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Numerical Solving of a Boundary Value Problem for Fuzzy
Differential Equations

Afet Golayoğlu Fatullayev1 and Canan Köroğlu2

Abstract: In this work we solve numerically a boundary value problem for sec-
ond order fuzzy differential equations under generalized differentiability in the
form y′′(t) = p(t)y′(t) + q(t)y(t) + F(t) y(0) = γ, y(`) = λ where t ∈ T = [0, `],
p(t) ≥ 0, q(t) ≥ 0 are continuous functions on [0, `] and [γ]α = [γ

α
,γα ], [λ ]α =

[λ α ,λ α ] are fuzzy numbers. There are four different solutions of the problem (0.1)
when the fuzzy derivative is considered as generalization of the H-derivative. An
algorithm is presented and the finite difference method is used for solving obtained
problems. The applicability of presented algorithm is illustrated by solving an ex-
amples of boundary value problems for second order fuzzy differential equations.

Keywords: Boundary value problem, Second order fuzzy differential equations,
Generalized differentiability, Finite difference method

1 Introduction

If a process modeled by ordinary differential equations has the input data with
some uncertainties, then it is naturally modeled by a fuzzy differential equations
(FDEs). In general, two different approaches are used for solving the fuzzy dif-
ferential equations. In the first approach, it is assumed that the boundary or/and
initial conditions are fuzzy, one seeks the solution by applying Zadeh’s extension
principle [Zadeh (1975)] to the solution of crisp problem (Solution via the Exten-
sion Principle [Buckley and Feuring (2000); Jowers, Buckley and Reilly (2007);
Misukoshi, Chalco-Cano, Román-Flores and Bassanezi (2007)]) or the problem is
solved by writing in the form of a family of differential inclusion (Solution via dif-
ferential inclusion [Hüllermeier (1997); Chen, Fu, Xue and Wu (2008); Chen, Li
and Xue (2011); Diamond (1999); Diamond (2000); Diamond (2002); Diamond
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and Watson (2000); O’Regan, Lakshmikantham and Nieto (2003)]). In the second
approach, in addition to fuzzy boundary and initial conditions it is assumed that the
derivatives in the equation are generalized in the H-derivative form or in strongly
generalized H-derivative form.

The H-derivative of a fuzzy function was introduced in [Puri and Ralescu (1983)].
The existence and uniqueness of the solution of a FDEs were studied in [Buckley
and Feuring (2000); Kaleva (1987)] under this setting. However, this approach has
the drawback that it leads to solution which have increasing length of their sup-
port [Diamond and Kloeden (1994); Stefanini and Bede (2009)]. In [Bede (2006)]
authors have demonstrated that for this reason a large class of boundary value prob-
lems have not a solution under this approach. To resolve these difficulties authors
in [Bede and Gal (2004)] introduced the concept of generalized differentiability.
FDEs have been investigated using this concept in [Stefanini and Bede (2009);
Hüllermeier (1997); Kaleva (1987); Kaleva (2006); Khastan, Bahrami and Ivaz
(2009); Lan and Nieto (2009); Nieto, Khastan and Ivaz (2009); Bede, Rudas and
Bencsik (2007) ]. First order FDEs under strongly generalized derivatives are con-
sidered in [Bede, Rudas and Bencsik (2007)]. In [Nieto, Khastan and Ivaz (2009)]
a linear fuzzy nuclear decay equation under generalized differentiability is studied
and numerical solutions are found. In [Ma, Friedman and Kandel (1999)] the Eu-
ler method was applied for solving initial value problem for FDEs. The authors
in [Abbasbandy and Allahviranloo (2004); Palligkinis, Papageorgiou and Famelis
(2009)] develop four-stage order Runge-Kutta methods for FDEs. Numerical meth-
ods such as Adams and Nystörm methods and predictor-corrector methods for solv-
ing FDEs presented in [Allahviranloo, Ahmadi and Ahmadi (2007); Friedman, Ma
and Kandel (1999); Khastan and Ivaz (2009)]. Numerical method for a boundary
value problem for a linear second order FDEs was considered in [Allahviranloo and
Khalilpour (2011)]. In [Khastan and Nieto (2010)] a boundary value problem for
FDEs by using a generalized differentiability was considered and a new concept
of solutions was presented. In this paper, we propose a numerical algorithm for
finding such of solutions for boundary value problem for second order FDEs. The
paper is organized as follow. In section 2, we present the basic definition and use-
ful theoretical information. Boundary value problem for second-order FDEs under
generalized differentiability, we study in section 3. Numerical algorithm for solv-
ing considered problem is introduced in section 4 and in section 5 we present some
examples of numerical solutions to illustrate our method.

2 Basic Concepts

Definition 2.1 A fuzzy subset of R is defined in terms of membership functions
u : R → [0,1] which assigns to each x ∈ R a grade of membership in the fuzzy
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set. Such a membership function is used to denote the corresponding fuzzy set.
Denote by F the set of all fuzzy sets of R, and by E the class of fuzzy sets of R (i.e.
u : R→ [0,1]) satisfying the following properties:

1) u is normal, that is there exists an x0 ∈ R such that u(x0) = 1.

2) u is fuzzy convex, that is for x,y ∈ R and 0 < λ ≤ 1:

u(λx+(1−λ )y)≥ min{u(x),u(y)}. (2.1)

3) u is upper semi-continuous on R.

4) the closure of {x ∈ R|u(x) > 0} is compact.

E is called the space of fuzzy numbers.

Definition 2.2 For each α ∈ (0,1] the α-level set [u]α of a fuzzy set u is the subset
of points x ∈ R with

[u]α = {x ∈ R : u(x)≥ α}. (2.2)

The support [u]0 of a fuzzy set is defined as the closure of the union of all its level
sets, that is [u]0 =

⋃
α∈(0,1][u]α . It is clear that α-level set of u is an [uα ,uα ], where

u and u are called lower and upper branches of u respectively. For u ∈ E we define
the length of u as

len(u) = sup
α

(uα −uα) (2.3)

Definition 2.3 A fuzzy number in parametric form is presented by an ordered pair
of functions (uα ,uα), 0≤ α ≤ 1, satisfying the following properties:

1) uα is a bounded nondecreasing left-continuous function of α over (0,1] and right
continuous for α = 0.

2) uα is a bounded nonincreasing left-continuous function on (0,1] and right con-
tinuous for α = 0.

3) uα ≤ uα , 0≤ α ≤ 1.

Definition 2.4 The metric on E is defined by the equation

D(u,v) = sup
0≤α≤1

dH([u]α , [v]α),

where dH([u]α , [v]α) = max{|uα − vα |, |uα − vα |} is a Hausdorff distance of two
interval [u]α and [v]α .
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Definition 2.5 (Triangular fuzzy number) If u is symmetric number with support
[u,u], such that the α level set of [u]α is [u]α = [u+(u−u

2 )α,u+(u−u
2 )α], then u is

called as triangular fuzzy number.

Definition 2.6 Let u and v be two fuzzy sets. If there exists a fuzzy set w such that
u = v+w, then w is called the H-difference of u and v and denoted by u	 v.

Definition 2.7 (H differentiability or Hukuhara differentiability) Let I = (0, l) and
f : I→F is a fuzzy function. We say that f is differentiable at t0 ∈ I if there exists
an element f ′(t0) ∈F such that the limits

lim
h→0+

f (t0 +h)	 f (t0)
h

= lim
h→0+

f (t0)	 f (t0−h)
h

(2.4)

exists and are equal to f ′(t0). Here the limits are taken in the metric space (F ,D).

It is obviously that Hukuhara differentiable function has increasing length of sup-
port. If the function doesn’t has this properties then this function is not H-differen-
tiable. To avoid this difficulty the authors in [Bede and Gal (2004)] introduced a
more general definition of derivative for fuzzy number valued function in the fol-
lowing form:

Definition 2.8 Let f : I→F and t0 ∈ I. We say that

1) f is (1)-differentiable at t0, if there exists an element f ′(t0) ∈F such that for all
h > 0 sufficiently near to 0, there exist f (t0 + h	 f (t0), f (t0)	 f (t0− h), and the
limits

lim
h→0+

f (t0 +h)	 f (t0)
h

= lim
h→0+

f (t0)	 f (t0−h)
h

(2.5)

exist and are equal to f ′(t0) at t0.

2) f is (2)-differentiable at t0, if there exists an element f ′(t0) ∈F such that for all
h < 0 sufficiently near to 0, there exist f (t0 + h)	 f (t0), f (t0)	 f (t0− h) and the
limits

lim
h→0−

f (t0 +h)	 f (t0)
h

= lim
h→0−

f (t0)	 f (t0−h)
h

(2.6)

exist and are equal to f ′(t0).

We denote by D1
n f (t0) the first derivatives of f , if it is (n)-differentiable at t0. (n =

1,2). In [Chalco-Cano and Román-Flores (2008)] Chalco-Cano and Román-Flores
for fuzzy-value functions got the following results.
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Theorem 2.9 Let f : I→F be fuzzy function, where [ f (t)]α = [ f
α
, f α ], for each

α ∈ [0,1]. Then,

1) If f is (1) differentiable in the first form, then f
α

and f α are differentiable

functions and [D1
1 f (t)]α = [ f ′

α
, f ′α ].

2) If f is (2)-differentiable, then f
α

and f α are differentiable and [D1
2 f (t)]α =

[ f ′α , f ′
α
].

Now let fuzzy function f is (1) or (2) differentiable, then the first derivative D1
1 for

D1
2 f might be (n)-differentiable (n = 1,2) and there are four possibilities D1

1(D
1
1 f (t)),

D1
2(D

1
1 f (t)), D1

1(D
1
2 f (t)) and D1

2(D
1
2 f (t)). The second derivatives D1

n(D
1
m f (t)) are

denoted by D2
n,m f (t) for n,m = 1,2. Similar to Theorem 2.9, in [Khastan, Bahrami

and Ivaz (2009)] authors get following results for the second derivatives.

Theorem 2.10 ([Khastan, Bahrami and Ivaz (2009)]) Let D1
1 f : I →F or D1

2 f :
I→F be fuzzy functions, where [ f (t)]α = [ f α(t), f α(t)] for ∀α ∈ [0,1]. Then,

1) If D1
1 f is (1) differentiable, then f ′

α
and f ′α are differentiable functions and

[D2
1,1 f (t)]α = [ f ′′

α
, f ′′α ].

2) If D1
1 f is (2) differentiable, then f ′

α
and f ′α are differentiable functions and

[D2
1,2 f (t)]α = [ f ′′α , f ′′

α
].

3) If D1
2 f is (1) differentiable, then f ′

α
and f ′α are differentiable functions and

[D2
2,1 f (t)]α = [ f ′′α , f ′′

α
].

4) If D1
2 f is (2) differentiable, then f ′

α
and f ′α are differentiable functions and

[D2
2,2 f (t)]α = [ f ′′

α
, f ′′α ].

Proof. (see [Khastan, Bahrami and Ivaz (2009)])

3 Boundary Value Problem for Second-Order Fuzzy Differential Equations

Consider fuzzy boundary value problem for a second-order fuzzy differential equa-
tions

y′′(t) = p(t)y′(t)+q(t)y(t)+F(t) (3.1)

y(0) = γ,y(`) = λ (3.2)

where γ , λ ∈F and F : [0, `]→F is a fuzzy function. According to [Khastan and
Nieto (2010)], we define the concept of solution of this problem as:
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Definition 3.1 Let y : [0, `]→F be a fuzzy function and n,m ∈ {1,2}, we say that
y is a (n,m)-solution for problem (3.1)-(3.2) on [0, `], if D1

ny, D2
n,my exist on [0, `],

D2
n,my(t) = p(t)D1

ny(t)+q(t)y(t)+F(t) and y(0) = γ , y(`) = λ .

Definition 3.2 Let y : [0, `]→F be a fuzzy function and n,m ∈ {1,2}, we say that
y is a (n,m)-solution for problem (3.1) on an interval J ⊂ [0, `], if D1

ny, D2
n,my exist

on [0, `], D2
n,my(t) = p(t)D1

ny(t)+q(t)y(t)+F(t) on J.

Let y be an (n,m) solution for (3.1)-(3.2). To find it take into account the Theorem
2.9, 2.10, we can reformulate problem (3.1)-(3.2) as a system of boundary value
problems that we call corresponding (n,m)-system for problem (3.1)-(3.2). Four
boundary value problems system are possible for problem (3.1)-(3.2), as follows
[Khastan, Bahrami and Ivaz (2009)].
(1,1)-system

y′′(t;α) = p(t)y′(t;α)+q(t)y(t;α)+F(t;α)
y′′(t;α) = p(t)y′(t;α)+q(t)y(t;α)+F(t;α)
y(0;α) = γ

α
, y(0;α) = γα

y(`;α) = λ α , y(`;α) = λ α

(3.3)

(1,2)-system
y′′(t;α) = p(t)y′(t;α)+q(t)y(t;α)+F(t;α)
y′′(t;α) = p(t)y′(t;α)+q(t)y(t;α)+F(t;α)
y(0;α) = γ

α
, y(0;α) = γα

y(`;α) = λ α , y(`;α) = λ α

(3.4)

(2,1)-system
y′′(t;α) = p(t)y′(t;α)+q(t)y(t;α)+F(t;α)
y′′(t;α) = p(t)y′(t;α)+q(t)y(t;α)+F(t;α)
y(0;α) = γ

α
, y(0;α) = γα

y(`;α) = λ α , y(`;α) = λ α

(3.5)

(2,2)-system


y′′(t;α) = p(t)y′(t;α)+q(t)y(t;α)+F(t;α)
y′′(t;α) = p(t)y′(t;α)+q(t)y(t;α)+F(t;α)
y(0;α) = γ

α
, y(0;α) = γα

y(`;α) = λ α , y(`;α) = λ α

(3.6)
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Summarize, it is seen that (m,n)-system can be written as follows:
(m,n)-system

y′′α(t) = |3− (m+n)|q(t)y(t;α)+ |2− (m+n)||4−
(m+n)|q(t)y(t;α)+ |2−n|p(t)y′(t;α)+ |1−n|p(t)y′(t;α)+F(t;α)

y′′
α
(t) = |3− (m+n)|q(t)y(t;α)+ |2− (m+n)||4−

(m+n)|q(t)y(t;α)+ |2−n|p(t)y′(t;α)+ |1−n|p(t)y′(t;α)+F(t;α)

y(0;α) = γ
α
, y(0;α) = γα

y(`;α) = λ α , y(`;α) = λ α

(3.7)

Now problem is to solve the system (3.7) for ∀(m,n), m,n∈ {1,2}. We first choose
the pair (m0,n0), then we solve the problem (3.7) for this pair, after that we find
such a domain in which the solution and its derivatives have valid level sets accord-
ing to the type of differentiability. For example, for finding (2,1) solution, we solve
system (3.7) for (m,n) = (2,1) and then we look for a domain where the solution
is (2,1)-differentiable. (3.7) is solved numerically, the procedure that we present
in the next section.

4 Numerical Solution.

Denote the right hand side in the equations in (3.7) by G we can rewrite (3.7) as
follows:

y′′(t;α) = G(t,y(t;α),y(t;α),y′(t;α),y′
α
(t;α))

y′′(t;α) = G(t,y(t;α),y(t;α),y′(t;α),y′(t;α)) (4.1)

y(0;α) = γ
α
, y(0;α) = γα

y(`;α) = λ α , y(`;α) = λ α

Let we write again eq.(4.1) as taking x = y(t;α), z = y(t;α) :

x′′ = G(t,z,x,z′,x′)

z′′ = G(t,x,z,x′,z′) (4.2)

x(0) = γ
α
, z(0) = γα
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x(`) = λ α , z(`) = λ α

We solve this system numerically by applying the finite-difference method. Let
t0 = 0, tn = 1, ti = ih (i = 1,2, ...,n−1) be a system of equally spaced grid points
with h = 1/n and xi = x(ti), zi = z(ti). The finite difference approximation of (4.2)
can be written as follows:

xi+1−2xi + xi−1

h2 = G(ti,zi,xi,
zi+1− zi−1

2h
,
xi+1− xi−1

2h
)

zi+1−2zi + zi−1

h2 = G(ti,xi,zi,
xi+1− xi−1

2h
,
zi+1− zi−1

2h
) (4.3)

z0 = γα ,zn = λ α

x0 = γ
α
,xn = λ α

This system can be solved by applying the following iteration schema

xs+1
i+1 −2xs+1

i + xs+1
i−1

h2 = G(ti,zs
i ,x

s+1
i ,

zs
i+1− zs

i−1

2h
,
xs+1

i+1 − xs+1
i−1

2h
)

zs+1
i+1 −2zs+1

i + zs+1
i−1

h2 = G(ti,xs+1
i ,zs+1

i ,
xs+1

i+1 − xs+1
i−1

2h
,
zs+1

i+1 − zs+1
i−1

2h
) (4.4)

zs+1
0 = γα ,zs+1

n = λ α

xs+1
0 = γ

α
,xs+1

n = λ α

For the initial iteration values of x and z, the linear functions connected the left
and right boundary values of this functions are taken. Solution of system (4.4) at
each iteration step is obtained by using TDMA (Three Diagonal Matrix Algorithm)
method. The algorithm of presented method for problem (4.2) is as follows.

4.1 Algorithm.

Step 1. Set the value of (m0,n0)
Step 2. Enter problem data: Value of accuracy, ε; set iteration counter s = 0.

Step 3. Form the initial conditions: x0, z0

Step 4. Form the boundary conditions: xs+1(0), xs+1(l), zs+1(0), zs+1(l).
Step 5. Solve the first equation of (4.4) CALL FDM (Finite Difference Method
subprogram)
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Step 6. Solve the second equation of (4.4) CALL FDM.

Step 7. Test convergence:

if ‖xs+1− xs‖< ε AND ‖zs+1− zs‖< ε , then go to step 8

else s = s+1; go to 4.

Step 8. Find the domain where the solution is valid.

Step 9. Find the valid domain where the solution is (m0,n0) solution.

5 Numerical Solution Example

Example 5.1 Let’s consider the following fuzzy boundary-value problem:{
y′′(t) = 2y(t)+ y′(t)+F(t)
y(0) = γ, y(1) = λ

(5.1)

where γα = λ α = [α−1,1−α] 6
25 and

[F(t)]α = [2(α−1)− 2
25(25t2−25t +6)(α−1)− (2t−1)(α−1);

2(1−α)− 2
25(25t2−25t +6)(1−α)− (2t−1)(1−α)]

The graph of F is shown in Fig. 5.1 for α = 0. It is easy to see that exact (1,1)
solution for the problem (5.1) is

y(t;α) = [
1
25

(25t2−25t +6)(α−1),
1
25

(25t2−25t +6)(1−α)]

In Fig.5.2 the results of numerical solution and exact solution are presented. It is
seen that there is a uniformly good approximation to exact solution. We see y(t;α)
and y(t;α) represent a valid fuzzy number when 25t2−25t +6≥ 0, that is for t ≤ 2

5
and t ≥ 3

5 . For t ≤ 2
5 we have (2,2) solution and for t ≥ 3

5 we have (1,1) solution.

For (1,2) solution, by solving (1,2) system applying the presented numerical al-
gorithm we get the results that illustrated in Fig.5.3. For t ≤ 0.434, we have (1,2)
solution and for t ≥ 0.444, we have (2,1) solution. Since we solve (1,2) system
then the solution for this problem is on [0,0.434].
For (2,1) solution, by solving (2,1) system we get the results presented in Fig.5.4.
For t ≥ 0.525, we have (2,1) solution and t ≤ 0.515, we have (1,2) solution. Be-
cause of solving (2,1) system then the solution for this problem is on [0.525,1].

6 Conclusion

In this paper, a numerical procedure for a boundary value problem for fuzzy differ-
ential equations is proposed. The proposed method was tested on a test example,
and has been effective. This method can also be used to solve nonlinear problems
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Figure 5.1: F(t;α) = dash; F(t;α) = solid
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Figure 5.2: The graph of (1,1)-solution and (2,2)-solution: (1,1)-solution (dash), (2,2)-
solution (dot), unvalid part (solid).
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Figure 5.3: The graph of (1,2)-solution and (2,1)-solution: (1,2)-solution (solid), (2,1)-
solution (dot).
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Figure 5.4: The graph of (2,1)-solution and (1,2)-solution: (2,1)-solution (dot), (1,2)-
solution (solid).
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with known results on the existence and uniqueness of solutions. This will be the
subject of our future work.
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