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Abstract: Beta Process is a typical nonparametric Bayesian model. and the Beta Bernoulli 
Process provides a Bayesian nonparametric prior for models involving collections of binary 
valued features. Some previous studies considered the Beta Process inference problem by 
giving the Stick-Breaking sampling method. This paper focuses on analyzing the form of 
precise probability distribution based on a Stick-Breaking approach, that is, the joint 
probability distribution is derived from any finite number of observable samples: It not 
only determines the probability distribution function of the Beta Process with finite 
observation (represented as a group of number between [ ]0,1 ), but also gives the 
distribution function of the Beta Bernoulli Process with the same finite dimension 
(represented as a matrix with element value of 0  or, 1) by using this distribution as a prior. 
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1 Introduction  
Non-parametric Bayesian model is a kind of probability model, and the number of 
parameters of its probability distribution can increase with the increase of the number of 
samples [Alqifari and Coolen (2019)]. It is one of the most important and complex types 
of Probability Graph models. Therefore, the inference of Non-parametric Bayesian model 
has always been an important research direction of probability model [Griffin, Kalli and 
Steel (2018)], such as variational inference [Yao, Vehtari, Simpson et al. (2018)] and 
regression analysis [Seo, Wallat, Graepel et al. (2000)]. 
The Beta Process is a Non-parametric Bayesian model. It is mostly used for Bayesian 
Nonparametric prior of binary sparse characteristic matrix [Andrea, Stefano and Pietro 
(2018)]. It is widely used in various fields, such as Dictionary learning [Liu, Yu and Sun 
(2016)], Factor analysis [Andrew, Pu and Sun (2017)], Boltzmann machine learning [Lee 
and Hong (2016)] and so on. As a Non-parametric Bayesian model, it is almost the 
preferred prior distribution [Romain, Thibaux and Michael (2007)] for a sequence of any 
length whose element values are within the interval of ( )0,1  . When the Beta Process is 
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taken as the prior distribution of the Bernoulli Process, the Beta Process is marginalized, 
and the Beta Bernoulli Process will be obtained. When the second parameter of the 
marginalized Beta Process is set to 1 , it will become an Indian Buffet Process (IBP) 
[Griffiths and Ghahramani (2011)]. 
At present, Paislry has derived a method of Stick Breaking Construction for complete Beta 
Process, which has been widely used in Beta Process Factor Analysis [John and Lawrence 
(2009)]. It is useful to study the inference method of Beta Process, which depends on the 
infinite Bernoulli Process tends to the Poisson Process. Similar methods are used to deduce 
the infinite sequence of IBP. Teh et al. made new progress in this regard (2007) [Teh, Görür 
and Ghahramani (2007)], and they derived a Stick Breaking Construction method for the 
special case of “marginalizing the Beta Process in the Beta Bernoulli Process to generate a 
single parameter IBP”. The Stick Breaking construction method is an important 
distribution fitting tool of Non-parametric Bayesian model [Eric and Padhraic (2017)], 
which is widely used in Dirichlet Process [Antoniak (1974)] and Gamma Process [Acharya, 
Teffer, Henderson et al. (2015)], etc. 
Since it is a supervised learning, the task of this machine learning is based on the observable 
sample, to reversely deduce the model likelihood function contained in the sample after the 
sampling method is given [Finale and Shakir (2009)]. However, different tasks and 
different conditions will lead to different observable variables in specific tasks. If the 
observation variable is not the initial variable but the intermediate variable after the 
operation of the initial variable, the form of the likelihood function itself will change. 
Therefore, in practice, it is our core processing task to analyze the likelihood function of 
variables that are more likely to be the final observation variables in some tasks. 
The variational inference [John and Lawrence (2011)] of the Beta Process and the likelihood 
function [Teh, Görür and Ghahramani (2007)] of the Beta Bernoulli Process in the past were 
mainly used to build the probability distribution function for the intermediate variables 
needed to generate the sample algorithm. This way of the construction of a probability 
distribution function is based on the following three basic hypothesis as constraints. 
Above all, because in the Stick Breaking Construction method of the Beta Process, the final 
observed variables sampled from the Beta Process are generated by function mapping and 
arithmetic operations on two random variables that obey the other two distributions. 
Therefore, most of the inference work in the past was to directly establish the joint 
distribution function on the other two intermediate variables, and the result was that the 
joint probability distribution function itself did not contain the beta random variables [Teh, 
Görür and Ghahramani (2007); John and Lawrence (2011)]. 
Afterwards, when the Beta Process samples are generated by using the Stick Breaking 
Construction method, it is necessary to model the number of rounds in each sample, and 
the indicator function is adopted, but it is tedious to directly establish the probability 
distribution for the indicator function of all samples [John and Lawrence (2011)]. 
Finally, when samples are generated from the Beta Process through the Stick Breaking 
Construction method of Beta Process, and as a Bernoulli Process prior to the Bernoulli 
Process modeling, because it is a list of the product of the observed variables as the 
parameters of the Bernoulli distribution [John and Aimee (2010)], makes it hard for 
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subsequent integral treatment, need through the sampling method of approximate integral 
operation, Sampling is also a tedious step. 
In this work, we intercept a finite number of random variable observations sampled from a 
Beta Process, calculate a posteriori Bernoulli Process, and make inferences. Here, we 
mainly do two things. First, for a high-dimensional sequence consisting of any finite 
number of real number observations with values between [ ]0,1  , only the hypothesis 
generated by sampling from a Beta Process is made, and its probability distribution is 
directly analyzed and inferred. The second is that for a 0 /1 matrix that can have any finite 
row, and each row can have any finite column, you just make the assumption that you 
sampled from a Beta Bernoulli process and infer its distribution function. The definition of 
relevant parameters is similar to that given in [John and Lawrence (2011)]. The inference 
process here can be made without any additional assumptions. The above three restrictions 
can be relaxed in turn: 
Above all, we set up the joint probability distribution function of the Beta Process by taking 
the Beta random variable itself as the observation variable, and the other random variables 
as the intermediate variables. In this way, the distribution function of the Beta Process can 
be directly generated by marginalization. 
Furthermore, when we construct the likelihood function, instead of recursing the number 
of rounds of each sample sequentially, we only focus on the number of rounds of the last 
sample, so that we can directly construct the joint distribution function of the number of 
samples in each round at one time. 
Finally, we analyze the Beta Process of a finite number of observation samples and use it 
as a prior distribution to directly calculate the posterior probability of the occurrence of 
any finite dimensional binary valued matrix, so that the posterior probability can be directly 
analyzed and calculated. Thus, the possibility of any finite dimensional binary matrix is 
analyzed directly. 
Finite dimensional binary matrices can be used to select factors, such as modeling radar 
signal data. The radar transmits a set of full-bandwidth spectrum data { } 1

N
n n

X x
=

=  , the 

thn  sample is [ ]1, ,n n nLx x x=   , L  is the sample dimension. The factor analysis model 
can be used to model the full bandwidth spectrum data. Beta Bernoulli priori is used for 
the model, the thn  full-bandwidth spectrum data is expressed as 

nn nx ω ε= Φ +  , and 


n n nzω ω=   . Where, Φ  represents the Shared factor loading matrix of this set of full-
bandwidth spectrum data. K  is the number of factors. The sparse weight 
  

1, ,
T

K
n n nK Rω ω ω = ∈   is composed of weight [ ]1, , T

n n nKω ω ω=   and binary 

allocation variable [ ]1, , z T
n n nKz z=   . [ ]1, , T L

n n nL Rε ε ε= ∈  is the noise variable. 

Where, it can be seen that nω  is used to represent the weight of { } 1

K
k k=

Φ  , while the binary 

variable { }0,1njz ∈  is used to achieve sparse, non-zero only in the position of some 
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column vectors of Φ  . Here, for the binary variable nz  , we use the Beta Bernoulli Process 
priors. For the Beta Bernoulli Process priors, we usually use the finite approximation of 
the Beta Bernoulli Process. Here, however, you can directly use the priors of the Beta 
Bernoulli Process without approximations. 
The rest of this article is organized as follows. The second part through the analysis, 
provides a preliminary knowledge of the Beta Process and the probability distribution 
function of the observed variables generated by the Stick Breaking Construction method. 
In the third part, the inference method of probability distribution function of intermediate 
variable is given. In the last part, the final likelihood function of the observed variable is 
given by deduction. Describing likelihood function as efficiently as possible is an important 
step in machine learning with probability model. 

2 The definition of the beta process and stick breaking construction 
The Beta Process is a nonparametric Bayesian method, which is used to describe a 
sequence composed of an infinite number of atoms, in which each atom has a weight, and 
the weight is subject to a degenerate Beta distribution. 

2.1 Beta process definition 

Let 0H  be a non-atomic continuous measure on the space ( ),Ω Β  , and ( )0H γΩ =  . γ  

finite. Let ,a b  be two positive scalars. Define a process KH  as 

( ) ( )

( )
1

0

, , ,

1

k

K

K k
k

iid

k

iid

k

H

b Kaa b Beta
K K

H

θθ π δ θ

γγπ γ

θ
γ

=

=

− 
 
 

∑





   (1) 

When K →∞  , KH H→  , where H  is a beta process, namely ( )0, ,H BP a b H  . 

2.2 Stick breaking construction of beta process 
By defining a concept called stick breaking, Paisley et al. [John and Aimee (2010)] clearly 
proposed a method to build the Beta Process. Stick breaking is a method used to generate 
discrete probability measure [Ishwaran and James (2001)], which plays an important role 
in the inference of Non-parametric Bayesian model. For the Beta Process, Paisley et al. 
[John and Aimee (2010); John, David and Michael (2012)] proposed the following 
expression method: 
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 
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−

∑ ∑∑









   (2)  

2.3 Calculation of edge distribution of kπ  

Through the construction of stick breaking concept, Paisley et al. [John and Aimee (2010); 
John and Michael (2016)] proposed a method that can clearly show the process of the 
construction of the Beta Process. They divided the probability distribution of elements in 
the Beta Process into two groups: that is jπ  is generated in the 1th  round, and jπ  is not 
generated in the first round of cycles. Paisley et al. [John and Aimee (2010)] calculated the 
marginal probability distribution of these two types of observations respectively. 
Here, when kπ  is specified to be generated in the thi  round, the conditional probability 
density function of kπ  can be defined as follows: 

When 1i =  , the corresponding weight of the atoms in this round follows a Beta 
distribution, with the first parameter as 1  , and the second parameter as b  . That is 

( )1,kV Beta b  and k kVπ =  , Its probability density function is given as, 

( ) ( ) 11, 1 b
k kp b bπ π −= −    (3) 

For other case 1i > , we have kT
k kV eπ −=  , and ( )1,kV Beta b  , at the same time 

( )1,bkT Gamma i −  . Another probability density function can be obtained by 
calculating the probability distribution of the function of random variables and the 
probability distribution function of the product of random variables: 

( ) ( ) ( ) ( )
1

12 22| , 1 ln 1
1

k

k

bi
i db k

k
bp i b w w dw
i wπ

ππ
−

− −−  = − − Γ −  ∫   (4) 

where, the intermediate variable kTw e−=  is defined in Eq. ( )4 , and at the same time, i  

indicates the number of rounds of variable kπ  occurrence. 
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3 Calculation of the joint probability density function of the final observation 
variables π



  
Previous studies have shown that the number of atoms generated in each round of the stick-
breaking construction of Beta Process obeys a Poisson distribution. The stick-breaking 
construction represented as the superposition of a countable infinite set of independent 
Poisson processes is useful for further representing the Beta Process. 
In order to facilitate the inference, Paisley et al. [John and Aimee (2010)] proposed to use 
an indicator variable kd  to mark the number of rounds in which the thk  atom appeared, so 
as to obtain the formula: 

1 1
1

i

k i
i j

d C k
∞

= =

 
= + Ι < 

 
∑ ∑   

The equation kd i=  indicates that the thk  atom occurred in the thi  round. 

3.1 Inference for kd  

For given kd  , we can reconstruct { } 1i i
C

=
 . 

0 1…… K-2 K-1 K  ,  K+1 , ……,∞ 

0 1…… K-1 K  ,……,∞ 0 1 2  ,……,∞ 0 1,2  ,……,∞ 

0 1 2  ,……,∞ 0 1  ,……,∞ 

Level 1

Level 2

Level 3
 

Figure 1: The relationship between the number of samples contained in each round and 
variable kd  

Given these latent indicator variables, the observation generation process can be rewritten 

as { } 1k k
dπ ∞

=



 . By changing the variable { } 1k k
d ∞

=
 to { }{ }1

1
,kd

i ki
C d−

=
 , the expression can 

be redescribed. 

When given variable 2kd ≥  , the variable { } 1

1
kd

i i
C −

=
 needs to be introduced to represent the 

size of each round. When the corresponding indicator variable of all samples generated in 
round j  is kd j=  , the total quantity is jC  . Here means, for example, when all samples 

generated in round 2  are expressed as 2kd =  , then the total number of samples in round 

2  is 2C  , and so on.  
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For given variables 2kd ≥  , we use variable { } 1

1
kd

i i
C −

=
 to represent the size of each group. 

All samples for round j  corresponding indicator variable kd j=  , the total number is jC  , 

this means: All samples for round 2  are represented as 2kd =  , total quantity of samples 

in round 2  is 2C  , and so on. Accordingly, j  can be used to represent kd  for sequence 
analysis of all rounds. 

Thus, as shown in Fig. 1, the probability of the thk  atom being observed in round 1 is:  

( ) ( )
1

1

1
0

1 1
k

k
C

p d Poi C
−

=

= = − ∑   

 This is what is shown in the first line frame section of Fig. 1. By analogy, the probability 
of thk  atom being observed in round 2  is: 

( ) ( ) ( )
1

1 2

11

1 2
0 0

2 1
k Ck

k
C C

p d Poi C Poi C
− −−

= =

 
= = − 

 
∑ ∑    

According to the same reason continue to deduce, can get the final result about the 
probability of the thk  atom appearing in the round kd  . When 3kd ≥  , the final result is: 

( ) ( ) ( )
2 11

1 1 1

1 1

1 1 1
11

0 0 0 01

1

d dv k k

s m l
ks m l

k
v d dk k

k C k C k C
dk

k w d
C C C Cw

p d Poi C Poi C

− −−

= = =

−

− − − − − −
−−

= = = ==

 ∑ ∑ ∑ 
= − 

 
  

∑ ∑ ∑ ∑∏    

On the other hand, the marginal probability can be viewed as obtained by marginalizing 
other variables of the joint probability distribution. In this way, the form of joint probability 
distribution can be obtained through the marginal probability distribution: 

( ) ( ) ( )
1

1

1
1

1 1
01

, ,C , 1

dk

l
k l

k k
dk

k C
d

d k w d
Cw

p C d Poi C Poi C

−

=

− −
−

−
==

 ∑ 
= − 

 
  

∑∏   (5) 

Below, we discuss the likelihood terms and prior terms. 
The inference processing process of the joint probability distribution of the number of 
samples generated in each round can be described as follows: 
 



 
 
 
56                                                                                               CMES, vol.121, no.1, pp.49-82, 2019 

                          

Input kd

1
1

Mout
count

=
=

kcount d<

( )countMout Mout Poi C← ×

Y

1count count← +

( )

1

1

1

0
1

dk

l
l

k C

C
Mout Mout Poi C

−

=

− −

=

 ∑ 
← × − 

 
  

∑

N

Output Mout

 

Figure 2: Calculation procedure of probability  ( )1 1, , ,
kd kp C C d−  

Here, count  is the loop variable. When the loop is complete, the output variable value 
Mout  is the result ( )1 1, , ,

kd kp C C d− . 

Here, the loop only executes kd  times, and the time complexity is ( )kdΟ . Next, we 
discuss the likelihood term and the prior term. 

3.2 Likelihood term 
To solve the problem of likelihood term, the integration problem of random variable kd  
should be solved first. Here, the conditional probability formula is adopted, and the joint 
probability can be expanded by the value of variable kd  . And then we introduce the joint 

probability of C


 . From the conditional probability formula, there is:  

( ) ( ) ( ) ( )

( ) ( )
1

1 1

1

1 1 1 1

1 1 1 1 1
3

( , , )

, , 1 1 , , , 2 , 2

, , , C , , C ,
k k

k dk

k

k k k k k k
C

k d k d k
d C C

p

p d p d p C d p C d

p C d p C d

π π

π π π π

π π
−

∞

− −
=

=

= ⋅ = + = ⋅ =

+ ⋅

∑

∑ ∑




 

  

  (6) 

Eq. (6) proposes a method to realize the joint probability distribution, which represents the 
observation sequence generated by the Beta Process. We use limited observation (here k ) 
to generate the observation likelihood. 



 
 
 
The Exact Inference of Beta Process and Beta Bernoulli Process                            57 

( ), kp C d


 here is the joint probability distribution generated by Eq. (5). If we expand and 

analyze this formula, we can get the integral of kd  . Substitute Eq. (5) into Eq. (6), will get: 

( ) ( )

( ) ( ) ( )
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1 1 1
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 
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 
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∑ ∑ ∑∏
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3 0

1 1 1, , , C ,

k

k

k

d C

k d kp C dπ π

∞ −

= =

−⋅

∑ ∑

 

  (7) 

                                                                           
Here item ( )1, , 1k kp dπ π =  in Eq. (6) has been replaced by Eq. (3). 

3.3 Derivation of conditional probability term 
The data is generated by H  through the Beta Process and expressed in the form of an 
infinite dimensional vector, with each element between ( )0,1 . The probability distribution 

( ), kp C dπ
 

 is analyzed as follows: this formula is equivalent to the posterior distribution 

of 1 2, , , kπ π π  after the indicator sequence is given. 

3.3.1 Inference for 2kd =   

Given kd  value, can reconstruct the { } 1k k
π

=
 . In other words, k  samples were generated 

in the first round and the second round, and the sum of the number of samples in the two 
rounds was k  . 

1 k

C1

 Figure 3: the relationship between the value of 1C  and variables kd = 2   
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Given 1C  and k  , The joint distribution of variables π


 is: 

( )

( )
( )

1

1

1

1

1

1,
2,

1,

k

q k
q

fk
f C

r
r C

p b
p b

p b

π
π

π

=

= +

= +

 
     ⋅      
 

∏
∏

∏
                                                                         (8) 

                 
Here, the ( ),i jp d bπ  item in Eq. (8) will be replaced by Eqs. (3) and (4). 

3.3.2 Inference at 3kd ≥   

Given kd  , we can reconstruct { } 1k k
π

=
 . This means that k  samples are generated in the 

initial kd  rounds, and the sum of the number of samples in kd  rounds is k  , which can be 
understood as that all samples generated in the first 1kd −  rounds have been completely 
observed, while only partial samples have been observed in the last round. 
For each round of samples, the corresponding joint probability distribution needs to be 
defined. So it need to separate the samples from each round. 
From the definition of round, we can obtain the elements from the thj  round: 

{ } { }1 1 1, C , \ , C ,
k kj j d k j d kC C d C d− + −=       

Then, given the values of C


 and k  , the joint distribution of variables π


 can be obtained: 
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q l Cd k
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f kk k
t

f Cr s
r C

s C

p b
p b

p d b
p b p b

π
π

π
π π

−

=

−

=

=

= +−
=

=
= +

= +
= +

  
         ∑     × ×          ∑         ∑    

∏
∏

∏ ∏
∏ ∏

  (9) 

The ( ),i jp d bπ  term in Eq. (9) will also be replaced by Eqs. (3) and (4). 

The calculation process of the conditional probability ( ), kp C dπ
 

 can be described as 

follows: 
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Input kd

1
1

1
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count
I

=
=

=

kcount d<

0countC =

Y
1count count← +

Y

( ),ISout Sout p count bπ← ×

N

1
1

count countC C
I I

← −
← +

I k≤

( ),

1
I kSout Sout p d b

I I

π← ×

← +

Y

N

Output Sout

N

 
Figure 4: Calculation process of conditional probability ( )1 1 1, , , , ,

kk d kp C C dπ π −   

Here, ,count I  is the loop variable. When the loop is complete, the output variable value 

Sout  is the result ( )1 1 1, , , , ,
kk d kp C C dπ π −  . 

For 1, 2, ,s k=   samples { } 1

k
s s

π
=

 can be drawn . . .i i d  from the Beta Process 

( ), ,BP a b H  .  

In this way, the joint probability distribution of the final observed variables can be 
calculated, 
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,
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t
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j

d

m
t m

i
i

k
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q

k
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r
r C

k

l
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t
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π
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π
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−

−

=

=
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=
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= +
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=
=
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 
    

  
  
  ∑  × ×      ∑    

∏
∑ ∑ ∑ ∑

∏

∏

∏
∏ 1

1
k

k

−

+

 
 
 
 ∑  

∏

 

  (10) 
Substituting Eqs. (3) and (4) into Eq. (10), the final precise joint probability distribution 
function for a finite number of observations of Beta Process is obtained. 
Thus, the overall calculation process of the likelihood term can be described as follows: 

Input kd

0

0
1

0

S
i
C

=
=
=

1

0

i

i v
v

C k C
−

=

< −∑ N

Y

1ki d= −

1i =

( )1 1, ,
kdS S f C C −← + 

Y

1i i← −

N

1i iC C← +

1i i← +

N

0iC ←

Output S

Y

 
Figure 5: Calculation process of probability ( )1, , ,k kp dπ π  
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In the calculation process shown in Fig. 5, ( )1 1, ,
kdf C C −  is used to represent the 

calculation result of multiplying Mout  in Fig. 2 and Sout  in Fig. 4, that is, the joint 
probability distribution of the observation variable π



, and the variable ( ), kC d


 that needs 

marginalization. The distribution function is: ( )1 1 1, , , , , ,
kk d kp C C dπ π −  . 

The computation time complexity is ( )kdΟ . 

4 Calculation of the final joint probability distribution function of the observed 
variables z



 

Data π


 is drawn . . .i i d  from a Beta Process and then via a Bernoulli Process can obtain 

finite dimensional binary vector form: { }0,1 kk g
ijz ×∈ , Where ig  represents row i  of 

matrix Z  containing ig  column, namely: 

( ) ( )

( )
1, , , ,

iid

k

iid

ij i

BP a b H

z Bernoulli

π π

π

 



   (11) 

This can be represented as a kk g×  dimensional binary matrix [Finale, Kurt, Jurgen et al. 
(2009)]. 

 

Figure 6: the relationship between the variables π


 and variables { }ijz  

The sufficient statistics calculated from { }
1

jg

jh h
z

=
 are the counts along each dimension j  , 

so that we have: 

1

jg

j jh
h

M z
=

=∑    (12) 

where ijz  has been specified to be drawn from a Bernoulli Process with a parameter iπ  . 

Then the Joint probability distribution of { }z  and { }π  is subject to: 
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( ) ( ) ( )1

11 1 1
1 1

, , , , , 1 , ,
j

jhjh

k

gk zz
kg k j j k

j h

p z z pπ π π π π π
−

= =

= −∏∏     (13) 

Here each jπ  parameter follows a beta distribution. The joint probability distribution of 

π


 can be calculated by Eq. (10). 
By substituting Eqs. (10), (12) into Eq. (13), the exact Joint Probability distribution 
function of Beta Bernoulli Process for finite observation can be obtained. 

( ) ( ) ( )
1 1

11 1 10 0
1

, , , 1 , ,j jj

k

k g MM
kg j j k k

j

p z z a b p d dπ π π π π π
−

=

= −∏∫ ∫   

 
(14)

 
Using the above equation, the variable π



 in the intermediate step can be conveniently 
eliminated by integration, and the result is given in Eq. (15). 

( )
( ) ( )

( ) ( )
( ) ( )

( ) ( )

( ) ( )

1

1

1

11

1 1

0
0 1

1

1 0
1

1 1 10 0
0

1

1

0
1

, , ,

1

1 1,

1 1,

1 2,

k

j jj

q qq

r rr

f ff

kg

k b g MM
j j j

R j

k g MM
q q q qk

q
k

g MMC R
r r r r

r C

k g MM
f f f f

f C

p z z a b

Poi k R b d

p b d
Poi C Poi k C R

p b d

p b d

π π π

π π π π

π π π π

π π π π

∞ + − −

= =

−

− ∞
=

−= =

= +

−

= +

=

= + − +

 
− 

 ⋅ − + ⋅ ×
 − 
 

 
−

 

∑ ∏∫

∏∫
∑∑

∏ ∫

∏ ∫



( )

( ) ( )

( ) ( )

( ) ( )

21

1 1

1 1

1

1 1
1 11

3 0 0 0 0 11

1

0
1

1

0
1

1

0

1 1,

1 1,

1 t,

dv k

s m
ks m k

k v dk

q qq

r rr

l ll

k C k C
d dk

w l
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∏

∏ ∏ ∫
∏ ∫

  

  (15) 
Next, by replacing the distribution of the integral in Eq. (15) by using Eq. (3), we can obtain 
Eq. (16): 
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  (16) 
Here, variable R  is introduced through the properties of the Poisson distribution: 

( ) ( )
1

0 0
1

i

k

i
C R

Poi C Poi k R
− ∞

= =

− = +∑ ∑ . 

In order to simplify the following calculation, the calculation form can be appropriately 
simplified first: 
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   (17) 

Eq. (17) is a simple shift of the last two terms in Eq. (15). 

4.1 Likelihood term for { }kz   

Using the conjugate relationship between the Beta Process and the Bernoulli Process, 
through integral calculation, the following result can be obtained, without loss of generality. 
The Bernoulli samples produced in round kd  are analyzed here: 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1
1 12 22

0

12 1 21
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1 1 ln 1
1

1 1 ln
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d wd g M b dM
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b dw w d w w
d
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ππ π π

π π π π

−
− − −−

− − − −−

 = − − − Γ −  

 = − − −  Γ −

∫ ∫

∫ ∫
  

  (18) 

In this case, kz  will be used to represent { }1, ,
kk kgz z  . and the probability distribution 

of kπ   has been represented by the Eq. (4). 

By Taylor’s expansion, we can obtain the integral of the variable kπ  analytically. 

Considering series analysis of the middle part of Eq. (18), i.e., the Taylor expansion of the 
term ( )1 k kg M

kπ
−− , one can find that 

 

( ) ( )
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∫

∑ ∫
 

   (19) 
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Through variable substitution, set kR
w
π

=  , then ( )0,1R∈  . At the same time have  

kddR
w
π

=  . There are: 

( ) ( )
1

1 1

0 0
1 1

g sk
g sk

b
w bk k

kd w R R dR
w w
π π π

−

−
−

−   − = −   
   ∫ ∫   (20) 

The integral result in Eq. (19) can be obtained: 
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∫

∑
  

  (21) 
Substituting the calculation results of Eq. (21) into Eq. (18), we can obtain: 

( ) ( ) ( ) ( )
( )

( ) ( )
( ) ( ) ( ) ( )

2

1 21

0
0

1
1

1

1
1 ln

1 1 1

k
k k k

k k
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d
g M d k k

k
k

g M
s dg b sk

s k k k

b g M b
p z

d

g s
w w dw

s g M s g s b

− + −

−
−+ − −

=

Γ − + Γ
= −

Γ −

Γ − +
−

Γ + Γ − − + Γ − + +∑ ∫
  

  (22) 

This is the likelihood term form of { }kz  obtained by inference. 

4.1.1 Likelihood term for 2kd =   

From the above analysis, we now know that since 0 k ks g M≤ ≤ − , ks g b≠ + , so that 
have 0kg b s+ − ≠  . Substituting  2kd =  into Eq. (22), and the following results can be 
obtained: 

( ) ( ) ( ) ( )

( ) ( )
( )

( ) ( ) ( )

2

0

1 1

111
1 1 1

k k

k k

g M
k k k
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= − Γ − + Γ
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− ⋅ ⋅

− + Γ + Γ − − + Γ − + +∑
 

   (23)  

4.1.2 Likelihood term for 3kd ≥   

We can use Eq. (22) to calculate the posterior distribution of z  by integrating out the 
random variable w  in Eq. (4) again. In this way, the last integral term of distribution 
function of z  in Eq. (22) is: 
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( )
1 21

0
ln kk

dg b sw w dw−+ − −∫    (24) 

In order to calculate the posterior distribution of a given binary indicator variables, a prior 
distribution is required. In order to obtain the prior distribution, the following two steps 
can be performed: 
First, variable substitution can be used to calculate the integral. Let lnu w=  , and then 

uw e=  . Therefore, Eq. (24) can be replaced by: 

( ) ( )1 021 2

0
ln k kk k

d u g b sg b s dw w dw e u du− + −+ − − −

−∞
=∫ ∫   (25) 

Next we let ( )kt u g b s= − + −  , and then 
k

tu
g b s

= −
+ −

 . Substituting these variables 

into Eq. (25), we can obtain: 
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∫ ∫
  

  (26)                   
 

4.2 Calculate the proportional term in equation 
 To calculate the proportional term in Eq. (17), we need to substitute the result of Eq. (23) 

into Eq. (17), in this way, we can obtain, 
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 (27)

 
    

Regarding the integral proportion term in the denominator of Eq. (27), by using the result 
of Eq. (26), it can be calculated as follows: 
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  (28) 
Substituting the result of Eq. (28) into Eq. (27), we can produce result: 
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The Eq. (29) is the final result that we want to get here. 

4.3 The final result of the joint probability distribution of z


 
Substitute Eq. (29) into Eq. (17), then the power of constant b  in Eq. (17) can be obtained 
by the following calculation result: 
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At this time, substitute the results of Eqs. (17), (23), (29) and (30) into Eq. (16), the final 
calculation result of the variable z



 can be expressed as follows: 
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   (31) 
The result obtained from Eq. (31) is the final joint probability distribution function required 
in this paper. 
Here, the calculation of the observed likelihood for each Bernoulli sample is done directly. 
Thus, the likelihood calculation of each Bernoulli sample is carried out directly. This 
process can be described as follows: 
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The calculation result can be analytically generated due to the integration order of beta 
variable kπ  and intermediate variable w  is exchanged in the function to be integrated, and 

then Taylor expansion is carried out on the power of ( )1 kπ−  in the exchange result. 

The flow chart of the calculation of the final observation variable Z  in the Beta Bernoulli 
process is almost the same as that in Fig. 4. Since the probability ( ),Ip count bπ  in the 

process described in Figure 4 can be directly used here, due to that the introduction of 
conditional probability distribution of the observation variable z



, and distribution function 

( )Ip z count


 can be analytically calculated by marginalizing variable Iπ , i.e., 

( ) ( ),I I I Ip count b p Z dπ π π⋅∫


, then the final result ( )p Z  can be obtained. Where, 

IZ


 represents the thI  row of matrix Z  and count  represents the number of rounds of the 

thI  variable Iπ  occurrence in the Beta Process π . 

5 Beta process factor analysis and the logarithmic likelihood function of the joint 
probability distribution for beta process 
The most commonly used method in machine learning is variational inference, which is 
often called EM algorithm in parameter estimation. One of its core steps is to calculate the 
joint probability distribution function of the observed variable and the hidden variable. At 
the same time, the convexity of the final objective function is guaranteed by taking 
logarithm of the joint probability distribution function. Therefore, it is one of the most 
important tasks in machine learning to find the logarithmic likelihood of the joint 
probability distribution function. For the same reason, the logarithmic likelihood of the 
joint distribution of Beta Process with finite observations is also calculated below. 
The key use of the Beta Process is for Beta Process Factor Analysis [John and Lawrence 
(2009); John and Lawrence (2011); Ishwaran and James (2001)]. Among this, the Bernoulli 
Process, which takes the Beta Process as a parameter, will be used for factor selection in 
the set of factors. Therefore, the Factor Analysis of finite observation Beta Process will be 
discussed in the following part. 

5.1 Beta process factor analysis 

Beta Process Factor Analysis is mainly described as: Define the matrix 1, , Gϕ ϕ Φ =  
 

 , 

and define a set of vector 1, , kX x x =  
 

 . Here { }iϕ


 is the basis vector for the space of 

X . So jx


 has the same dimension as iϕ


. Here we can set  P
i Rϕ ∈


, that is, the X  space 

is the P  dimensional space, P
ix R∈


. At the same time, we can define a matrix 

1, , kW w w =  
 

  so that ( )X Z W E= Φ +  holds. Among them, define a matrix 
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1, , kE ε ε =  
 

 , satisfy ( )10,i PN Iεε σ −


 . According to the BPFA definition, we can 

introduce Beta Bernoulli Process matrix Z , so that:  
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 ( )1, , kx x=
 



 

Through the representation of vector equality, we can get: 
1

G

j sj sj s j
s

x z w ϕ ε
=

= +∑
  

, 

1 j k≤ ≤ . It can be seen here that the random variable sjz  indicates whether the 

component of observation jx


 contains vector sϕ


, the random variable sjw  represents the 

weight of the vector sϕ


 that makes up the observation jx


. 

The Beta Process Factor Analysis is dealing with: ( ) ( )1 1, , , ,generate
k kx xπ π →

 

  . 

That is, another matrix X  is generated from one matrix Φ  through vector transformation. 
Here, element fπ  in vector π



 corresponds to a vector fx


 in matrix X . Specifically, G  

Bernoulli 0 1 samples { }
1

G

vj v
z

=
 are generated from a Bernoulli Process with a parameter 

of jπ , then G  basis vectors { }
1

G

l l
ϕ

=



 need to be extracted from the corresponding space 

Φ  to constitute jx


. 

Generally, in the definition of BPFA model, the prior distributions are ( )10,s PN Iϕϕ σ −


 , 

( )10,f PN Iεε σ −


  and ( )10,f w Gw N Iσ −


 . 

It should be noted that: numerical value G  here can be arbitrarily large or even tend to 
infinity. For any countable dimensional space, the description of the space can be realized 
only by taking out countable basis vectors { }iϕ



 . Therefore, as long as the number of 

columns of the matrix Φ  is adjusted correspondingly for any countable observation, 
namely adding irrelevant columns to the matrix, the space of any dimension can be 
constituted. 
The joint probability distribution function can be directly expressed as 
( ) ( ) ( ) ( ) ( ), , , W W , , Wp X Z p Z p p p X ZΦ = Φ Φ . 

According to the definition of distribution function, it can be directly obtained: 
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In this case, the probability distribution function of ( )p Z  can be directly described by Eq. 

(31). It is usually straightforward to set ig G=  to i∀ . Only X  is observable here, and 
the rest are unobservable variables. Theoretically, when the joint probability distribution 
function is constructed, the work of inference and machine learning can be performed. 

5.2 Logarithmic likelihood of the joint probability distribution of beta process 
Through Eq. (10), the joint probability distribution function can be directly described. Then, 
by introducing the intermediate variable { }, , ,kC T d R

 

 and performing the operation, the 

logarithmic likelihood of the implicit variable can be obtained: 
Here, when 2kd =  , the distribution function of the observation sequence can be directly 
obtained from Eq. (8) as follows: 
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When 3kd ≥ , we can calculate the distribution function of the observation sequence from 
Eq. (9): 
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From Eqs. (8) and (9), it can be inferred that the above two terms can be uniformly 
expressed, that is, the conditional distribution of the Beta Process observation sequence 
can be uniformly expressed as: 
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At the same time, the joint probability distribution of random variable 

{ } { }{ }1

11
, ,kk d

j i kij
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 can be deduced from Eqs. (5) and (32): 
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For Poisson Process, introducing random variable R  can be expressed by equivalent 

substitution: ( ) ( )
1

0 0
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− ∞
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− = +∑ ∑ . Then a joint probability distribution 
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 can be obtained: 
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  (34) 

Similarly, through Eq. ( )4  , and variable substitution lnT w=  , the joint distribution 

function of random variables { },Tπ  can be obtained: 
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k
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π π
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Here, the range of values for random variables can be limited to 0 lnk kT π≤ ≤ − , and 

2kd ≥  is required at the same time. 

In addition, random variable sequence { }
1

k

j j
T

=
 is introduced in Eq. (34). The joint 

probability distribution function of { } { } { }{ }1

11 1
, , , ,kk k d

j j i kij j
T C d Rπ −

== =
 can be obtained: 
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  (36) 
Eq. (36) is the joint probability distribution function form of all random variables that are 
really needed. It will be calculated below to simplify its representation. 

5.2.1 Quotient calculation of { },Tπ  joint probability 

According to Eq. (35), the division of the two terms can be directly calculated. When 2s ≥ , 
it can be deduced: 
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When 1s = , it can be calculated that: 
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By substituting Eqs. (37) and (38) into Eq. (36), the joint probability distribution function 
of all required random variables can be obtained: 
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  (39) 

5.2.2 Logarithmic likelihood of joint probability distribution function 

Taking the logarithm of Eq. (39) here, we can deduce: 
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  (40) 
The structure of joint log-likelihood is analyzed below. 
First of all, the coefficient of item logb  in Part 2kd >  is calculated, and we can get: 
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With Eq. (41), the calculation of jC  can be directly completed: 
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Then, the cumulative calculation of the ( )log 1s −  items in Part 2kd >  can be completed: 
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For the calculation of the second half of Eq. (43), it can be described as: 
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By substituting Eq. (44) into Eq. (43), we can obtain: 
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   (45) 
By substituting Eqs. (41), (42) and (45) into Eq. (40), the following results can be obtained: 
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Regarding Poisson distribution, it can be calculated as: 
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By substituting Eq. (47) into Eq. (46), we can obtain the final conclusion: 
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Then, by the definition of observation sequence of Beta Bernoulli Process, Formula 
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can be obtained directly. Namely: 
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Because of the conditional independence between random variables, it can be obtained 

directly through substitution derivation: ( ) ( ), , , ,kP Z C T d R p Zπ π=
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In this case, the logarithmic likelihood function of the final distribution can be obtained by 
adding the above results:  
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 are all implicit variables. In this way, parameters can be learned 

by variational EM algorithm. 
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6 Discussion 
Theoretically, the joint probability distribution function must be able to handle any number 
of observations, and, importantly, the number of actual observations can be arbitrarily large, 
but not infinite. The method that we have given here is simple and effective in dealing with 
this problem, because the Nonparametric Bayesian stochastic Process we discussed here 
does not satisfy the Kolmogorov consistency theorem, so lead to the relationship between 
observed variables is not independent identically distributed. The distribution function 
form is much more complicated than the traditional machine learning situation, and the 
number of unobserved variables has a direct impact on the form of the distribution function. 
The method proposed here eliminates the information irrelevant to observations and thus 
gives the general form of any finite number of observations. 
We have obtained several results of this idea through the Stick-Breaking structure proposed 
by Paisley et al. [Paisley and Zaas (2010)]: including the more general construction of finite 
observation and the new type of joint probability distribution function for Stick-Breaking Beta 
Processes, which indicates that the Beta Process is the superposition of a Poisson Process 
countable set and used as a priori of Bernoulli Process. Finally, a finite observation of a 0/1 
matrix is completed. 
In the future, we will extend the proposed method and use variational inference method to 
solve the problem that the accurate estimation of marginal distribution is too complex, so 
as to be applicable to the machine learning task of approximate parameter estimation of 
Beta Process and Beta Bernoulli Process. We will also explore some approximate inference 
models of distribution functions of Non-parametric process variables, hoping to obtain 
better and simplified performance by means of variational inference method. These similar 
methods can also be used for Gamma Processes [Anirban and Brian (2015)] and Gamma 
Poisson Processes [Michalis and Titsias (2007)]. This is the next step of our consideration. 
Regression analysis is one of the main research directions in the field of machine learning. 
At present, Gaussian Process Regression is the main regression method when stochastic 
process is used as the tool. Among them, Kalman Filter is the most widely used field in 
Gaussian Process Regression. Based on the same idea, because for the Beta Process, when 
the joint probability distribution function is given, the conditional probability can be 
calculated according to the Bayesian formula and the regression analysis can be carried out 
theoretically. Therefore, the regression analysis of Beta Process is also one of the directions 
to be considered in the next step. 
The idea described above can be also used in the context of Gamma Processes similar to 
Beta Processes, so our results also contribute to the establishment of a general Non-
parametric Bayesian inference mechanism. 
A more common variant of the Beta Bernouilli Process is the Indian Buffet Process (IBP), 
which learns the number of features included in the model from the observed data, thus 
allowing the model to interpret the data more accurately. The Non-parametric Bayesian 
model based on IBP can automatically learn the implicit features, and can in a scalable way 
to determine the number of features. Therefore, in theory, better prediction performance 
can be achieved. In practical applications, the 0/1 output of the Beta Bernouilli Process is 
generally used to describe the relationship between entities. In the sample matrix of the 
Beta Bernoulli Process, a specific entity is described by a set of binary features, and then 
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the features are obtained from the observations. And try to infer the features. The sample 
matrix value of the Beta Bernoulli Process can be used as a basis for determining whether 
the entities are related. If the weight is attached to the 0/1 output of the Beta Bernouilli 
Process at the same time, the strength of the influence between the entities can be added 
while describing the correlation between the entities. 
Since the distribution of the Beta Bernouilli Process is long-tailed, and the distribution 
functions for each round generated by the Beta Process Stick Breaking do not necessarily 
have the same attenuation trend as the power-rate distribution, resulting in the model being 
basically sufficient to describe the entity possessing any number of features. The general 
Beta Bernouilli Process describes the probability distribution, which can be used to 
describe the relationships between entities, and the relationships are not necessarily 
symmetric. This asymmetry relationship can be applied to some important issues such as 
social network connection prediction. Connection prediction is an important issue in social 
network modeling [Miller, Michael and Thomas (2009)]. Here, it can be assumed that the 
link probability from one node to another node is determined by the combined effect of 
pairwise feature interactions. If a weight is added to the 0/1 sample matrix of the Beta 
Bernouilli Process, and the positive weight corresponds to the probability of high 
correlation, while the negative weight corresponds to the probability of low correlation, 
and the zero weight indicates that there is no correlation between the two features, then the 
representation ability of the model will be greatly improved, and the influence relationship 
between nodes will have stronger performance. 
The relationship between entities can be simplified. The simplified symmetric relationship is 
used to learn a complete symmetric weight matrix. The symmetric Beta Bernouilli Process 
model can also be used to describe the co-authorship relationship judgment in text mining, 
because the co-authorship relationship is symmetric [Teh, Jordan, Beal et al. (2006)]. 
Currently, IBP Process with multiple levels proposed by the academia has been applied in 
Deep Learning. It is used to learn the structure of Deep Belief Network, including the 
number of layers of neurons, the number of neurons in each layer, and the connection 
structure of neurons between layers [Adams, Hanna and Zoubin (2010)]. 
In this paper, the exact analytical form of probability distribution function of finite arbitrary 
dimension is directly analyzed for Beta Bernouilli Process, and its properties as the objective 
function of machine learning are discussed. In the next step of prediction [Miller, Michael 
and Thomas (2009)] and learning [Adams, Hanna and Zoubin (2010)], it can be directly used 
as the prior probability distribution function of the discriminant model [Miller, Michael and 
Thomas (2009)] and substituted into the objective function for parameter optimization.  
Since the marginal probability distribution function defined here is accurate, the calculation 
process of parameter optimization can be carried out based on demand, or we can directly 
optimize the precise distribution of marginal probability, or choose sampling [Miller, 
Michael and Thomas (2009)] and variational inference to make approximate inference to 
the joint probability distribution function. 
In Deep Learning, ideas similarity of Teh et al. [Teh, Jordan, Beal et al. (2006)] can also 
be used to conduct Deep Learning reasoning by taking the row number and column number 
of each row of the binary matrix output by the Beta Bernouilli Process as the layer number 
of multi-layer neural network and the node number of each layer. The two-parameter beta 
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process description adopted in this paper theoretically promotes the model in [Adams, 
Hanna and Zoubin (2010)], which directly adopted the Indian Buffet Process as the priori 
of the number of layers and the number of nodes of each layer of Deep Belief Network. 

7 Conclusions 
Beta Process contains a list of random variables. However, these random variables do not 
satisfy the stationarity or the global independent increment, so the probability distribution 
of these random variables has an extremely complex form. The stick breaking construction 
method is a means to indirectly define the Beta Process by describing the sampling process. 
Further analyzing and deducing the joint probability distribution of observed samples 
through the described sampling method is the next step necessary for machine learning. 
The result presented here is an analytical method for directly calculating the probability 
distribution of observable variables in Beta Process. Through probability distribution 
calculation, on the one hand, all intermediate variables are directly marginalized, thus 
completely eliminating the unobservable information. On the other hand, the observation 
of Bernoulli Process directly generated by taking Beta Process as a parameter can have the 
form of analytic probability distribution function. 
In the future, we will further extend the derived results and deal with the later steps of 
machine learning on the Beta Process. 
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