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Abstract: The wireless sensor network (WSN) is widely employed in the application 
scenarios of the Internet of Things (IoT) in recent years. Extending the lifetime of the entire 
system had become a significant challenge due to the energy-constrained fundamental 
limits of sensor nodes on the perceptual layer of IoT. The clustering routing structures are 
currently the most popular solution, which can effectively reduce the energy consumption 
of the entire network and improve its reliability. This paper introduces an enhanced hybrid 
intelligential algorithm based on particle swarm optimization (PSO) and ant colony 
optimization (ACO) method. The enhanced PSO is deployed to select the optimal cluster 
heads for establishing the clustering architecture. An improved ACO is introduced to 
realize the data transmission from terminal sensor nodes to the base station. Our proposed 
algorithm can effectively reduce the entire energy consumption and extend the lifetime of 
IoT sensor networks. Compared with the traditional algorithms, the simulation results show 
that the presented novel algorithm in this paper has obvious optimization and improvement 
in network lifetime and energy utilization efficiency. 
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1 Introduction 
The wireless sensor network (WSN) is widely utilized in various application scenarios of 
the Internet of Things (IoT) in the current society, such as modern intelligent agriculture 
[Wang, Wang and Wang (2006)], environmental monitoring [Oliveira and Rodrigues 
(2011)], intelligent medical treatment [Alameen, Liu and Andkwak (2012)], early warning 
of natural disasters [Chen, Liu, Wang et al. (2013)], etc. The WSN is an important 
implementation of IoT and the architecture of WSN usually comprises various dynamic 
nodes and base station (BS), which cooperates to perform data acquisition, processing, and 
transmission tasks. Each node is mainly composed of sensor unit, wireless transmitting 
module, power module, data processing, and storage unit. Usually, the nodes are embedded 
micro-devices with limited processing, storage, and communication capabilities, and also 
it has to face the most critical challenge-energy limitation. Simultaneously, it is difficult to 
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replenish the extra energy demand of the deployed nodes. Hence, the exhaustion of energy 
means the “death” of those nodes. 
Usually, the IoT sensor nodes in the perception layer should transmit data to the upper 
layer-the application layer as soon as possible after obtaining information. Most of the 
energy consumption of nodes mainly occurs during the data transmission between nodes. 
That is why energy-efficient algorithms can significantly reduce the energy consumption 
of nodes. At present, the most popular and feasible energy-saving schemes are always to 
devote the clustering routing algorithms [Abbasi and Younsi (2007)], that is, the network 
is logically divided into several clusters, and each cluster consists of one cluster head (CH) 
and several member nodes. The member nodes are responsible for collecting and 
transmitting data to the CH. The CH is responsible for intra-cluster communication 
scheduling, fusing, sending data to BS. This architecture has the advantages of appropriate 
scalability, high energy efficiency, low latency, etc. [Afsar and Tayarani-H (2014)]. 
In the clustering structure, the communication mode comprises intra-cluster and inter-
cluster. According to the actual communication environment, the wireless link can be 
generally divided into single-hop and multi-hop. In an intra-cluster manner, the single-hop 
link requires all member nodes to communicate directly with the CH. The member node 
that is farther from the CH consumes much more energy. Via employing the multi-hop link, 
the member node does not need to communicate with the CH directly. In the inter-cluster 
mode, the multi-hop link also could assist the CH that is far from the BS, to avoid 
establishing direct communication with the BS. Compared with the single-hop link, the 
multi-hop link can reduce the network energy consumption [Mhatre and Rosenberg (2004)]. 
However, the multi-hop link also results in overload and excessive energy consumption for 
the nodes close to the BS or the CHs that frequently forward the data, thereby causing a 
“hot-spot” problem [Perillo, Cheng and Heinzelman (2005)]. 
In this paper, we discuss a novel energy efficient algorithm named as Combined PSO-ACO 
Clustering (CPAC) based on the enhanced hybrid PSO-ACO method and have adopted a 
centralized clustering approach for the CHs selection. The BS only needs to collect the 
information of nodes remaining energy and their location in the network, and via 
employing the computing capacity of BS, thereby selecting the optimal CHs, forming a 
coherent cluster structure and determining the optimal data transmission path. Compared 
with the most state of the art and classical algorithms, our innovations are listed as follows: 
1) In the stage of CHs election, based on the enhanced PSO, the multi-attribute 
optimization problem is transformed into the single-objective optimization problem for 
selecting the optimal CHs.  
2) In the stage of clustering structure formation, the member nodes can choose the optimal 
CH according to our proposed weight function that takes into account the energy remaining 
and location of the target CH.  
3) In the stage of data transmission, based on the enhanced ACO, the optimal multi-hop 
transmission path from the member node to the CH, and the CH to the BS is explored 
and settled.  
The rest of this paper is organized as follows: Section 2 lists related dynamic algorithms 
based on the probability theories and intelligent methods. The detailed prerequisite 
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knowledge is discussed in Section 3. In Section 4, the details of enhanced algorithms are 
described. Section 5 presents the experimental setup and simulation results. Finally, 
Section 6 includes concluding remarks. 

2 Related work 
The main challenges of network clustering include how to determine the number of CHs, 
optimize the election of CH, the cluster structure, and the intra-cluster and inter-cluster 
data transmission. Till present, researchers have proposed various clustering algorithms, 
which can be usually divided into two types, one is based on probability, and the various 
intelligent algorithms dominate the other one. 

2.1 Probability based clustering methods  
In the probability-based clustering algorithms represented by LEACH [Heinzelman, 
Chandrakasan and Balakrishnan (2000)], PEGASIS [Lindsey and Raghavendra (2002)], 
HEED [Younis and Fahmy (2004)], and TEEN [Manjeshwar and Agarwal (2001)], 
whether the node can be elected as the CH depends on the generated random number 
according to its attribute is more significant than a certain preset threshold. Even though 
the mechanism of these algorithms is uncomplicated and easy to implement, these 
algorithms may still cause uneven distribution of CHs and unbalanced load. Literature 
[Heinzelman, Chandrakasan and Balakrishnan (2000)] proposed the well-known LEACH 
algorithm that uses the distributed CH election strategy. In this protocol, each node obtains 
the same probability to become the CH. Hence, the network performance can be 
significantly reinforced. Since the CH is randomly selected, the node with less remaining 
energy may be elected as the CH. A series of problems may arise from the choice based on 
this strategy. For instance, the CH location is unevenly distributed in the geospatial space, 
the cluster size may be unequal, and the load balance of CH may not be able to achieve.  

2.2 Intelligent algorithm based clustering methods  
Indeed, how to dynamically and efficiently elect CHs from the terminal nodes with 
gradually decreasing energy, meet uniform CHs distribution and minimize network energy 
consumption, which is recognized as the NP-hard problem [Kumar, Aseri and Patel (2009)]. 
As the emerging intelligent algorithms are widely known and accepted, swarm intelligence 
algorithm and evolutionary algorithm have been arranged to solve the clustering problem 
of sensor networks, and achieved expected excellent results. Typical swarm intelligence 
algorithms include PSO algorithm [Abdul Latiff, Tsimenidis and Sharif (2007); Kulkarni 
and Venayagamoorthy (2010); Zhang, Wang and Ji (2015); Wang, Zhou and Xiang (2016); 
Rao, Jana and Banka (2017)], artificial bee colony (ABC) algorithm [Karaboga and 
Basturk (2007); Karaboga, Gorkemli, Ozturk et al. (2014); Karaboga, Okdem and Ozturk 
(2012); Mann and Singh (2017)], ant colony optimization (ACO) algorithm [Camilo, 
Carreto, Silva et al. (2006); Wang, Li, Xiong et al. (2008); Cheng, Xun, Zhou et al. (2011)] 
and Genetic algorithm (GA) [Jin, Zhou and Wu (2003); Hussain, Matin and Islam (2007); 
Elhoseny, Yuan, Yu et al. (2015); Yuan, Elhoseny, El-Minir et al. (2017)] are recognized 
as the conventional evolutionary algorithms. Compared with the probabilistic-based 
clustering algorithms, the intelligent methods based clustering algorithms serve dynamic 
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CHs election modes. The intelligent algorithm based schemes consider the remaining 
energy, location, connectivity, coverage, and other properties of the nodes. Thus they can 
select the most appropriate CHs.  

2.2.1 PSO algorithm based clustering methods 
The PSO algorithm is a random search algorithm based on swarm collaboration developed 
by simulating the foraging behavior of birds. In the PSO algorithm, each bird is inspected 
as a particle. The particle has two properties: velocity and position. Each particle knows its 
optimal position and the excellent position so far among the entire swarm of particles, then 
employs Eq. (1) and Eq. (2) to adjust the particle’s speed, and uses Eq. (3) to improve its 
position. The position of each particle represents a possible solution to the target problem. 
After several iterations, the optimal value can be obtained. 
𝑣𝑣𝑖𝑖𝑘𝑘+1 = 𝜔𝜔 ∙ 𝑣𝑣𝑖𝑖𝑘𝑘 + 𝑐𝑐1 ∙ 𝑟𝑟1 ∙ �𝑝𝑝𝑝𝑝𝑖𝑖 − 𝑠𝑠𝑖𝑖𝑘𝑘� + 𝑐𝑐2 ∙ 𝑟𝑟2 ∙ �𝑔𝑔𝑔𝑔 − 𝑠𝑠𝑖𝑖𝑘𝑘�  (1) 

𝜔𝜔 = (𝑊𝑊 − 0.4) ∙ (𝑀𝑀𝑎𝑎 − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) 𝑀𝑀𝑎𝑎⁄ + 0.4   (2) 

𝑥𝑥𝑖𝑖𝑘𝑘+1 = 𝑥𝑥𝑖𝑖𝑘𝑘 + 𝑣𝑣𝑖𝑖𝑘𝑘+1  (3) 

where 𝑣𝑣𝑖𝑖𝑘𝑘, x𝑖𝑖𝑘𝑘, v𝑖𝑖𝑘𝑘+1, x𝑖𝑖𝑘𝑘+1 represent the velocity and position of the 𝑖𝑖𝑡𝑡ℎ particle before 
and after adjustment, 𝑝𝑝𝑝𝑝𝑖𝑖  represents the optimal position of the 𝑖𝑖𝑡𝑡ℎ  particle, 𝑔𝑔𝑔𝑔 
represents the optimal position of the current particle swarm, 𝑐𝑐1  and 𝑐𝑐2  are learning 
factors, 𝑟𝑟1  and 𝑟𝑟2  are the random numbers in (0,1), 𝜔𝜔  is the time-involving inertia 
weight, 𝑀𝑀𝑎𝑎  represents the maximum number of iterations, 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 represents the current 
number of iterations, and 𝑊𝑊 indicates a fixed constant and the value is taken as 0.9. 
A clustering algorithm based on PSO is proposed in Abdul Latiff et al. [Abdul Latiff, 
Tsimenidis and Sharif (2007)] (PSO-C). Only the nodes with the value of remaining energy 
higher than the amount of average energy in the network are eligible to qualify for the 
candidate CHs. The fitness function proposed in the literature takes into account the 
remaining energy of the node and the intra-cluster communication distance. The smaller 
the value of the fitness function, the elected CHs are better. 
Wang et al. [Wang, Zhou and Xiang (2016)] (PSO-1) exploits the PSO algorithm to elect 
CHs and select the optimal relay node for each CH. The CH is responsible for collecting, 
fusing, and forwarding the data to the relay node. The relay node is responsible for 
forwarding the data to the BS, which could reduce the energy consumption of the CH itself. 
Therefore, when designing the fitness function of the CH and the relay node, factors such 
as the remaining energy of the node and its position should be carefully considered. 

2.2.2 ABC algorithm based clustering methods 
The ABC algorithm is an optimization algorithm based on the intelligent foraging behavior 
of honey bee swarm. In the ABC algorithm, the bee colonies consist of three groups of 
bees: employed bees, onlooker bees, and scout bees. The goal of the entire bee colony is to 
find the honey source with the most considerable nectar amount. Each employed bee 
corresponds to a target honey source location, and the employed bee determines a new food 
source within the neighborhood of the target honey source according to Eq. (4) and 
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calculates its nectar amount. When the employed bee completes the explore process, the 
nectar information is shared with the onlookers. According to the “Roulette wheel selection” 
method, the onlooker bee tends to select good food source from those who have higher nectar 
amount. Hence the food source with a large amount of nectar will have a higher probability 
of being chosen as the target. This process is performed multiple times in the neighborhood 
of the target honey source. If the search process is updated numerous times, and there is still 
no improvement, then the honey source is abandoned, and scout bees are about to start their 
mission. The scout bees are translated from part of employed bees, which leave their honey 
sources and search new ones via utilizing the Eq. (4). The honey source is considered as the 
CH, and finding the high-quality honey sources is to be recognized as searching a set of 
optimal CHs. 
𝑥𝑥𝑖𝑖𝑘𝑘+1 = 𝑥𝑥𝑖𝑖𝑘𝑘 + 𝑟𝑟 ∙ �𝑥𝑥𝑖𝑖𝑘𝑘 − 𝑥𝑥𝑗𝑗𝑘𝑘�   (4) 

where r is a random number in (-1, 1), x𝑖𝑖𝑘𝑘and x𝑗𝑗𝑘𝑘are the positions before the 𝑖𝑖𝑡𝑡ℎ and 𝑗𝑗𝑡𝑡ℎ 
employed bees are adjusted, and 𝑥𝑥𝑖𝑖𝑘𝑘+1is the fixed position of the 𝑖𝑖𝑡𝑡ℎ employed bee. 
Karaboga et al. [Karaboga, Okdem and Ozturk (2012)] (ICWAQ) proposes a clustering 
algorithm based on ABC. The fitness function introduced in the literature fully 
premeditated the transmission distance, the remaining energy of the CHs and the QoS of 
the entire network. The higher the value of fitness is, the elected CHs are more reasonable. 

2.2.3 ACO algorithm based clustering methods 
The ACO is a global optimization algorithm for simulating the foraging behavior of ant 
colonies. Ant colonies can quickly find food by exchanging the foraging information by 
secreting a substance called pheromone when searching for food. The ant usually selects 
the shortest path among massive nodes, the 𝑘𝑘𝑡𝑡ℎ ant calculates the probability from source 
node 𝑖𝑖 to all next hop target node 𝑗𝑗 using Eq. (5), the “Roulette wheel selection” method 
is used to select the final next node, then the pheromone 𝜏𝜏𝑖𝑖𝑖𝑖𝑡𝑡+1 will be updated at the end 
of each searching period using Eq. (6), repeating this process until it reaches the destination. 
When the ant traveled down the entire path, the pheromone on the elapsed path is updated. 
During the same duration, the shorter path would remain more pheromone released by the 
ants, and then more ants would choose this path as the target. Finally, the ants in the entire 
ant colony will be concentrated on the shortest route. The ACO algorithms usually can be 
employed for path selection to quarry the shortest multi-hop path. 
𝑃𝑃𝑖𝑖𝑖𝑖𝑘𝑘 = �𝜏𝜏𝑖𝑖𝑖𝑖𝛼𝛼 ∙ 𝐿𝐿𝑖𝑖𝑖𝑖−𝛽𝛽�  �∑ 𝜏𝜏𝑖𝑖𝑖𝑖𝛼𝛼 ∙ 𝐿𝐿𝑖𝑖𝑖𝑖−𝛽𝛽𝑘𝑘∈𝑀𝑀𝑘𝑘 ��    (5) 

𝜏𝜏𝑖𝑖𝑖𝑖𝑡𝑡+1 =  (1 − 𝜌𝜌)𝜏𝜏𝑖𝑖𝑖𝑖𝑡𝑡 + 𝑄𝑄 𝐷𝐷𝑘𝑘⁄   (6) 

where 𝑃𝑃𝑖𝑖𝑖𝑖𝑘𝑘  denotes the probability that 𝑘𝑘𝑡𝑡ℎ  ant chooses node 𝑗𝑗  as the next hop, 𝐿𝐿𝑖𝑖𝑖𝑖 
represents the distance between 𝑖𝑖 and 𝑗𝑗, 𝜏𝜏𝑖𝑖𝑖𝑖 denotes the pheromone between 𝑖𝑖 and 𝑗𝑗, 
𝑀𝑀𝑘𝑘 is the set of nodes that have not been visited yet, α and β represent weighted values 
of pheromone and visibility, 𝐷𝐷𝑘𝑘 is the obtained path length after the 𝑘𝑘𝑡𝑡ℎ ant completes 
the entire path, ρ is the pheromone volatilization factor, and 𝑄𝑄 is the pheromone constant. 
The authors of the article Cheng et al. [Cheng, Xun, Zhou et al. (2011)] (EAACA) also 
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present a clustering algorithm based on ACO. The ant selects the next hop target node 
according to the remaining energy of the neighbor nodes and the pheromone concentration 
on the link. When the pheromone is updated, the path with the shorter length and higher 
residual energy of the nodes would be reinforced more pheromone. 

2.2.4 GA based clustering methods 
The GA is a heuristic search algorithm proposed by reference to the biological evolution 
process. Drawing on the theory of natural evolution, the GA simulates the problem to be 
solved into a process of natural evolution. Individuals in the population are used to 
represent feasible solutions to the problem. Each represents a potential solution to the 
problem. Individuals typically assess their performance through fitness function. Via 
applying the methods of selection, intersection, and mutation, the new population 
continuously iterates, and the higher the fitness function value, the higher the probability 
that the individual retains and finally the community evolves toward the optimal result, 
thus achieves the optimal solution. 
The authors of literature Jin et al. [Jin, Zhou and Wu (2003)] (GAO) believe that fewer 
CHs will have higher energy efficiency, due to the CH consumes more energy than the 
member nodes, and the number of CHs should be limited as few as possible. Since energy 
consumption is positively related to the transmission distance, the transmission distance 
also should be as short as possible. Therefore, the fitness function proposed in this literature 
is to minimize the transmission distance and minimize the number of CHs. The larger the 
fitness function value, the elected CHs are more reasonable. 
The fitness function proposed in Hussain et al. [Hussain, Matin and Islam (2007)] (GAHN) 
takes into account the current remaining energy in the network, the expected energy 
consumption in the current round, the transmission distance between the CH and the BS, 
and the density factor of the nodes, to select the optimal node as the CH. The larger the 
fitness function value, the elected CHs are more legitimate. 

3 Prerequisite knowledge 
3.1 Network model  
Based on a large number of works of literature, our proposed network model has the 
following properties:  
1) Each node has the same initial energy and cannot be re-charged or acquire other energy. 
2) Each node has a unique ID and can obtain the information of location and remaining energy.  
3) Each node can perform data collection as the cluster member node, or as the CH to 
perform data fusion.  
4) Each node can adjust the transmit power, and the transmitted radio signals have the same 
energy loss in any direction.  
5) The locations of the nodes and BS are fixed; the BS has sufficient power supply and 
dominant computing power.  

3.2 Energy consumption model  
Using the “First Order Radio Model” as the energy consumption model [Heinzelman, 
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Chandrakasan and Balakrishnan (2000)], which mainly considers the node energy 
consumption when transmitting and receiving data. The transmission distance of the data 
is equal to the Euclidean distance from the source node to the destination node. When it is 
less than the distance threshold, the free space channel model is adopted, and the multi-
path propagation model is used instead.  

3.2.1 Energy consumption model for transmission 
The energy consumed by the source node to transmit 𝑘𝑘 bit data to the destination node. 

𝐸𝐸𝑇𝑇𝑇𝑇(𝑘𝑘, 𝑑𝑑) = �
𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ∙ 𝑘𝑘 + 𝐸𝐸𝑓𝑓𝑓𝑓 ∙ 𝑘𝑘 ∙ 𝑑𝑑2 𝑑𝑑 ≤ 𝑑𝑑0
𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ∙ 𝑘𝑘 + 𝐸𝐸𝑚𝑚𝑚𝑚 ∙ 𝑘𝑘 ∙ 𝑑𝑑4 𝑑𝑑 > 𝑑𝑑0

     (7) 

where 𝑘𝑘 is the length of data, 𝑑𝑑 is the distance of transmission, 𝑑𝑑0 = �𝐸𝐸𝑓𝑓𝑓𝑓 𝐸𝐸𝑚𝑚𝑚𝑚⁄  is the 
distance threshold, 𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  is the energy required to transmit or receive unit data in the 
transmitting or receiving circuit, 𝐸𝐸𝑓𝑓𝑓𝑓 and 𝐸𝐸𝑚𝑚𝑚𝑚 are the energy consumption required to 
transmit the unit distance of the unit data in the various models. 

3.2.2 Energy consumption model for receiving 
The energy consumed by the destination node to receive 𝑘𝑘 bit data. 
𝐸𝐸𝑅𝑅𝑅𝑅(𝑘𝑘) = 𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ∙ 𝑘𝑘  (8) 

3.2.3 Energy consumption model for data fusion 
The CH performs data fusion, which can reduce redundant data and reduce the energy 
consumption of communication. If the number of cluster member nodes is 𝑚𝑚, each node 
transmits 𝐾𝐾𝑀𝑀 bit data to the CH, and the CH fuses the data into 𝐾𝐾𝑃𝑃 bit, meanwhile, the 
energy consumed by the CH to combine each bit of data is 𝐸𝐸𝐷𝐷𝐷𝐷. 
𝐸𝐸𝑃𝑃𝑃𝑃(𝑚𝑚) = 𝐸𝐸𝐷𝐷𝐷𝐷 ∙ 𝐾𝐾𝑀𝑀 ∙ 𝑚𝑚   (9) 

3.3 Experimental scenario 
Seeing Fig. 1 below. In the 500 × 500 m2 field, 100 nodes are randomly deployed, and 
the BS is located in the center of the area (250, 250). 
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Figure 1: Node geolocation map 

4 Enhanced clustering algorithm 
The clustering scheme usually comprises the following three phases: the CHs election, the 
cluster formation, and the data transmission. In the CHs election phase, a PSO algorithm-
based strategy is used to select the optimal CHs. In the cluster formation phase, the 
common node should choose the optimal CH according to the remaining energy of the CH 
and its distance to the CH. In the data transmission phase, an ACO algorithm-based 
mechanism is proposed. When the current node selects the next hop target node, the node’s 
remaining energy and communication distance will be considered to determine the best 
multi-hop transmission path. The energy-saving strategies are utilized in each phase to 
effectively reduce node energy consumption and extend the lifetime of the entire network.  
In our proposed network, the network operating cycle is measured by “Round”, the number 
of nodes is 𝑁𝑁 and clusters are 𝐾𝐾, the number of surviving nodes in the current round is 
𝑀𝑀 , the number of nodes in the 𝑗𝑗𝑡𝑡ℎ  cluster is 𝑛𝑛𝑗𝑗  , the node 𝑖𝑖  in the 𝑗𝑗𝑡𝑡ℎ  cluster is 
represented as S𝑖𝑖𝑖𝑖, the distance from S𝑖𝑖𝑖𝑖 to C𝑗𝑗 is D𝑗𝑗, the distance from 𝐶𝐶𝑗𝑗 to BS is D𝑗𝑗, 
and 𝑑𝑑𝑗𝑗𝑗𝑗 represents the distance between two different CHs 𝑗𝑗 and 𝑘𝑘. 

4.1 The CHs election  
The PSO is a popular multi-dimensional optimization algorithm with the following features, 
such as easy implementation, high computational efficiency, fast convergence, and excellent 
solution accuracy [Abdul Latiff, Tsimenidis and Sharif (2007)]. So, this paper designs a PSO-
based CHs election algorithm in our proposal. An optimal set of CHs should have the higher 
remaining energy, the well-knit cluster structure, and evenly distributed in the area.  
Since the CHs need to collect, fuse, and transmit data, which require that the CHs should 
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have higher remaining energy; hence, not all nodes can be selected as CHs. In the current 
round, if the node’s remaining energy is below a certain threshold, it only could be 
recognized as an ordinary node and cannot be selected as a CH. According to Eq. (10), the 
remaining energy of all currently surviving nodes is normalized and sets the threshold to 
0.9 based on previous experience. After calculated by employing Eq. (11), only if 𝐹𝐹𝐹𝐹𝑖𝑖 is 
greater than 0.9, the node can be accepted as the candidate node of CH. 

𝑁𝑁𝑁𝑁𝑖𝑖 = 𝑅𝑅𝑅𝑅𝑖𝑖−𝑚𝑚𝑚𝑚𝑚𝑚𝑙𝑙=1
𝑀𝑀 (𝑅𝑅𝑅𝑅𝑙𝑙)

𝑚𝑚𝑚𝑚𝑚𝑚𝑙𝑙=1
𝑀𝑀 (𝑅𝑅𝑅𝑅𝑙𝑙)−𝑚𝑚𝑚𝑚𝑚𝑚𝑙𝑙=1

𝑀𝑀 (𝑅𝑅𝑅𝑅𝑙𝑙)
  (10) 

𝐹𝐹𝐹𝐹𝑖𝑖 = 1 − 𝑒𝑒
𝜇𝜇∙𝑁𝑁𝑁𝑁𝑖𝑖
1−𝑁𝑁𝑁𝑁𝑖𝑖  (11) 

where  𝑅𝑅𝑅𝑅𝑖𝑖 , 𝑁𝑁𝑁𝑁𝑖𝑖 , 𝐹𝐹𝐹𝐹𝑖𝑖 respectively represent the remaining energy of the node, the 
normalized value, and the final judgment value.  𝑚𝑚𝑚𝑚𝑚𝑚𝑙𝑙=1𝑀𝑀 (𝑅𝑅𝑅𝑅𝑙𝑙)  and 𝑚𝑚𝑚𝑚𝑚𝑚𝑙𝑙=1𝑀𝑀 (𝑅𝑅𝑅𝑅𝑙𝑙) 
respectively represent the minimum and maximum values of the remaining energy of all 
surviving nodes in the current round. As shown in Fig. 2, when 𝑁𝑁𝑁𝑁𝑖𝑖 = 0.1, 𝐹𝐹𝐹𝐹𝑖𝑖 = 0.9, the 
µ is -20.72. 
There are several principles could help us to verify whether the optimal CHs have been 
selected or not. 

 
Figure 2: Node energy decision function 

4.1.1 Higher remaining energy 
As shown in Eq. (12), the node selected as a CH should retain higher remaining energy. 
𝐶𝐶1 represents the ratio of the remaining energy of all nodes in the current round to the 
remaining energy of the CHs set. The smaller the 𝐶𝐶1, indicates that the remaining energy 
of selected CHs is higher. 
𝐶𝐶1 = ∑ 𝐸𝐸𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑀𝑀

𝑖𝑖=1 ∑ 𝐸𝐸𝑗𝑗𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝐾𝐾
𝑗𝑗=1�   (12) 

4.1.2 Compact cluster structure 
The energy consumption of a cluster 𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 is the sum of the energy consumed by the 
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cluster member nodes to transmit data 𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐  and the energy consumed by the CH to 
receive the data 𝐸𝐸𝑐𝑐ℎ𝑅𝑅. Eq. (13) represents the energy consumed by a cluster, Derivation of 
Eq. (14) and Eq. (15), Eq. (16) shows that the entire energy consumption of a cluster is 
positively correlated with the communication distance, that is, the further the range, the 
more energy is consumed during the communication. Hence, an optimal CH should 
minimize the intra-cluster communication distance. 
𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐 + 𝐸𝐸𝑐𝑐ℎ𝑅𝑅  (13) 

𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = ∑ (𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ∙ 𝑘𝑘 + 𝐸𝐸′ ∙ 𝑘𝑘 ∙ 𝐷𝐷)𝑛𝑛𝑗𝑗
𝑖𝑖=1 + 𝑘𝑘 ∙ 𝑛𝑛𝑗𝑗 ∙ Eelec (14) 

𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = 2 ∙ 𝑛𝑛𝑗𝑗 ∙ 𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 ∙ 𝑘𝑘 + 𝐸𝐸′ ∙ 𝑘𝑘 ∙ ∑ (𝐷𝐷)𝑛𝑛𝑗𝑗
𝑖𝑖=1 (15) 

𝐸𝐸𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ∝ ∑ (𝐷𝐷)𝑛𝑛𝑗𝑗
𝑖𝑖=1   (16) 

where 𝐸𝐸′ is 𝐸𝐸𝑓𝑓𝑓𝑓 or 𝐸𝐸𝑚𝑚𝑚𝑚，and 𝐷𝐷 is �D𝑖𝑖𝑖𝑖�
2 or �D𝑖𝑖𝑖𝑖�

4. Thus, introducing a new indicator 
called “compactness” presented by 𝐶𝐶2. The more compact the geometry of the cluster, the 
smaller the distance from the cluster member node to the CH, the less energy is required 
for data transmission. The lesser the value of the 𝐶𝐶2, the lower the energy consumption of 
the intra-cluster communication. 
𝐶𝐶2 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗=1𝐾𝐾  ∑ 𝐷𝐷𝑖𝑖𝑖𝑖 �𝑛𝑛𝑗𝑗�⁄𝑛𝑛𝑗𝑗

𝑖𝑖=1   (17) 

4.1.3 Evenly distributed 
Ideally, an optimal set of CHs should be evenly distributed in the target surveillance area. 
So, using the following two methods to determine whether the distribution position of the 
selected CHs is infinitely close to the ideal CH position. Assuming the number of CHs is 
𝑖𝑖. In the ideal state, the distance from each CH to the BS should be 𝐿𝐿. Thus, the distance 
sum of all CHs to the BS is 𝑖𝑖 ∗ 𝐿𝐿. In the non-ideal state, the distance from the 𝑗𝑗 to the BS 
is 𝑙𝑙𝑗𝑗, and the distance between all CHs and the BS is ∑ 𝑙𝑙𝑗𝑗𝑖𝑖

𝑗𝑗=1 . Introducing the Eq. (18) to 
measure the error values of these two states. 
𝜀𝜀 = 𝑙𝑙𝑙𝑙𝑚𝑚�𝑖𝑖 ∗ 𝐿𝐿 − ∑ 𝑙𝑙𝑗𝑗𝑖𝑖

𝑗𝑗=1 �  (18) 

 
Figure 3: When i = 5, contrast map of CH distribution between ideal state (black) and 
non-ideal state (red) 
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when the ε approaches infinity to 0, the actual selected CHs distribution is closest to the 
CHs distribution in the ideal state. 
Determining from the angle 𝜃𝜃 formed by the adjacent CH and the BS whether the selected 
CH has reached the even distribution state. In the ideal state, the angle formed by the 𝑗𝑗𝑡𝑡ℎ, 
𝑘𝑘𝑡𝑡ℎ adjacent CHs and the BS is 𝜃𝜃. In the non-ideal state, the angle formed by the 𝑗𝑗𝑡𝑡ℎ, 
𝑘𝑘𝑡𝑡ℎ adjacent CHs and the BS is 𝜃𝜃𝑗𝑗𝑗𝑗′ . Introducing the Eq. (19) and Eq. (20) to measure the 
error values of these two states. 

𝑘𝑘 =  � 
𝑗𝑗 + 1 𝑗𝑗 < 𝑖𝑖

1 𝑗𝑗 = 𝑖𝑖  (19) 

𝛿𝛿 = 𝑙𝑙𝑙𝑙𝑙𝑙 �𝑖𝑖 ∙ 𝑡𝑡𝑡𝑡𝑡𝑡 𝜃𝜃−∑ 𝑡𝑡𝑡𝑡𝑡𝑡 𝜃𝜃𝑗𝑗𝑗𝑗
′𝑖𝑖

𝑗𝑗=1 � , 𝜃𝜃 = 2𝜋𝜋 𝑖𝑖⁄       (20) 

when the δ approaches infinity to 0, the selected CHs distribution is closest to the CHs 
distribution in the ideal state. It can be known from the Eq. (21). whether the result of the 
CHs election is the optimal solution closest to the ideal state or not. At the same time, the 
smaller the 𝐶𝐶3, the more balanced the CHs distribution. 
𝐶𝐶3 = 𝑚𝑚𝑚𝑚𝑚𝑚 (𝜀𝜀 + 𝛿𝛿)  (21) 

The performance of the fitness function determines the result of the CHs selection. Eq. (22) 
represents the proposed fitness function in our strategies. The fitness function considers the 
remaining energy and position of the node, and converts the multi-objective optimization 
problem into a single-objective optimization problem by weighted sum, where 𝜑𝜑1, 𝜑𝜑2 
and 𝜑𝜑3 are values between (0, 1). 
𝐶𝐶 = 𝜑𝜑1 ∙ 𝐶𝐶1 + 𝜑𝜑2 ∙ 𝐶𝐶2 + 𝜑𝜑3 ∙ 𝐶𝐶3  (22) 

4.2 The cluster formation  
When the CHs election is completed, if the non-CH nodes select the corresponding CH and 
join that cluster structure simply based on the “nearest distance” principle, it may result in 
uneven cluster size and unbalanced energy consumption. So, this paper provides the optimal 
solution for each non-CH node based on the remaining energy and location of the CHs.  
The node preferentially selects the CH with higher remaining energy. 

𝑆𝑆𝑖𝑖
𝐶𝐶𝐶𝐶𝑗𝑗 ∝ 𝑅𝑅𝑅𝑅𝐶𝐶𝐶𝐶𝑗𝑗  (23) 

The node preferentially selects the CH that is closer to the node itself. 

𝑆𝑆𝑖𝑖
𝐶𝐶𝐶𝐶𝑗𝑗 ∝ 1 𝐷𝐷𝑖𝑖𝑖𝑖⁄   (24) 

The node 𝑖𝑖 selects the corresponding CH based on the weight function of the Eq. (25), 
hence the larger the 𝑆𝑆𝑖𝑖𝐶𝐶𝐶𝐶 value, the result is better. 

𝑆𝑆𝑖𝑖𝐶𝐶𝐶𝐶 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗=1𝐾𝐾 �𝑅𝑅𝑅𝑅𝐶𝐶𝐶𝐶𝑗𝑗 𝐷𝐷𝑖𝑖𝑖𝑖⁄ �  (25) 

where 𝑅𝑅𝑅𝑅𝐶𝐶𝐶𝐶𝑗𝑗 is the remaining energy of the 𝑗𝑗𝑡𝑡ℎ CH. 
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4.3 The data transmission  
In the small-scale network, the single-hop mode is usually employed to reduce transmission 
delay for the intra-cluster and inter-cluster communication. However, in a large-scale 
network, owing to the energy consumption of transmitting data by the node far away from 
the CH or the CH far away from the BS, is following the 2nd or 4th order relationship with 
the distance, multi-hop routing should be adopted for the intra-cluster or inter-cluster 
communication. To meet the above challenges, the ACO algorithm has been widely used 
in WSN routing protocols as the optimal path selection [Mohajerani and Gharavian (2015)].  

4.3.1 Intra-cluster nodes hierarchy 
Assuming node numbered 14 is a CH, node numbered 91 is a source node, and all of the 
blue square nodes are the intra-cluster nodes. Settling the CH as the center of the circle and 
draw a set of concentric circles O𝑖𝑖(𝑖𝑖 = 1,2, … ) by the radius 𝑅𝑅1 multiplication until all 
the nodes in the cluster are included in this set of concentric circles. If the source node 
supposes to communicate with the CH, drawing another circle O′ with the source node as 
the center, and settle the radius equals the distance from the source node to the CH. As 
shown in Fig. 4, the intersection of O𝑖𝑖 and O′divides the nodes in the cluster into four 
layers. The L1 layer includes node 31, the L2 layer comprises nodes 39, 40, 44, the L3 
layer involves nodes 57, 59, 62, 69, and the L4 layer contains node 91. The source node 
transmits data to the CH by following this order: L4→ L3→ L2 →L1→CH. 

4.3.2 Inter-cluster nodes hierarchy 
Assuming node numbered 14 is a CH, and blue square node is an intra-cluster node, and 
the BS is the center of the circle. Drawing a set of concentric circles O𝑖𝑖(𝑖𝑖 = 1,2, … ) by the 
radius 𝑅𝑅1  multiplication until the node CH in the cluster is included in this set of 
concentric circles. If CH wants to communicate with the BS, then we draw another circle 
O′ with the CH as the center and settle the radius equals to the distance from the CH to the 
BS. As shown in Fig. 5, the intersection of O𝑖𝑖 and O′ divides the nodes in the cluster into 
3 layers. There is no node located in the L1 layer. The L2 layer has nodes 2, 3, 5, 6, 7, 10, 
and the L3 layer has nodes 13, 14. The CH sends data to the BS in the following order: L3
→L2→BS. 
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Figure 4: Intra-cluster nodes hierarchy 

 
   Figure 5: Inter-cluster nodes hierarchy 

4.3.3 Enhanced ACO algorithm 
How to select the most suitable forwarding node from the various nodes located in each layer 
is another challenge. The ACO algorithm is utilized to plan the shortest path from the cluster 
member node to the CH and the CH to the BS. To avoid the “hot spot” problem, each ant 
calculates the probability of selecting all next hop paths according to Eq. (26), and finally 
determines the target next hop via exploiting the “Roulette Wheel Selection” algorithm. This 
selection process fully considers the remaining energy of the neighbor nodes, distance, and 
pheromone concentration on the associated link. The purpose is to select the node with the 
closer range and higher remaining energy as the target next hop node. 

𝑃𝑃𝑘𝑘(𝑟𝑟, 𝑠𝑠) = [𝜏𝜏(𝑟𝑟,𝑠𝑠)]𝛼𝛼∙(𝐸𝐸𝑠𝑠 𝑑𝑑𝑟𝑟𝑟𝑟⁄ )𝛽𝛽

∑ [𝜏𝜏(𝑟𝑟,𝑢𝑢)]𝛼𝛼∙(𝐸𝐸𝑠𝑠 𝑑𝑑𝑟𝑟𝑟𝑟⁄ )𝛽𝛽𝑢𝑢∉𝑀𝑀𝑘𝑘
  (26) 
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where 𝑀𝑀𝑘𝑘 is the set of the nodes that ant k has visited, 𝜏𝜏(𝑟𝑟, 𝑠𝑠) is the concentration of 
pheromone between the two nodes, 𝑑𝑑𝑟𝑟𝑟𝑟  represents the distance between nodes, 𝐸𝐸𝑠𝑠 
denotes the remaining energy of the node 𝑠𝑠. 
The pheromone is updated by following Eq. (27), to obtain more pheromones for the paths 
with the shorter length and higher remaining energy nodes. 
𝑇𝑇𝑘𝑘(𝑟𝑟, 𝑠𝑠) =  (1 − 𝜌𝜌)𝑇𝑇𝑘𝑘(𝑟𝑟, 𝑠𝑠) + 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑘𝑘 𝐿𝐿𝑘𝑘⁄   (27) 

where 𝐿𝐿𝑘𝑘  denotes the total length of the path that the ant 𝑘𝑘  has visited, 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑘𝑘 
represents the average energy of all nodes located on the path. 

4.4 CPAC algorithm 
We firstly introduce the procedure of CPAC algorithm in Tab. 1, then introduce modified 
and enhanced PSO and ACO algorithm in Tab. 2 and Tab. 3 respectively. 

Table 1: The flowchart of CPAC Algorithm 

Procedure CPAC routing protocol 

The BS acquires the residual energy and location of each SN. 
for round=1 to MaxRound do 
1. Checking whether the SN is dead. 
2. Executing PSO algorithm to select CHs (Shown in Tab. 2). 
3. The common node selects CH to form cluster. 
4. Executing ACO algorithm to determine path (Shown in Tab. 3). 
5. Executing data transmission. 
end for 

Table 2: The flowchart of enhanced PSO algorithm 

Procedure enhanced PSO algorithm  

1. Initialization 
1.1 Find candidate CHs using equation Eqs. (10)-(11). 
1.2 Initialize position and velocity of each particle. 

2. for iter=1 to Ma do 
2.1 Evaluate fitness of each particle using Eq. (22). 
2.2 Find the personal and global best for each particle. 
2.3 Update velocity and position using Eqs. (1)-(3). 
2.4 Limit the change in the particle’s position value. 
2.5 Map particle position with the closest (x, y) coordinates. 
end for 

3. Output global best of particle swarm. 
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Table 3: The flowchart of enhanced ACO algorithm 

Procedure enhanced ACO algorithm 

1. Initialization 

Set initial pheromone value for each 
edge. 

2. For CMs 

for i=1 to K do // K is the number of 
CHs. 

 for j=1 to Nj do // the number of CMs 
per cluster are Nj perform layering 
between CM and CM. 

for iter=1 to MAXITER do 

  for ant=1 to M do // M is the 
number of ants, each ant use Eq. (26) 
to calculate probabilities. Using 
roulette to select the next node. 

    While (arriving CH) 

  end for 

  Store the shortest path of this 
CM. 

Update pheromone value using Eq. 
(27). 

end for 

end for 

  end for 

3. For CHs 

for i=1 to K do 

Perform layering between CH and 
BS. 

for iter=1 to MAXITER do 

  for ant=1 to M do // M is the 
number of ants, each ant use Eq. (26) 
to calculate probabilities. 

  Using roulette to select the next 
node. 

    while (arriving BS) 

  end for 

  Store the shortest path of this CH. 

  Update pheromone value using 
Eq. (27). 

end for 

   end for 

5 Simulation result 
In this paper, we set the number of CHs as 5 [Abdul, Tsimenidis and Sharif (2007); 
[Karaboga and Okdem (2012)]. The network model and energy consumption model are 
described in Section 3. The energy consumption parameters of the “First Order Radio 
Model” are listed as follow. 𝐾𝐾𝑃𝑃 = 4000𝑏𝑏𝑏𝑏𝑏𝑏，𝐾𝐾𝑀𝑀 = 200𝑏𝑏𝑏𝑏𝑏𝑏，𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 50𝑛𝑛𝑛𝑛/𝑏𝑏𝑏𝑏𝑏𝑏，E𝑓𝑓𝑓𝑓 =
10𝑝𝑝𝑝𝑝/𝑏𝑏𝑏𝑏𝑏𝑏/𝑚𝑚2，Emp = 0.0013pJ/bit/m4，𝐸𝐸𝐷𝐷𝐷𝐷 = 5𝑛𝑛𝑛𝑛/𝑏𝑏𝑏𝑏𝑏𝑏. In the PSO algorithm, the 
number of particles is set to 30, 𝑐𝑐1 = 𝑐𝑐2 = 1.5, 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 = 200, 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 = −200，𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚 = 500，
𝑀𝑀𝑎𝑎 = 100，Based on various trials and verifications, 𝜑𝜑1 = 0.3, 𝜑𝜑2 = 0.6，𝜑𝜑3 = 0.4. In 
the ACO algorithm, the number of ant colonies is set to 20，𝛼𝛼 = 1.5, 𝛽𝛽 = 2，𝜌𝜌 = 0.8，
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 20. 
Two scenarios are assumed as follows: 
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Scenario 1: There are 20% heterogeneous nodes are located near the BS, the initial energy 
of the heterogeneous nodes is 1J, and the initial energy of rest nodes is 0.5 J. 
Scenario 2: The initial energy of each node in the network is 0.5 J. 
In each round, the topology is firstly generated by the CPAC algorithm, then the “First 
Order Radio Model” is used to calculate the residual energy of each node. Finally, the 
process is iterated continuously. To evaluate the effectiveness and usability of different 
clustering algorithms, the network lifetime and energy consumption are used as evaluation 
criteria for network performance. 

5.1 Lifetime 
Using the number of rounds corresponding to the first node dead (FND) as the lifetime of 
the network [Mohajerani and Gharavian (2015); Handy, Haase and Timmermann (2002); 
Chen and Zhao (2005)]. As shown in Fig. 6, the lifetime of the CPAC algorithm is 3334 in 
scenario 1, and 1919 in Scenario 2. Compared with the traditional algorithms, the lifetime 
of CPAC is much longer and showing both better performance in Scenarios 1 and 2. 
Meanwhile, we can get a conclusion that adding a certain number of heterogeneous nodes 
to the network can achieve a longer network lifetime. 

 

Figure 6: The network lifetime of different algorithms 

5.2 Energy consumption  
Energy consumption is another important indicator reflecting the network performance and 
is also an essential basis for evaluating the superiority of clustering algorithms. An optimal 
clustering algorithm should adjust all nodes load balance in each round. Hence, exploring 
the performance of network energy consumption of different routing algorithms, when the 
number of the round is progressively increased.  
In ACO, the source node has the characteristics of short data transmission distance and a 
small amount of data. The relay node only plays the role of data forwarding, so the node 
load is quite less in each round, and the network energy consumption is also incredibly 
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balanced. Fig. 7 shows the difference in energy consumption of the CPAC and others in 
different scenarios. By observing the energy consumption curve, the curve of the CPAC 
algorithm has been kept at a constant slow linear drop. In Scenario 1, the energy 
consumption of CPAC is approximately equal to EEACA before 1500 rounds. In Scenario 
2, before 500 rounds, the energy consumption of CPAC is similar to EEACA, indicating 
that the energy of the nodes in the network is evenly consumed. The energy curves of other 
algorithms are steep firstly, indicating the energy attenuation is too fast, and the number of 
the dead nodes is more. In the later stage, the energy curves are more gentle, showing that 
the individual nodes still have higher remaining energy. 

   

Figure 7: The energy consumption of different protocols in Scenario 1 and Scenario 2 

5.3 Compared with the PSO and ACO  
The CPAC algorithm employs dynamic clustering methods at various stages to improve 
network performance. Evaluating the difference in network lifetime and energy 
consumption metrics when the PSO, ACO and CPAC algorithm is separately adopted. As 
shown in Fig. 8, analyzing the results of the comparison of ACO, PSO, and CPAC 
algorithm, the lifetime is 3334, 1095, 573 in Scenario 1, and 1919, 1095, 542 in Scenario 
2 in turn. The network lifetime of CAPC is three times more than ACO in Scenario 1, and 
nearly two times more in Scenario 2. Also, the lifetime of CPAC is almost six times more 
than PSO in Scenario 1, and nearly four times more in Scenario 2. 
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Figure 8: The lifetime of CPAC, PSO, and ACO 

As shown in Fig. 9, the CPAC algorithm exhibits similar performance to the ACO algorithm 
in energy consumption, and its performance is superior to the PSO in different scenarios. 

    

Figure 9: The energy consumption of CPAC, PSO, and ACO in Scenario 1 and Scenario 2 

6 Conclusion 
In this paper, we propose an energy-efficient IoT sensor network clustering algorithm 
named as CPAC based on the enhanced joint PSO-ACO algorithm. The PSO algorithm is 
adopted in the CHs election stage. The fitness function is constructed based on the 
remaining energy and location of the nodes. The ACO algorithm is employed during the 
transmission phase, based on the communication distance and remaining energy of the 
nodes. Besides, we choose the optimal relay node for each selected CH to achieve more 
efficient energy consumption in communication between the selected CH and BS. 
Simulation results show that our proposed CPAC protocol optimizes CHs distribution, 
cluster formation, the energy consumed by intra-cluster and inter-cluster data transmission, 
can effectively reduce network energy consumption, extend network lifetime, and improve 
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network reliability. 
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