused by typhoon using the mixed Poisson stochastic model, 
and concluded [Katz (2002)] that the trend of typhoons in the Poisson process was only a 
weak evidence and the fluctuation of typhoon quantity was related to the change of the 
total number of annual damage. 
With the improvement of statistical theory such as the multivariate regression and neural 
network, scholar [Baik and Hwang (2008)] used the multivariate regression method and 
neural network method to forecast typhoon intensities. To compare the two models, the 
neural network method had greater predictive potential and the prediction effect was 
better than the multivariate regression [Lou, Chen and Zheng (2009), Xu, Pan and Miao 
(2009)]. Zhang et al. [Zhang, Huang and Liu (2011)] provided the soft histogram method 
to evaluate the risk of land-falling based on the definition of typhoon in the Guangdong 
Province, China. And they concluded that the highest risk located were the western, 
central and eastern coast of Guangdong Province. 
Matter-element model [Liu, Zhang and He (2010)] has been applied to the evaluation on loss 
in the 1980s. The matter-element evaluation model was built [Wei, Yang and Liu (2011)] to 
count for the application by the loss of typhoon Damrey, where the results of empirical 
analysis have showed that the model had feasible and valid application. Recent works 
divided [Kumar and Goyal (2013)] the year into four seasons and constructed the principal 
component analysis (PCA) and BP model to predict the air quality of the four seasons. The 
results showed that the error of the principal component BP model was 3%, which was 
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superior to other neural network models, and could predict the air quality effectively. 
Recently grey techniques and models have been more widely applied for the prevention 
and assessment of natural disasters since 1990s [Yang (1997)]. Zhang et al. [Zhang and 
Zhong (2013)] employed the grayness relational grade to develop the evaluation index 
and used the evaluation results as input factors to analyze the losses caused by typhoons 
based on regression models. Results showed that the combined model performed better 
than the one used separately. In this paper, typhoons are investigated directly by the 
combined model. 
At present, China suffers various impacts from severe typhoons, averaging nine landfalls 
in a year causing an estimated $3.9 billion in damages and 472 lives [Bakkensen (2013)]. 
The support vector regression (SVR) and parameter optimization method [Chen, Tang 
and Sui (2013)] were built which selected severe typhoons occurred in Guangdong 
Province from 1998 to 2008 were analyzed. The results showed that the SVR based on 
the genetic algorithm (GA) was the best model, among the three methods mentioned 
above, to estimate the loss of typhoon. The input-output model [Wang, Li, Chen et al. 
(2015)] assessed the indirect losses of meteorological disasters due to damaged industrial 
linkages and obtained that the secondary industry was more vulnerable to the impact of 
heavy rainstorms. The risk assessment model was presented to optimize the fishing vessel 
during typhoon emergencies [Zhao, Niu and Bai (2016)]. Results showed that using the 
hybrid closed loop algorithm was the best model based on Zhejiang Province, China. 
The above researches on assessing disasters are mainly limited to the assessment of 
economic damage [Wang, Wu and Chen (2016)]. The comprehensive loss is an important 
indicator for measuring typhoons, is not included in the evaluation results of these 
methods. In recent years, scholars have begun to further study [Liu, Zhang and Yang 
(2017)] the comprehensive loss by using the classification method to assess the blackout 
in power grid. Based on statistic data of blackout in an actual city, comprehensive loss for 
blackout was calculated at 99.08 RMB/kWh. The comprehensive loss can be summed up 
as social indexes and economic indexes, in which social indexes refer to loss of casualties, 
and the economic indexes refer to direct economic loss and indirect economic loss [Wei 
and Zhang (1996); Yang (1997) Yang and Zhang (2010)]. Therefore, the comprehensive 
loss should include 
1. The loss of casualties, which is created by medical expenses, take time off work 

because of disasters, recuperate and lose abilities to work and soon． 
2. The direct economic loss, which is the most direct and important indexes reflecting 

the degree of disasters． 
3. The loss of rescue, it refers to prices of labor power and physical resources paid by 

national economy for disaster rescue. 
4. The benefit loss, it refers to the lost value because of the reduction of products 

caused by disasters． 
5. The ecological environment loss. Ecological environment loss is difficult to estimate, 

we can choose the direct economic loss 1.5 times to replace, because of the damaged 
filed area is proportional to the ecological environment loss. The above data 
originates from “China Statistical Yearbook” and “China Meteorological Disaster 
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Yearbook”. 
 
However, the existing researches on typhoon assessment are generally carried out by 
putting together disaster-inducing factors and disaster environments, and assessment 
methods for damages include mathematical statistics, fuzzy mathematics, analysis 
hierarchy processes and multivariate regression method [Imamura and Dang (1997); 
Ramesh, Nagaraju and Ramanamurthy (2007)]. Since changes in the relation between the 
hazard factors, hazard bearing factors and disaster factors are not included in the 
investigation, these models have wide margins of error when applied to actual 
assessments [Lou, Chen and Qiu (2012)]. 
PCA and BP neural network model are highly effective in solving the disaster assessment 
as a single method. But, as far as we know, there are no studies that incorporates both 
PCA and BP neural network model to assess the comprehensive loss of typhoons. In 
addition, the BP neural network approach is not optimized in their studies, which would 
lower the precision [Wang, Song and Yin (2015); Lou, Chen and Zheng (2009); Guo, Dai 
and Li (2013)]. In this paper, we will apply the Levenberg Marquardt (LM) algorithm to 
optimize the PCA-BP model. 
In this paper, we will investigate the relation among the hazard factors, hazard bearing 
factors and disaster factors, and subsequently apply the PCA method to preprocess the 
impact factors. Further, the resulting principal components become the inputs for the BP 
model, which is optimized by the LM algorithm to measure the comprehensive loss 
caused by typhoons. 
For the remainder of the paper, Section 2 initiates the PCA, BP neural network model and 
LM algorithm. Section 3 applies the models established in Section 2 to assess the 
comprehensive loss by typhoons. In Section 4, we discuss the results and elaborate some 
limitations of the study. Section 5 provides the conclusion.  

2 Methods 
2.1 Principal component analysis 
PCA as a statistical method turns multiple factors into fewer factors; it can not only 
explore large amount of information of the original data, but also simplify the data and 
reveal the relationship between variables. Hotelling first proposed the PCA [Hotelling 
(1933)] in 1923, which now has wide applications in the social economy, enterprise 
management, geology, biochemistry, medicine and other fields [Li and Sun (2010); Lin, 
Jiang and Guo (2014); Lu, Lee and Hadley (2014); Tarvainen, Cornforth and Jelinek 
(2014)]. This paper first proves the reliability of the selected factors by calculating the 
commonality, then preprocesses the factors according to the PCA, and extracts the 
principal component to lower the dimensions of data sets.  
The commonality [Skinner 1985] refers to the proportion of common factors that explain 
variable variance. Assuming that each variable is affected by m common factors and a 
special factor, as follows: 

1 1 2 2 ...i i i im m iX a f a f a f e= + + + + ,                                        (1) 
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where iX  is the normalized variable with 0 mean and variance of 1, 1 2, ,... nf f f are 
independent common factors with the mean of 0 and the variance of 1, ie is the special 
factor, 1 2, ,...i i ima a a are factor loadings. The commonality of iX  is defined as: 

2 2 2
1 2 ...i i ima a a+ + . (2) 

In general, when the commonality is more than 0.5, the variable can be selected in the model. 
PCA replaces the original indices with a new set of uncorrelated comprehensive indices. 
Assuming that we have p  indices, the ( ) i, j element of covariance matrix is: 

( )( )
1

1 , , 1,2...
1

n

ij ki i kj j
k

x x x x x i j p
n =

= − − =
− ∑ . (3) 

Then, the eigenvalues 1 2, ,..., pλ λ λ  of the covariance matrix are calculated and the 

eigenvectors iγ  corresponding to each eigenvalue determined: 

1 2( , ,..., ),  1,2, ,i i i ip i pγ γ γ γ= =  . (4) 

And the cumulative contribution rate v of each principal component is defined as

1
/

m

i i
i

λ λ
=
∑ . When the cumulative variance contribution rate is more than 85%, the 

selected principal components can be considered to fully reflect the information of 
original variables [Xie, Zhong and Cao (2015)]. Then we have the principal component 
scores by first calculating the principal component coefficient (PCC) matrix. The 
correlation between the principal components and the original variables can be obtained 
by the PCC matrix. The principal component regression equation can be written as: 

11 1 21 2 1... , 1,2...i p pF a X a X a X i p= + + + = , (5) 

where iF  is the i-th principal component. The principal component scores are i i il m F= , 
where im  are defined as the normalized value of each variable. This paper uses the 
principal component scores as the input for the BP neural network model. 

2.2 BP neural network model  
2.2.1 Basic principle 
A BP neural network model is a multilayer feed forward neural network composed of 
several network layers. Fig. 1 illustrates the structure diagram of three-layer BP neural 
network models. Rumelhart et al. [Rumelhart, Hinton and Williams (1986)] first proposed 
the BP neural network model, which now has numerous applications for pattern 
recognition, image processing, communication, drought and urban accident [Straub and 
Schroder (1996); Grossberg (1988); Nakamura, Yoshida and Engelmann (2000); Jia, Pan 
and Yuan (2015); Behbahani, Amiri and Imaninasab (2018)].  
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Figure 1: BP neural network model 

A three-layer BP neural network can be utilized to approximate arbitrary nonlinear 
functions. Concurrently, the BP neural network model has the ability of self-learning: It 
can extract regularly information from data and memorize the weights, and hence it 
possesses a generalization ability. According to the activation function, the relationship 
between input and output of the input layer is: 
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where ( )1 2, ,...k pS s s s=  is the hidden layer’s weighted input, ( )1 2, ,...k mX x x x=  is the 

sample input, ijw  is the weight from input layer to hidden layer, and jθ  is the hidden 
layer threshold for each node . 

The relation between hidden layer weighted input and output is： 

( )j jb g s= , (7) 

where ( )1 2, ,...p pB b b b=  is the hidden layer output.  

The relation between the output layer’s weighted input and hidden layer output is: 
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, (8) 

where ( )1 2, ,...p pL l l l=  is the output layer’s weighted input, jtv  is the weight from 

input layer to the output layer, tr  is the output layer threshold for each node.  
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The relation between the output layer’s weighted input and target output is： 

( )ˆt ty g l= , (9) 

where ( )1 2
ˆ ˆ ˆ ˆ, ,...k nY y y y=  is the actual output.  

The error function between target output and the actual output of the BP neural network 
model is: 

)(
2

2

t2 1

1 1ˆ ˆ- -
2 2

n

k k k t
t

E Y Y y y
=

= = ∑ , (10) 

where ( )1 2, ,...k nY y y y=  is the target output.  

2.2.2 Activation function settings 
The activation function is a transformation function between input and output. Common 
activation functions are divided into threshold type, linear type and S type (Sigmoid).   
When the data is entered in the network, it is first transmitted from the input layer to the 
hidden layer. After activating the function, it is then transmitted to the next hidden layer 
and finally to the output layer. During this process, the data of each layer must be 
transformed by the corresponding activation function.  
Because the Sigmoid function has the function of nonlinear amplification coefficient, the 
output value can be changed to (-1,1). For larger input samples, the amplification 
coefficient is small, while for smaller input samples, the amplification coefficient is larger, 
so the Sigmoid function is used to approximate the nonlinear input and output 
relationship. The Sigmoid function is microscopic and can prevent network saturation, 
thus providing good support for model accuracy. If the Sigmoid function is used in the 
output layer, the output is limited to (-1,1). So a linear activation function is used so that 
the output can be any value. 
In addition, the BP network differs from other forward neural networks in that all hidden 
layer nodes in the network take Sigmoid functions, and the activation function 
requirements of the input layer must be microscopic. Therefore, we take the Sigmoid 
function for the activation function of the input layer and hidden layer. Tab. 1 shows two 
common Sigmoid functions, the tansig function and logsig function. As for the activation 
function of the output layer, we take linear function purelin. 

  Table 1: Activation functions  

Function name Function performance Calculation formula Range 

logsig Logarithmic activation function ( ) 1
1 ng n

e−=
+

 (0,1) 

tansig Tangent activation function ( ) 2

2 1
1 ng n

e−= −
+

 (-1,1) 

purelin Linear activation function ( )g n n=  (-1,1） 
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2.3 LM algorithm optimization 
The slow convergence rate of the standard BP algorithm will lead to increase in error. 
Hence, we need to optimize the BP algorithm in practical applications. At present, 
popular optimization algorithms include: Gauss-Newton algorithm, Conjugate Gradient 
algorithm and so on. This paper uses the LM algorithm to adjust the weights and 
optimizes the BP neural model, which holds advantages such as good robustness, fast 
convergence, non-uniform iteration direction, and hence greatly improves the network 
convergence speed and generalization ability. The LM algorithm modifies network 
weights according to the following formula: 

1
n( 1) ( ) [ ( ) ( ) ] ( )ET Tn n J n J n I J nω ω µ −+ = − + ,                               (11) 

where ω  is the weight, I  is an identity matrix, µ  is the user-defined learning rate, 
J is the Jacobian matrix containing the first derivative of the error performance function. 

In summary, the calculation steps of the LM algorithm are described as follows: 
(1) Giving the allowable values of target error ε and initializing the weights and 
threshold vectors. 
(2) Calculating the network output, the error function and Jacobian matrix. 

(3) Calculating modified value of weights ( ) ( )1n nω ω ω∆ = + − . 

(4) If E ε< , then the training stops. If E ε≥ , then the sum of the squared errors 
between the target output and the actual output is repeatedly calculated. When the sum of 
the squared errors reaches the target error, the training stops and the network converges. 
In this paper, PCA and BP neural network are incorporated so that the output of the PCA 
becomes BP’s input. In contrast, if the direct input is provided to the BP neural network 
model, it will not only enlarge the complexity of the network, but also affects the 
convergence speed and self-correction ability of the model.  
Because many factors are disorderly and complicated, this paper can extract the important 
information of the factors through PCA, and integrate them into specific indicators, which 
greatly reduces the number of variables and more clearly reveals the relationship between 
variables, thus improving the calculation accuracy. The purpose of the combined model lies 
to greatly clarify the input structure of the neural network, enhance the fitting ability of 
neural network model and improve the prediction accuracy of the model. 

3 Analysis of empirical results 
Disaster data of typhoons from 2005-2015 (most recent data available) are derived from 
the “China Meteorological Disaster Yearbook (Fujian Volume)”. The economic data are 
referred to the “China Statistical Yearbook”. This paper chooses Fujian Province as the 
research area because it is a coastal province and suffers most frequently from typhoon 
disasters among all the provinces in China (33 typhoons making landfall in Fujian 
province in 2005-2015).  
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3.1 Selection of impact factors 
The disaster situation is composed of hazard factors, hazard bearing factors and disaster 
factors. The hazard factors of typhoon refer to the wind speed and rainstorm carried by 
typhoon, and the hazard bearing factors are the main body of direct loss caused by 
typhoon. Disaster factors refer to the integration of people and objects in a disaster. We 
select 15 factors from three aspects, hazard factors, hazard bearing factors and disaster 
factors, to study the comprehensive losses caused by typhoons, in which hazard factors 
are 1 2x x− , disaster factors are 3 8x x−  and hazard bearing factors are 9 15x x−  (Tab. 2). In 
this setting, hazard factors and disaster factors are regarded as the comprehensive 
influencing factors of typhoons, and hazard bearing factors are regarded as the strain of 
the disaster. 10 11x x−  can reflect the exposure of hazard bearing factors, 14 15x x−  can 
reflect the vulnerability of hazard bearing factors, which not only measure the positive 
impact on the resilience of typhoons, but also consider their negative impact.  

Table 2: Factor description  

Variable Hazard factors Disaster factors Hazard bearing factors 

1x  Maximum wind 
speed 

  

2x  Maximum 
rainstorm 

  

3x   Number of collapsed 
houses 

 

4x   Number of damaged 
houses 

 

5x   Damaged of fields area  

6x   Destructed fields area  

7x   People affected by 
disaster 

 

8x   Direct economic loss  

9x    Emergency transferred 
population 

10x    Proportion of male population 

11x    Gross regional product (GRP) 

12x    Number of medical 
institutions 

13x    Number of medical workers 

14x    Gross domestic product per 
capita 

15x    Health expenditure per capita 
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3.2 The calculate of principal component 
The commonality of each factor is firstly calculated (Tab. 3). The commonality of each 
factor is more than 0.5, which proves (Refer to “Section 2.1”) the reliability of the 
selected factors.  

Table 3: The commonality of factors  
Variable Initial Commonality Variable Initial Commonality 

1x  1.000 0.902 9x  1.000 0.874 

2x  1.000 0.710 10x  1.000 0.722 

3x  1.000 0.924 11x  1.000 0.964 

4x  1.000 0.962 12x  1.000 0.767 

5x  1.000 0.956 13x  1.000 0.924 

6x  1.000 0.822 14x  1.000 0.969 

7x  1.000 0.921 15x  1.000 0.958 

8x  1.000 0.828    

    

      Figure 2: Scree plot 

In order to eliminate the impact of dimension, the data is further standardized. Then the 
appropriate principal components are selected by PCA. Fig. 2 gives the scree plot of PCA, 
and it can be shown that when five principal components are taken, the trend begins to 
stabilize. In addition, for the top five principal components, their total cumulative 
contribution rate has reached 88.02% (Tab. 4), and hence we select the top five principal 
components for analysis. The principal component was calculated and the results are 
obtained in Tab. 5.   
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Table 4: Variance contribution rate 

Prin Eigenvalues Variance contribution rate Cumulative contribution rate 

Prin1 7.661 51.076 51.076 
Prin2 2.514 16.759 67.835 
Prin3 1.404 9.362 77.197 
Prin4 1.014 6.763 83.960 
Prin5 0.609 4.060 88.021 

Table 5: PCC matrix 

Variable prin1 prin2 prin3 prin4 prin5 

1x  0.140 0.431 -0.158 0.011 -0.639 

2x  0.225 -0.120 0.116 0.444 -0.329 

3x  0.243 0.232 -0.432 -0.168 0.272 

4x  0.232 0.248 -0.473 -0.246 0.188 

5x  0.310 0.217 0.234 0.127 0.126 

6x  0.290 0.058 0.271 0.151 0.258 

7x  0.300 0.165 0.285 0.196 0.135 

8x  0.220 0.411 0.111 0.070 0.144 

9x  0.312 0.098 0.208 -0.176 -0.131 

10x  -0.202 0.353 0.006 -0.059 0.388 

11x  -0.310 0.278 0.068 0.120 0.138 

12x  -0.274 0.245 0.089 0.122 0.149 

13x  -0.021 0.044 0.506 -0.740 -0.060 

14x  -0.312 0.276 0.085 0.106 0.135 

15x  -0.302 0.297 0.104 0.100 0.149 

According to the coefficient matrix in Tab. 5, five principal components expressions are 
obtained: 

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15

1 0.140 0.225 0.243 0.232 0.310 0.290 0.300 0.220
0.312 0.202 0.310 0.274 0.021 0.312 0.302

prin x x x x x x x x
x x x x x x x

= + + + + + + +
+ − − − − − −

 (12) 

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15

2 0.431 0.120 0.232 0.248 0.217 0.058 0.165 0.411
0.098 0.353 0.278 0.245 0.044 0.276 0.297

prin x x x x x x x x
x x x x x x x

= − + + + + + +
+ + + + + + +

 (13) 

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15

3 0.158 0.116 0.432 0.473 0.234 0.271 0.285 0.111
0.208 0.006 0.068 0.089 0.506 0.085 0.104

prin x x x x x x x x
x x x x x x x

= − + − − + + + +
+ + + + + + +

 (14) 
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1 2 3 4 5 6 7 8

9 10 11 12 13 14 15

4 0.111 0.444 0.168 0.246 0.127 0.151 0.196 0.070
0.312 0.202 0.31 0.274 0.021 0.312 0.302

prin x x x x x x x x
x x x x x x x

= + − − + + + +
+ − − − − − −

 (15) 

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15

5 0.639 0.329 0.272 0.188 0.126 0.258 0.135 0.144
0.131 0.388 0.138 0.149 0.06 0.135 0.149

prin x x x x x x x x
x x x x x x x

= − − + + + + + +
− + + + − + +

 (16) 

The coefficients of the hazard factors and disaster factors in prin1 are all positive, and 
hence the comprehensive variable prin1 describes the overall disaster level. Higher value 
of prin1 would indicate a stronger destructive disaster.  
The maximum coefficient in prin2 is 0.431, which corresponds to the maximum wind 
speed describing the typhoon intensity.  
The coefficients of the number of collapsed houses and the number of damaged houses is 
-0.432 and -0.473 in prin3, and hence prin3 describes the damaged condition of houses. 
These are negative loadings. The greater the prin5, the less the number of collapsed 
houses and damaged houses meaning that the damaged condition of houses is slight.  
In prin4, the maximum coefficient -0.740, corresponds to the number of medical works, 
and hence prin4 describes the medical rescue. The greater the prin4, the less the medical 
workers, meaning that the medical rescue operation is more difficult and more personnel 
would be needed.  

Table 6: The principal component scores 

Number Prin1 Prin2 Prin3 Prin4 Prin5 Number Prin1 Prin2 Prin3 Prin4 Prin5 

0505 3.40 -0.84 3.56 -4.28 -0.39 1013 -0.93 0.26 -0.3 -0.12 -0.62 

0519 4.67 0.60 1.18 1.03 0.17 1103 -1.88 -2.26 -0.24 0.17 1.86 

0601 4.84 0.03 1.97 1.32 0.70 1111 -0.33 -0.91 0.26 0.69 0.67 

0604 5.99 1.30 -0.64 1.05 0.99 1205 -2.02 -0.57 -0.08 -0.04 0.70 

0605 2.95 -0.66 -1.10 -0.67 0.52 1209 -1.46 -0.14 0.30 -0.12 1.06 

0608 5.72 3.48 -4.05 -1.80 0.11 1307 -1.86 1.33 0.40 -0.03 -0.46 

0709 3.56 -0.74 0.67 0.77 -0.58 1308 -2.61 0.44 0.07 -0.20 0.73 

0713 1.31 -1.76 -0.80 -0.60 0.15 1312 -2.00 1.42 0.17 -0.05 -0.62 

0716 0.85 -2.31 -0.84 0.06 -1.25 1315 -3.32 -0.05 -0.23 -0.42 0.52 

0801 -0.49 -2.67 -1.17 -0.50 0.47 1319 -1.93 1.25 0.21 0.31 -0.47 

0807 -0.09 -2.49 -0.85 -0.22 -0.09 1323 -1.96 1.67 0.00 0.09 -0.87 

0808 2.18 -1.41 0.15 1.51 -1.63 1407 -3.41 0.45 0.05 -0.21 0.57 

0903 -0.03 -1.81 0.10 0.71 0.57 1410 -2.64 1.24 0.29 0.00 -0.19 

0907 1.66 -0.09 0.75 0.88 -0.47 1510 -3.75 0.85 -0.25 -0.35 0.33 

1006 -1.30 -1.01 -0.35 0.40 -0.86 1513 -0.14 4.10 1.52 0.62 0.69 

1010 -1.38 -0.21 -0.80 -0.21 -0.91 1521 -2.62 1.50 -0.33 -0.12 -0.61 

1011 -0.92 0.02 -0.35 -0.00 -1.06       
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In addition to the maximum coefficient of the typhoon intensity in prin5, 0.639, the next 
loading corresponds to the proportion of the male population, 0.388, indicating that the more 
people are able to participate to strengthen the labor force. This is the self-rescue capability. 
By utilizing Eqs. (12)-(16), the principal component scores for each of the 33 typhoons in 
Fujian Province during 2005-2015 are calculated (Tab. 6). 
In Tab. 6, the scores of prin1 are generally larger than other principal components, and 
this implies more original information is extracted with prin1. Hence, prin1 corresponds 
to the comprehensive loss. 
In addition, the principal component scores have positive and negative results because data 
are normalized throughout the process, which indicate the positional relationship with the 
average value. It can be seen that the scores of prin1 have decreased from the Typhoon 1006 
to about -2.0, indicating that the comprehensive losses are lower than the average value, and 
reflecting that the government and the public are paying more attention to the impact of 
typhoons. Although typhoons occurred in 2013 the most often, but fortunately the damage is 
not the worst. The degree of awareness and response to the disasters have also been 
strengthened. For example, we can take measures such as increasing the medical workers, 
medical institutions, and medical expenses to promote people’s self-rescue capability and 
awareness of prevention and to reduce the disasters of loss.  
Further, the principal component scores of the Typhoons 0601, 0604 and 0608 are higher at 
about 5.0. In fact, these three typhoons are indeed causing huge comprehensive losses of 
196.962, 215.582 and 200.596 billion RMB respectively. And it is estimated that an average 
annual loss of 138.514 billion RMB occurred for 2005-2015. Therefore, the principal 
component scores accurately reflect the actual damages, cover a large amount of 
information of the original variables, and can replace the original input for the BP’s input. 

3.3 BP neural network model setting 
Based upon the principal component scores in Section 3.2, the BP neural network model 
is built to estimate the comprehensive losses caused by typhoons. To ensure the reliability 
and validity of the model and according to the chronological order of typhoon, 30 
typhoon samples are used in training samples for simulation and fitting of the BP neural 
network, and the rest 3 samples (Typhoons 1410, 1513, and 1521) are taken to examine 
the model. When the relative error between the fitted and actual values of the test sample 
is less than 1%, the establishment of the BP model to achieve the target accuracy can 
provide relevant departments with corresponding suggestions to reduce the 
comprehensive losses caused by the typhoons. 
The principal component scores are used as the BP neural network input and the 
comprehensive losses are the network output. Therefore, the node of the input layer is set 
to 5 and the node of the output layer is set to 1. The model parameters are set to: training 
steps=5000, target error=0.01, learning rate=0.01, momentum coefficient=0.9. After 
multiple trainings, it is found that when the node of the hidden layer is 10, the mean-
squared error reaches the minimum value, and hence the structure of the 5-10 BP neural 
network is determined. 
Since the activation function used by the BP neural network has a limited range of input 
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and output, the data needs to be normalized before the model is built. Based on the 
normalized data, the error and regression effects of the training samples are obtained, and 
the target accuracy and correlation coefficient of the model are investigated. Fig. 3 and 
Fig. 4 show the error curve and regression plot. 

   

    Figure 3: The error curve   

According to the Fig. 3, the error begins to reach the target accuracy of 0.01 and 
continues to decline after 8 trainings, the network stops training and the final error is 
0.008. The linear combination of the training samples obtained from Fig. 4 is: 
ˆ 0.98 0.0021k kY Y≈ × ± , (17) 

where the correlation coefficient reaches 0.9856, implying that the fitting effect of the 
equation is well and the overall training effect is good. The 5-10-1 BP neural network 
model can be constructed. 

 

Figure 4: Regression plot 
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Further we use the trained 5-1-10 BP neural network model to fit the comprehensive 
losses of the test sample, and compare the actual value of the training sample with the BP 
fitting value. Fig. 5 shows the concrete results, indicating that the actual values are 
basically consistent with the BP fitting values. This shows that the BP neural network is 
fully learned and the trained network can embody the comprehensive losses caused by 
the typhoons. 

 

Figure 5: Actual value and BP fitting value 

According to Tab. 7, the BP neural network model has a good prediction effect on the 
comprehensive losses of typhoons. The relative errors of the Typhoons 1410, 1513 and 
1521 are respectively 0.9%, 0.58% and -0.5%, which are far less than 10%.  
Next, from the trend in Fig. 5, the comprehensive losses from the Typhoon1006 to the 
Typhoon 1407 have been reduced. This is related with nationwide preventive measures in 
the past 10 years to carry out activities and popularize knowledge so as to improve people’s 
self-rescue capability. At the same time, the relative error of the comprehensive loss of the 
training sample is within 10%, which fully shows that the BP neural network model has 
high accuracy and good effect. Therefore, the study of the typhoons by establishing the BP 
neural network model can play a role in reducing loss and disaster prevention.  

Table 7: The actual value, fitting value and error of comprehensive loss of typhoons 

Number 
The actual value 
(billion RMB) 

The fitting value 
(billion RMB) 

Estimated 
error 

Relative 
error (%) 

1410 145.574 144.2178 1.3562 0.9 
1513 247.835 246.3915 1.4435 0.58 
1521 132.036 132.7879 -0.75 -0.5 

4 Discussions 
This study analyzes the impact factors and comprehensive loss of typhoons in Fujian 
province from 2005-2015. According to the results of Tab. 6, the comprehensive loss 
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caused by typhoons in 2006 reached a maximum of 215.582 billion RMB, and the 
comprehensive loss decreased in 2010. Moreover, Fujian province had begun to attach 
importance to the impact of typhoons, and carried out popularization of safety 
precautions since 2010, a provision of further support for our findings.  
Assessment the loss of typhoons indicate that quantitative assessment is crucial for 
disasters assessment, which is in line with the work by Lou et al. [Lou, Chen and 
Zheng (2009)]. But the assessment model precision is 7% in error because Lou did not 
consider the impact of hazard bearing factors and disaster factors on the loss. However, 
Guo et al. [Guo, Dai and Li (2013)] uses the principal component BP model to predict 
the deviation of typhoons, and found that the maximum wind speed and the central 
pressure are the main factors that determined the typhoons deviation. The results 
indicate that the precision of this model is 6% in error and the model can predict 12 
hours warning before typhoons.  
Moreover, the principal component BP model can be applied to the air pollution field. 
Kumar et al. [Kumar and Goyal (2013)] constructed a principal component BP model to 
predict the air quality from 2000-2006. The results show that the accuracy of the principal 
component BP model is superior to other neural network models and the error of model is 
about 3%.  
In this paper, PCA is used to reduce the dimension of hazard factors, hazard bearing 
factors and disaster factors, which eliminates the correlation between factors. Then we 
use LM algorithm to optimize the BP model. By forecasting the comprehensive loss of 
typhoons in Fujian province, we achieve the accuracy of 99%, or 1% in error. Comparing 
with the above research results, the accuracy of the model is further improved. 
Due to the remarkably uncertain nonlinear relationship between factors and typhoons, PCA 
can eliminate the uncertain nonlinear relationship between the factors. The PCA is applied 
to evaluate the comprehensive loss of typhoons, which can reduce the uncertainly of factors 
selected in the previous researches. At the same time, extracting the principal component 
scores as BP’s input, we can obtain the results which are consistent with disasters. 
Although this paper is based on Fujian province as the research object and the final 
mathematical model cannot be directly applied to other provinces, assessment factors 
selected in this model are relatively easy to obtain. As long as there are data from other 
provinces, the corresponding model can also be constructed to predict the results using 
the method of this paper. Therefore, the PCA-BP model can be used in the assessment of 
typhoon damages in other areas, and this is a promotion value. 
In addition, because typhoon data is difficult to collect and meteorological department no 
longer statistics the number of damaged houses in recent years. We use methods for 
dealing with missing data to solve, which reduce the accuracy of the model in a certain 
extent. However, any model can only approximate the reality of reasonable simplification.  

5 Conclusions 
In this paper, a joint model which utilize the PCA and the BP neural network model 
optimized by the LM algorithm is employed to assess the damages caused by typhoons for 
a coastal province of China. Firstly, we comprehensively study the relationship between the 
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hazard factors, hazard bearing factors and disaster factors by calculating the commonalities, 
and the problem of vulnerability and exposure of hazard bearing body are investigated. 
Then, we apply the PCA to reduce the dimensions and apply appropriate weights to obtain 
the principal component scores, which become the simplified input for the BP neural 
network model. Finally, the BP neural network model is optimized by the LM algorithm to 
assess the comprehensive loss. Moreover, an empirical analysis is conducted for the 
comprehensive loss by typhoons for Fujian province in 2005-2015. Based on the related 
literatures and empirical analysis, the following conclusions can be drawn. 
1. Five principal components, prin1-prin5 are extracted from 15 impact factors by using 
PCA, which correspond to five principal indices, overall disaster level, typhoon intensity, 
medical rescue, damaged condition of houses, and self-rescue capability. Due to climate 
changes, the stronger wind speed will increase the typhoon intensity over time; however, 
the loss decreases since 2010, which is largely due to widely implemented prevention and 
rescue strategies.  
2. Typhoons occurred in 2013 the most often, but fortunately the damage is not the worst. 
The comprehensive loss caused by typhoons in 2006 reached the maximum damage, with 
a loss of 215.582 billion RMB. For the typhoons 1410, 1513 and 1521 happened in 2014-
2015 (Tab. 6) that were used to examine the joint model established from 30 typhoons 
utilizing the PCA and BP neural network model, the comprehensive losses were 
estimated as 145.574, 247.835, 132.036 billion RMB respectively, which contain the 
relative errors of 0.9%, 0.58% and -0.5% and justify the accuracy of the model. 
In summary，huge damages that already happened and future potential damages by 
typhoons cannot be overlooked. The study suggests to take effective actions: for the 
government to increase medical institutions and medical workers and for communities to 
promote residents’ self-rescue capability.  
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