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Abstract: In order to study the dynamic characteristics of a simply supported double-beam 
system under a moving mass, the system of fourth-order dynamic partial differential 
equations of a simply supported double-beam system was transformed into a system of 
second-order dynamic ordinary differential equations relative to time coordinates by 
performing the finite sin-Fourier Transform relative to space coordinates. And the 
analytical solution of the dynamic response of the simply supported double-beam system 
under a moving mass was obtained by solving the system of dynamic ordinary differential 
equations. The analytical method and ANSYS numerical method were used to calculate 
the dynamic responses of several simply supported double-beam systems under a moving 
mass at different speeds. The influences of inertial effect, mass movement speed, and 
Winkler-layer spring stiffness and damping on the dynamic responses of simply supported 
double-beam systems were analyzed. According to the study results, the analytical 
calculation results in this paper fit well with the ANSYS finite element numerical 
calculation results, demonstrating the rationality of the analytical method. The inertial 
effect has a significant influence on the dynamic response characteristics of the simply 
supported double-beam system. The simply supported double-beam system underwent 
several resonant speeds under a moving mass, and the Winkler-layer spring stiffness has a 
relatively significant effect on the vibration of the first beam. 
 
Keywords: Double-beam system, moving mass, dynamic response, analytical method, 
finite sin-Fourier Transform. 

1 Introduction  
The dynamic response problem of beam-type structures under a vehicle has a great 
importance in many engineering applications such as highway bridges, railways bridges, 
and aircraft/taxiway bridges in airports [Lai and Ho (2016); Ghafarian and Ariaei (2016); 
Jia, Zhao, Li et al. (2018); Lai, Hanzic and Ho (2019); Lee (1998); Sadek, Abualrub, 
Abukhaled (2007); Tsukazan (2005); Yang and Yau (2017); Zhang, Jia, Zheng et al. 
(2016)]. Therefore, accurately predicting the dynamic response of beam-type structures is 
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of great significance in engineering applications [Yan, Zhao, Sun et al. (2019); Beskou and 
Theodorakopoulos (2011); Gou, Yang, Leng et al. (2018); Miao, Shi, Luo et al. (2018); 
Rusin, Śniady and Śniady (2011); Tan, Guan and Zhang (2018); Wu, Zhou, Gao et al. 
(2019); Yan and Ren (2016)].  
In traditional studies, researchers generally simplified a vehicle to the so-called moving 
load [Kim and McCullough (2003); Yang, Chen, Xiang et al. (2008); Zheng, Cheung, Au 
et al. (1998)]. Yang et al. [Yang, Chen, Xiang et al. (2008)] investigated the free and forced 
vibration of slender functionally graded material beams with open edge cracks under a 
combined action of an axial compression and a concentrated transverse moving load. 
Şimşek et al. [Şimşek and Cansız (2012)] and Wu et al. [Wu and Gao (2015)] investigated 
the dynamic response of a simply supported viscously damped double-beam system under 
moving harmonic loads. Ariaei et al. [Ariaei, Ziaei-Rad and Ghayour (2011)] investigated 
a unique yet method of obtaining the exact solution for the vibration of an undamped multi-
beam system due to a moving load. However, one disadvantage of the moving load model 
is that the interactions between vehicle and bridge are neglected [Lee (1998)], and thus it 
cannot truly reflect the dynamic response characteristics of a bridge across, which the 
vehicle runs. In addition, considering the moving load model is correct and effective only 
when the vehicle has a small mass (relative to the mass of the bridge) and a low speed 

[Yang and Lin (2005)], it is no doubt unreasonable for bridge design.  
According to recent developments in structural materials and constructional technologies 
[Zhou and Wang (2019); Jiang, Feng, Zhou et al. (2019); Li, Liu, Yu et al. (2019); Zhang, 
Liu, Wang et al. (2019)], the structures are likely to be affected by sudden changes in 
masses and substructure elements, in which the inertia effect of a moving mass is not 
negligible [Dehestani, Mofid and Vafai (2009); Lai, Chen, Ren et al. (2019); Jiang, Feng, 
Zhou et al. (2018); Feng, Jiang, Zhou et al. (2019)]. Considering the inertial effect of 
vehicle mass into account, a vehicle can be simplified as moving mass [Nikkhoo, Rofooei 
and Shadnam (2007); Nikkhoo, Farazandeh, Hassanabadi et al. (2015)]. In a recent study, 
the related problem of beam-type structures under a moving mass has been studied 
extensively. Gu et al. [Gu and Cheng (2004)] modeled a ball screw as a high-speed rotating 
shaft using Timoshenko beam theory and a nut as a moving concentrated mass. Gbadeyan 
et al. [Gbadeyan and Dada (2006)] investigated the elastodynamic response of a rectangular 
Mindlin plate subjected to a distributed moving mass. The set of governing characteristic 
partial differential equations that include the effects of shear deformation and rotary inertia 
has been expressed in its dimensionless form. Kargarnovin et al. [Kargarnovin, Ahmadian 
and Jafari-Talookolaei (2012)] presented the dynamic response of a delaminated composite 
beam under the action of moving oscillatory mass. The Poisson’s effect, shear deformation, 
and rotary inertia have been considered in this analysis. Pirmoradian et al. [Pirmoradian, 
Keshmiri and Karimpour (2015)] studied a Timoshenko beam excited by a sequence of 
identical moving masses as a time-varying problem. The effects of centripetal and Coriolis 
accelerations besides the vertical component of acceleration of the moving mass are 
considered. A range of analysis methods has been proposed to study the dynamic responses 
of bridges under moving mass. Yavari et al. [Yavari, Nouri and Mofid (2002)] analyzed 
the dynamic response of Timoshenko beams under moving mass using a numerical method 
called discrete element technique. Ariaei et al. [Ariaei, Ziaei-Rad and Ghayour (2009)] 
presented an analytical approach, as well as a calculation method for determining the 
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dynamic response of the undamped Euler-Bernoulli beams with breathing cracks under a 
point moving mass using the so-called discrete element technique and the finite element 
method. Eftekhari et al. [Eftekhari and Jafari (2012, 2014)] proposed multiple methods that 
are the finite element method, the differential quadrature method, the integral quadrature 
method, and the triangular quadrature rule to study the transient response of rectangular plates 
subjected to moving masses. Ye et al. [Ye and Chen (2009)] proposed a moving finite 
element method to perform the dynamic analysis of a simply supported beam for a moving 
mass. Kiani et al. [Kiani, Nikkhoo and Mehri (2010)] studied the dynamic response of multi-
span viscoelastic thin beams subjected to a moving mass by a generalized moving least 
square method. Şimşek [Şimşek (2010)] investigated the vibration of a functionally graded 
simply-supported beam due to a moving mass by using Euler-Bernoulli, Timoshenko and the 
third order shear deformation beam theories. Ariaei [Ariaei, Ziaei-Rad and Malekzadeh 
(2013)] presented an analytical transfer matrix method to determine the effect of intermediate 
flexible constraints on the dynamic behavior of a multi-span beam subject to a moving mass. 
However, most of the existing methods are finite element numerical method [Ariaei, Ziaei-
Rad and Ghayour (2009); Yavari, Nouri and Mofid (2002)], semi-analytical method 
[Eftekhari and Jafari (2012, 2014); Ye and Chen (2009)], or more complex analytical method 
[Ariaei, Ziaei-Rad and Malekzadeh (2013); Kiani, Nikkhoo and Mehri (2010); Şimşek 
(2010)], which results in low computational efficiency in solving the dynamic response of 
beams under moving mass. In addition, they mainly focused on the dynamic responses of 
single-beam systems, but rarely considered the dynamic responses of double-beam systems 
under moving load [Jiang, Zhang, Feng et al. (2019); Nguyen (2016); Shen, Jiang, Zhang et 
al. (2018); Şimşek (2011)].  
These studies indicate that although the dynamic responses of beam-like structure under 
moving mass has been investigated profoundly in a way and laid a theoretical basis for the 
engineering applications of beam-like structure, studies on the dynamic response of a beam 
mainly focused on single-beam models, and many researches have some limitations. For 
example, the analytical expression form is too complex to solve, which results in low 
computational efficiency, and the materials and geometric properties of each beam are 
required to be identical. Therefore, for further simplifying the process of calculating the 
dynamic responses of double-beam systems under moving mass, in this study, we proposed 
a simple and efficient method of solving the dynamic response of a simply supported 
double-beam system under moving mass based on the finite sin-Fourier Transform theory. 
Taking a typical simply supported double-beam system in Beijing-Shanghai railway 
system as an example, the analytical calculation results of this paper were compared with 
the ANSYS finite element numerical calculation results, demonstrating the correctness and 
reliability of the proposed analytical method. Then the influences of inertial effect, mass 
movement speed, Winkler-layer spring stiffness and damping on the dynamic responses of 
simply supported double-beam systems were analyzed, offering a reliable and effective 
theoretical basis for solving practical engineering problems. 

2 Mathematical model and governing equations 
When a vehicle passes through a simply supported double-beam system at uniform speed, 
it can be simplified as the analytical model shown in Fig. 1. Assuming that the motion of 
the beam is under small deformation and within the elastic range, the vibration differential 
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equation of simply supported double-beam system under the action of moving mass can be 
expressed as follows [Lai, Jiang and Zhou (2018)]:  

( ) ( )4 2
1 21 1

1 1 1 1 24 2

y yy yE I m k y y c
x t t

∂ −∂ ∂
+ + − + =

∂ ∂ ∂
  

( )
2 2 2

21 1 1
2 22y y yx vt M g v v

t x t x
δ

 ∂ ∂ ∂
− − − − ∂ ∂ ∂ ∂ 

  (1) 

( ) ( )4 2
2 12 2

2 2 2 2 14 2 0
y yy yE I m k y y c

x t t
∂ −∂ ∂

+ + − + =
∂ ∂ ∂

  (2) 

where ( )i , 1,2y x t i = ; i 1,2E i = ; i 1,2I i =  and i 1,2m i =  represent the deflections, 
elastic moduli, horizontal moments of inertia and per-unit-length beam masses of the first 
beam, and the second beam, respectively; k  represents the Winkler-layer spring stiffness 
between the first beam and the second beam; c  represents the Winkler-layer spring 
damping between the first beam and the second beam; δ  represents Dirac function; v  
represents load movement speed; M  represents the size of moving mass. 
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Figure 1: Simply supported double-beam system under moving mass 

To solve the above partial differential equations system of vibration, first of all, the finite 
sin-Fourier Transform for space coordinate x  was performed, and for 0 x L≤ ≤ , it is 
defined as follows:  

[ ] ( ) ( ) ( )i i,j i j0
( , ) (t) , sin d i 1,2

L
F y x t U y x t x xξ= = =∫    (3) 

( ) ( ) ( )1
i,j i i,j

j 1

2t ( , ) t sin jF U y x t U x
L

ξ
∞

−

=

  = =  ∑   (4) 

j = , 1,2,3,...j j
L
πξ =    (5) 

where, [ ]i ( , )F y x t  , ( )1
i,j tF U−     and L  denote the Fourier amplitude spectrum of 

deflection ( )i ,y x t  with respect to time, the Fourier inverse transformation function and the 
length of the beam, respectively. 
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Under minor deformation conditions, the boundary condition of the simply supported beam 
system can be written as:  

0, 0,( , ) 0, ( , ) 0i x L i x Ly x t EIy x t= =′′= =    (6) 

According to the boundary condition, the finite sin-Fourier Transform of the fourth-order 
derivative of the displacement function relative to coordinate x  can be obtained: 

( ) ( )
4

4
i,j4

d ,
d
i

j

y x t
F U t

x
ξ

   = 
  

   (7) 

Performing finite sin-Fourier transform for both sides of Eqs. (1) and (2) relative to 
coordinate x  leads to the following equation:  

( ) ( ) ( ) ( )( ) ( ) ( )( )
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Substituting Eq. (4) into Eq. (8) results in:  
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where 2MG
L

= . 

Eqs. (9) and (10) can be further expressed as: 

{ } { } { } { }j j j j j j jM U C U K U F     + + =     
    (11) 

where, { }jU , { }jF , jM   , jC    and jK    represent displacement vector, vibration vector, 
mass matrix, damping matrix, and stiffness matrix, respectively, and the details of them 
are given in Appendix B. 

3 Equation solution 
Due to the continuous change in the position of moving mass on the simply supported 
double-beam system, the mass matrix jM   , damping matrix jC    and stiffness matrix 

jK    in Eq. (11) all constantly change with the passage of time. As a result, the governing 
equations of the simply supported double-beam coupled system under moving mass 
denotes a system of differential equations with second-order time-varying coefficients, and 
the coefficient matrixes jM   , jC    and jK    of the equations also change with the 
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movement parameter v . In general, for such differential equations systems, the most effective 
and common methods are step-by-step integration methods. At present, the frequently used 
step-by-step integration methods include the linear acceleration method, Willson-θ  method, 
and Newmark-β  method. The Newmark-β  method was employed in this study. 

Assuming that two groups of unknown variables ( t t+∆η , t t+∆η  and t t+∆η ) at t t+ ∆  meet a 
dynamic equation, i.e., 

{ }j j j jt t t t t t t t
M C K F+∆ +∆ +∆ +∆
     + + =     η η η    (12) 

Assuming the speed and displacement at t t+ ∆  as 

( )1t t t t t t tγ γ+∆ +∆= + − + ∆  η η η η      (13) 

21
2t t t t t t tt tβ β+∆ +∆

  = + ∆ + − + ∆    
η η η η η     (14) 

where ,γ β  represent the Newmark  parameters. The acceleration, speed, and 
displacement at t t+ ∆  can be obtained by sorting out and substituting related equations: 

( )0 2 3t t t t t t ta a a+∆ +∆= − − −η η η η η     (15) 

6 7t t t t t ta a+∆ +∆= + +η η η η      (16) 

{ }
1

j jt t t t
K F

− ∧∧

+∆ +∆
 =  η   (17) 

where
 

j j 0 jK K a M
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( )2
0 1 /a tβ= ∆ ， ( )1 /a tγ β= ∆ ， ( )2 1 /a tβ= ∆ ， ( )3 1 / 2 1a β= − ， 

4 / 1a γ β= − ， ( )( )5 / 2 / 2a t γ β= ∆ − ， ( )6 1a t γ= ∆ − 7a tγ= ∆  

Solve η  at each moment by employing Newmark-β  step-by-step integration method, i.e., 

{ }jU  in Eq. (11), then the deflection of any point on the simply supported double-beam 
system at any moment can be further obtained by Eq. (4). 

4 Analysis of example and applications of the analytical method 
4.1 Verification of the analytical method 
A typical simply supported double-beam system in Beijing-Shanghai railway system is 
taken as an example. In this system, the first beam is a rail, and the second beam is a typical 
simply supported bridge. The material properties and geometric parameters are as follows: 
span: 32 mL = ; moving mass: 8500 kgM = ; elastic moduli of the first beam and the 
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second beam: 1
1

12.06 10  PaE ×= , 1
2

03.5 1 P0= a E × ; line masses of the first beam and the 
second beam: 1=60 kg/mm , 2 3600= m0 kg/m ; Winkler-layer spring stiffness and damping: 

7 26 10= m N/k × , 4 210  =9.625 N s/mc ⋅× ; moments of inertia of the first beam and the second 
beam: 5 4

1 3.217= 10 mI −× , 4
2 =10.42 mI ; densities of the first beam and the second beam: 

3 3
1 7.85 1= k0  g/mρ × , 3 3

2 2.5 10= m kg/ρ × .  
To verify correctness of proposed analytical method, the ANSYS finite element numerical 
method was employed to calculate the dynamic responses of the above simply supported 
double-beam system under the moving mass at different speeds, and the calculation results 
of the two methods were compared. The proposed analytical method was compiled in 
MATLAB R2016a [MATLAB (2016)]. Regarding the ANSYS finite element model, the 
BEAM3 element was used to model the first beam and the second beam. The Winkler-
layer spring and damping between the first beam and the second beam were modeled by 
COMBIN14 elements, and the spacing between the COMBIN14 elements was set as 0.032 
m. The moving mass was modeled by the MASS21 element and was coupled with the first 
layer beam by coupling displacement. The simplified support constraints were modeled by 
restricting the degree of freedom at the two ends of the model in x and y directions. The 
comparison results are shown in Tab. 1 and Figs. 2-3. In Tab. 1, mF  and mS  represent the 
analytical method results of the dynamic response peaks of the mid-span deflection of the 
first beam and the second beam, respectively; aF  and aS  represent the ANSYS numerical 
calculation results of the dynamic response peaks of the mid-span deflection of the first 
beam and the second beam, respectively; ( )F m a a100E F F F= −  and ( )S m a a100E S S S= −  
represent the errors between the calculation results obtained by the two methods for the 
dynamic response peaks of the mid-span deflections of the first beam and the second beam, 
respectively. 

Table 1: Comparison of the calculation results for the dynamic response peaks of the mid-
span deflections of the simply supported double-beam system at different speeds 

The 
calculation 

results 

v (m/s) 

32 64 128 256 

mF ( )mm  -1.01115 -0.89685 -0.86207 -0.51601 

aF ( )mm  -1.00800 -0.89470 -0.86252 -0.51471 

FE (%) 0.347 0.240 -0.052 0.253 

mS ( )mm  -0. 17113 -0.17287 -0.24880 -0.26470 

aS ( )mm  -0.17094 -0.17319 -0.24926 -0.26414 

SE (%) 0.111 -0.185 -0.185 0.212 

According to Tab. 1, under moving mass at different speeds, the errors between the 
calculation results obtained by the two methods for the dynamic response peaks of the mid-
span deflections of the second beam were 0.347%, 0.240%, 0.052%, and 0.253%, 
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respectively, all less than 0.5%. Meanwhile, according to Figs. 2-3, under moving mass at 
different speeds, the dynamic response time-history curves of the mid-span deflections of 
the simply supported double-beam system calculated by the analytical method and ANSYS 
finite element numerical method fitted well, further demonstrating the correctness of the 
analytical method proposed in this study. 
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(c) 128 m/sv =                                               (d) 256 m/sv =  
Figure 2: Comparison of the calculation results for the dynamic response time-history 
curves of the mid-span deflections of the first simply support beam at different speeds  
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(c) 128 m/sv =                                           (d) 256 m/sv =  
Figure 3: Comparison of the calculation results for the dynamic response time-history 
curves of the mid-span deflections of the second simply support beam at different speeds 

4.2 Influence of moving mass on maximum deflection of double simply supported beams 
In order to study the influence of moving mass on inertial effect, the analytical method 
proposed in this study was used to calculate the dynamic responses of the simply supported 
double-beam system under different moving masses at the same movement speed 
( 32 m/sv = ) according to two circumstances, i.e., considering the inertial effect and 
without considering inertial effect. The comparison results are shown in Tab. 2, Fig. 4 and 

Fig. 5. In Tab. 2, ( )F m m m= /F F Fδ ′ −  and ( )S m m m/S S Sδ ′= −  represent the errors due to 

inertial effect for the dynamic response peaks of the mid-span deflections of the first beam 
and the second beam, respectively; mF ′  and mS ′  represent the analytical calculation results, 
regardless of inertial effect, of the dynamic response peaks of the mid-span deflections of 
the first beam and the second beam, respectively. 
 
 
Table 2: Comparison of the calculation results for the dynamic response peaks of the mid-
span deflections of the simply supported double-beam system under different moving masses 

The 
calculation 

results 

M (kg) 

100 500 2500 4500 6500 8500 

mF ( )mm  -0.01182 -0.05908 -0.29552 -0.53257 -0.75492 -1.01115 

mF ′ ( )mm  -0.01185 -0.06000 -0.31979 -0.61648 -0.95975 -1.35482 

Fδ (%) 0.254 1.557 8.213 15.756 27.133 33.988 
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mS ( )mm  -0.00203 -0.01015 -0.05067 -0.09105 -0.13126 -0.17113 

mS ′ ( )mm  -0.00204 -0.01031 -0.05491 -0.10573 -0.16406 -0.23167 

Sδ (%) 0.493 1.576 8.368 16.123 24.989 35.377 
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(a) 100 kgm =                                                 (b) 500 kgm =  
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(c) 2500 kgm =                                            (d) 4500 kgm =  
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(e) 6500 kgm =                                            (f) 8500 kgm =  
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Figure 4: Comparison of the calculation results for the dynamic response time-history curves 
of the mid-span deflections of the first simply support beam under different moving masses  
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(c) 2500 kgm =                                              (d) 4500 kgm =  
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(e) 6500 kgm =                                            (f) 8500 kgm =   
Figure 5: Comparison of the calculation results for the dynamic response time-history 
curves of the mid-span deflections of the second simply support beam under different 
moving masses 
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According to Tab. 2, Fig. 4 and Fig. 5, when the moving mass was 100 kg, the errors in the 
dynamic response peaks of the mid-span deflections of the first beam and the second beam 
were all less than 0.5%. The results suggested that when the moving mass was small 
relative to the mass of the first beam, inertial effect only had an insignificant influence on 
the dynamic responses of the mid-span deflections of the simply supported double-beam 
system. However, when the moving mass was 8,500 kg, the errors in the dynamic response 
peaks of the mid-span deflections of the first beam and the second beam uniformly 
exceeded 33%, suggesting that when the moving mass was large relative to the mass of the 
first beam, the influence of inertial effect on the dynamic responses cannot be neglected. 

4.3 Influence of moving mass speed on maximum deflection of double simply supported 
beams 
In order to study the influence of speed on inertial effect, the proposed analytical method 
was also used to calculate the dynamic responses of the simply supported double-beam 
system at the same mass ratio λ  ( 1/M Mλ = , M represents the moving mass, 1M  
represents the mass of the first beam)  but at different movement speeds according to two 
circumstances, i.e., considering the inertial effect and without considering the inertial effect, 
and the calculation results of the dynamic response peaks of the mid-span deflections of 
the simply supported double-beam system were also compared, and the comparison results 
are shown in Figs. 6-9. 
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(a) First beam                                              (b) Second beam   

Figure 6: Comparison of the calculation results for the dynamic response peaks of the mid-
span deflections of the simply supported double-beam system at 32 m/sv =  
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(a) First beam                                            (b) Second beam   

Figure 7: Comparison of the calculation results for the dynamic response peaks of the mid-
span deflections of the simply supported double-beam system at 64 m/sv =  
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(a) First beam                                           (b) Second beam   

Figure 8: Comparison of the calculation results for the dynamic response peaks of the mid-
span deflections of the simply supported double-beam system at 128 m/sv =  
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(a) First beam                                            (b) Second beam   
Figure 9: Comparison of the calculation results for the dynamic response peaks of the mid-
span deflections of the simply supported double-beam system at 256 m/sv =  
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According to Figs. 6-9, when the mass ratio was less than 0.2, inertial effect always had a 
relatively small influence on the calculation results of the dynamic response peaks of the 
mid-span deflections of the simply supported double-beam system regardless of the 
movement speed. However, when the mass ratio exceeded 0.2, with the movement speed 
increasing, the influence of inertial effect on the calculation results of the dynamic response 
peaks of the mid-span deflections gradually enhanced. When the movement speed reached 
256 m/s, without considering the inertial effect, the calculation results of the dynamic 
response peaks of the mid-span deflections of the simply supported double-beam system 
were divergent. The results suggested that under a large moving mass and at a high 
movement speed, inertial effect had a significant influence on the dynamic responses of 
the simply supported double-beam system. Therefore, excluding the influence of inertial 
effect would cause significant errors in the calculation results of the dynamic response of 
the simply supported double-beam system. 

4.4 Effect of Winkler-layer spring stiffness and damping on the dynamic response of the 
simply supported double-beam system 
In order to study the influence of Winkler-layer spring stiffness on the dynamic response 
of the simply supported double-beam system, after setting the spring stiffness values of 
various Winkler layers (i.e., 8 2

1 1.2 1 m0=  N/k × , 8 2
2 10=3 m N/k ×  and 8 2

3 6 10= m N/k × ), the 
effect of Winkler-layer spring stiffness on the dynamic responses and impact coefficient I  
of the mid-span deflections when the mass movement speed increased from 0 to 200 m/s 
was analyzed, and the calculation results are shown in Fig. 10 and Fig. 11. Where 

( ) /d s sI D D D= − , dD  and sD represent the maximum dynamic mid-span deflection and 
static deflection, respectively.  
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(a) First beam                                             (b) Second beam   

Figure 10: Effects of Winkler-layer spring stiffness on the dynamic response of the simply 
supported double-beam system 
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(a) First beam                                          (b) Second beam   
Figure 11: Effects of Winkler-layer spring stiffness on the impact coefficient of the simply 
supported double-beam system 

In order to study the influence of Winkler-layer damping on the dynamic response of the 
simply supported double-beam system, the proposed analytical method was used to 
calculate the dynamic responses and impact coefficient of the mid-span deflections of the 
simply supported double-beam system when the mass movement speed increased from 0 
to 200 m/s according to two circumstances, i.e., with and without damping. The calculation 
results are shown in Fig. 12 and Fig. 13.  
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(a) First beam                                              (b) Second beam   
Figure12: Effects of Winkler-layer damping on the dynamic response of the simply 
supported double-beam system 
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(a) First beam                                           (b) Second beam   
Figure 13: Effects of Winkler-layer damping on the impact coefficient of the simply 
supported double-beam system 

According to Figs. 10-13: When the mass movement speed increased from 0 to 200 m/s, 
its effect on impact coefficient was complicated. The impact coefficient-movement speed 
relationship curve of the first beam presented the form of a sine wave, and the amplitude 
of the sine wave increased with the movement speed increasing. The impact coefficient-
movement speed relationship curve of the second beam presented the form of a half-sine 
wave, and its amplitude and period both increased with the movement speed increasing. 
This suggested that the movement speeds at which the moving mass caused the simply 
supported double-beam system to experience resonance were not continuous (i.e., 
occurring at several speed points), and that the higher the mass movement speed, the higher 
the amplitude of the resonant dynamic response of the simply supported double-beam 
system. Winkler-layer spring stiffness showed a relatively small effect on both the mid-
span dynamic response and impact coefficient of the second beam, but its effect on the 
mid-span dynamic response and the impact coefficient of the first beam was uniformly 
significant. The amplitude of the resonant dynamic response of the first beam presented an 
increasing trend first and then decreasing afterwards with the Winkler-layer spring stiffness 
increasing. Thus, it is necessary to avoid sensitive Winkler-layer spring stiffness values to 
reduce the dynamic response of the first beam. In the presence of damping in the Winkler 
layer, the mid-span dynamic response and impact coefficient of the simply supported 
double-beam system were significantly smaller than those without damping in Winkler 
layer. Thus, increasing damping could effectively reduce the dynamic response of the 
simply supported double-beam system. 

4.5 Effect of elastic moduli of the first beam and the second beam on the dynamic 
response of the simply supported double-beam system 
In order to study the influence of elastic modulus of the first beam and the second beam on 
the dynamic response of the simply supported double-beam system, three cases of elastic 
moduli values of the first beam ( 1 2

11
11.03 10= m N/E × , 1 2

12
11=4 0  .12 N/mE ×  and 

2 2
13

11.03 10= m N/E × ) and three cases of elastic moduli values of the second beam 
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( 1
21

0 21.725 10= m N/E × , 1 2
22

01=6 0  .9 N/mE ×  and 1
23

1 21.725 10= m N/E × )are chosen, and the 
effect of the elastic modulus values of the first beam and the second beam on the dynamic 
responses and the impact coefficient of the mid-span deflections of the simply supported 
double-beam system are analyzed when the mass movement speed increased from 0 to 200 
m/s, and the calculation results are shown in Figs. 14-17.  
According to Figs. 14-17: The elastic moduli of the first beam and the second beam exerted 
a significant influence on both the mid-span dynamic response and the impact coefficient of 
the first beam, and the mid-span dynamic response decreases with the increase of both the 
elastic modulus of the first beam and the second beam. The elastic modulus of the first beam 
exerted a relatively small effect on both the mid-span dynamic response and the impact 
coefficient of the second beam. However, the elastic modulus of the second beam exerted on 
the mid-span dynamic response and impact coefficient of the first beam was uniformly 
significant, and the mid-span dynamic response decreases with the increase of the elastic 
modulus of the second beam. Thus, increasing the elastic modulus of the second beam could 
effectively reduce the dynamic response of the simply supported double-beam system. 
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(a) First beam                                              (b) Second beam   

Figure 14: Effects of elastic modulus of the first beam on the dynamic response of the 
simply supported double-beam system 
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(a) First beam                                         (b) Second beam   
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Figure 15: Effects of elastic modulus of the first beam on the impact coefficient of the 
simply supported double-beam system 
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(a) First beam                                           (b) Second beam   

Figure 16: Effects of elastic modulus of the second beam on the dynamic response of the 
simply supported double-beam system 
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(a) First beam                                             (b) Second beam   

Figure 17: Effects of elastic modulus of the second beam on the impact coefficient of the 
simply supported double-beam system 

5 Conclusions 
Employing finite sin-Fourier Inverse Transform, the analytical solution for the dynamic 
response of the simply supported double-beam system under a moving mass was obtained. 
The dynamic responses of the simply supported double-beam system with different 
parameters were compared, and the main results were as follows:  
(1) The analytical calculation results fit well with the ANSYS finite element numerical 
calculation results, demonstrating the effectiveness of the proposed analytical method.  
(2) When the moving mass was small relative to the mass of the first beam, the inertial 
effect only has an insignificant influence on the dynamic responses of the mid-span 
deflections, and the influence of inertial effect on the dynamic responses cannot be ignored 
when the moving mass is large relative to the mass of the first beam. 
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(3) Under a large moving mass and at a high movement speed, the inertial effect has a 
significant influence on the dynamic responses of the simply supported double-beam 
system. Therefore, ignoring the inertial effect would cause significant errors in the 
calculation results of the dynamic response of the simply supported double-beam system. 
(4) The simply supported double-beam system has several resonant speeds. The higher the 
mass movement speed, the higher the amplitude of the resonant dynamic response of the 
simply supported double-beam system would be.  
(5) The effect of Winkler-layer spring stiffness and damping on the vibration of the second 
beam is not obvious, but its influence on the vibration of the first beam is significant. The 
Winkler-layer damping can effectively reduce the dynamic response of the double-layer 
simply supported beam. 
(6) The mid-span dynamic response of the first beam decrease with the increase of the 
elastic modulus of the first beam and the second beam, but the mid-span dynamic response 
of the second beam decrease with the increase of the elastic modulus of the first beam and 
the second beam.  
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Appendix A: Nomenclature 

jC    Damping matrix 

c  Winkler-layer spring damping 

1E  Elastic moduli of the first beam 

2E  Elastic moduli of the second beam 

{ }jF  Vibration vector 

{ }jF
∧

 Equivalent vibration vector 

[ ]i ( , )F y x t  Fourier amplitude spectrum 

( )1
i,j tF U−     Fourier inverse transformation function 

1I  Horizontal moments of inertia of the first beam 

2I  Horizontal moments of inertia of the second beam 

jK    Stiffness matrix 

jK
∧

    Equivalent stiffness matrix 

k  Winkler-layer spring stiffness 
L  Length of the beam 

jM    Mass matrix 

M  Size of moving mass 

1m  Per-unit-length beam masses of the first beam 

2m  Per-unit-length beam masses of the second beam 
N  Number of Fourier series 
t  Time 

{ }jU  Displacement vector 

{ }jU  Speed vector 

{ }jU  Accelerated speed vector 

v  Load movement speed 
( )1,y x t  Deflections of the first beam 

( )2
,y x t  Deflections of the second beam 

δ  Dirac function 
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η  Generalized displacement vector 
η  Generalized speed vector 
η  Generalized accelerated speed vector 

t∆  Time step 

Appendix B：The detailed expression of { }jU , { }jF , jM   , jC    and jK   . 

{ } ( )T

j 1,1 1,2 1, 2,1 2,2 2,, , , , , , ,N NU U U U U U U=   ; 

{ } [ ]Tj 1 2sin , sin , , sin ,0,0, ,0NF Mg vt Mg vt Mg vtξ ξ ξ=   ; 
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where j jsinA vtξ= ， jp j p j p=sin sinA A A vt vtξ ξ= ， p p pcosB vtξ ξ= ，
2

p p psinD vtξ ξ= ，
4

1 1 1j jY k E Iξ= + ，
4

2 2 2j jY k E Iξ= + ， ( )1,2,3, , ; 1,2,3, , ; 50j N p N N= = ≥  . 
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