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Abstract: Misalignment angle error model describing the SINS mathematical platform 
error is presented in this paper following the idea of small misalignment angle error 
model and large azimuth misalignment angle error model. It can be considered that the 
three misalignment angles are independent of the rotational sequence in the misalignment 
error model, but not suitable in the large misalignment error model. The error angle of 
Euler platform is used to represent the three misalignment angles from theoretical 
navigation coordinate system to computational navigation coordinate system. The Euler 
platform error angle is utilized to represent the mathematical platform error and its 
physical meaning is very clear. The SINS nonlinear error model is deduced by using the 
error angle of Euler platform and is simplified under the condition of large azimuth error 
and small error. The simplified results are more comprehensive and accurate than the 
large azimuth misalignment error model. The damping SINS algorithm and its error 
model are proposed to change the structure of the strapdown inertial navigation algorithm 
by using the external damping information. The accuracy of SINS error model of large 
Euler platform error angle is simulated, and has strong practicability in initial alignment 
and is conducive to reducing the amount of calculation.  
 
Keywords: Misalignment error model, large misalignment angle, Euler platform error 
angle, SINS. 

1 Introduction 
Error propagation model and filtering algorithm are two important problems in the initial 
alignment of Strapdown Inertial Navigation System [Li, He, Zhang et al. (2017); Wei, 
Wang, Bai et al. (2017)]. The error sources of SINS usually include measurement errors 
of inertial devices, initial condition errors, environmental model errors (or earth model 
errors) and numerical algorithm errors [Metzger and Jircitano (1975); Qian, Liu and Li 
2011)]. SINS error model is the basis of studying the error propagation characteristics of 
SINS and information fusion between multiple navigation systems [Zhang, Chen, Shi et 
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al. (2015)]. It plays an important role in initial alignment and integrated navigation 
applications [Sun, Wang and Gao (2009)]. The mathematical equations describing the 
SINS algorithm are a set of nonlinear differential equations. In the classical SINS error 
model with small misalignment angle [Xiong and Shi (2018)]. Based on a small 
perturbation to SINS equation caused by error factors by φ  angle method or ψ angle 
method, a set of error models of linear differential equations are derived [Zhou, Li and 
Yang (2008)]. The linear error model of SINS with small misalignment angle is 
established only under the assumption that all kinds of error sources are small [Wang and 
Zhang (2011); Bishop (2002)]. With the development of SINS technology, initial 
alignment with large misalignment angle is the most representative, and the development 
of nonlinear filtering estimation technology [Fang, Zhang, Sheng et al. (2018)]. Error 
models are no longer confined to linear models [Feng, Shen and Chang (2003); Wu, Hou 
and Wang (2009)]. Some new error models are emerging, such as large azimuth error 
model, quaternion-based error model and dual quaternion-based error model [Fu, Wu, 
Wang et al. (2017); Xiong and Shi (2018); Zhao, Wu, Zhang et al. (2018)]. The 
misalignment error model of large azimuth is nonlinear. It requires that the level 
misalignment angle is small [Shu (2016); Yan, Xu, Zhang et al. (2013)). The error 
equation representing attitude in quaternion-based error model can be linear, but the 
physical meaning of each component of error quaternion is not clear. It also increases the 
dimension of error model, and the error equation representing velocity error is still 
nonlinear. The error model based on dual quaternion also has the problem of increasing 
dimension, which will inevitably increase the amount of filtering calculation. There is no 
literature about the application of this error model. 
Extended Kalman Filter (EKF) is the most widely used in nonlinear filter [Meng, Rice, 
Wang et al. (2010)]. The basic principle of EKF is to linearize the nonlinear function, i.e., 
to ignore the influence of the higher order terms of Taylor expansion [Qu, Li, Xie et al. 
(2013); Liu and Liu (2010)]. When using EKF, we must know the exact expansion of the 
nonlinear function, and some improved algorithms, such as higher order truncated EKF and 
iterative EKF, are also derived from EKF [Salan, Eduardo and Hugh (1999); Huge, Steven 
and Louis (2004)]. The starting point of EKF filter is approximate nonlinear function, but 
the probability density distribution of general approximate nonlinear function is easier than 
approximate nonlinear function [Wu and Zhang (2003); Zhang, Xu, Liu et al. (2012)]. 
Nowadays, filter estimation methods based on approximate probability density distribution 
are popular, such as particle filter [PF)], which can evolve probability density distribution 
directly by solving nonlinear function through particle [sample point)] instead of knowing 
the specific expansion of nonlinear function in detail [Xu, Dong, Tong et al. (2017)); He 
and Cai (2006)].  

2 Simplification and accuracy simulation of SINS error model 
Obviously, it is complicated to expand the nonlinear error model of SINS according to 
each component, especially for the attitude error equation, but it can be simplified under 
some conditions to meet the specific application situation [Qu, Zhu, Wang et al. (2018); 
Xu, Yan, Ning et al. (2007)]. In the following analysis, it is assumed that the gyro 
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measurement error b
ibδω  is mainly drift error bε , the accelerometer measurement 

error b
sffδ   is mainly bias error b∇ , and the gravity error term ngδ  is neglected, record 

as ' 'n n b
bε ε= C , ' 'n n b

b∇ = ∇C and  

' 'n bn
bsf sff f= C  

2.1 SINS error model under large azimuth misalignment angle 
Under the condition of large azimuth misalignment, it is assumed that xα  and yα  of 

Euler platform error angle are small, while zα is arbitrary value. Then there is an 
approximation, ,x xsα α≈ 1 1x y y yc s cα α α α≈ ≈ ≈， ，  and 
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By substituting these approximations into formulas (1), the higher order terms about 
other errors are omitted except azimuth errors. 
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In (2), there is an error distribution matrix  
zα

C before n
inδω , and because zα  is not a 

small quantity, 
zα

C  cannot be approximated as a unit matrix. 

2.2 SINS error equation under small misalignment angle 
Under the condition of small misalignment angle, the error angles of the three Eulerian 
platforms are small. Approximate ( )A a≈ ×C , ( )B a≈ − ×C ,

z
Iα ≈C  So (1) and (2) are 

further approximated to 


'n n n
in inaα ω δω ε= − × + −                                                  (4) 
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  

' ' (2 ) (2 )
n n nnn n n n n

ie enie ensfv f a v vδ δω δω ω ω δ= × +∇ − + × − + ×            (5) 

2.3 Damping SINS algorithm and its error model 
The previous analysis is a complete strapdown inertial navigation algorithm and its error 
model. If the structure of the algorithm is changed, such as introducing external damping 
information into the algorithm, a more concise error model can be obtained. It is called 
damping SINS algorithm and damping SINS error model temporarily. The damping SINS 
algorithm and its error model are in the initial pair. It has important practical value. For 
example, in the initial alignment of SINS and GPS combined moving base, GPS can 
provide more accurate velocity n

gv  and position g g gL hλ, , information. Or in the initial 
alignment of SINS quasi-stationary base (wireless or linear motion is very small but can 
have angular motion), the reference speed is zero and the geographical position is 
accurately known. In both cases, the reference speed or position information can be 
introduced into SINS algorithm. The SINS error model is simplified with GPS damping 
as an example, and the quasi-static base is similar. The basic method to establish the GPS 
damping SINS algorithm is to obtain the calculation parameters related to velocity and 
position from the known GPS information at the right end of Formula (1), that is, to 
rewrite Formula (1) to 



' ' ( )
bn n
nbb b ω= ×C C                                                                                                             (6) 


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Among them  

' ,

b b b n
nb ib n in gω ω ω= −C The term g in the subscript indicates that the GPS 

information is calculated by GPS information. If the GPS information error is small 
enough to be ignored and the relevant calculation parameters are equivalent to the real 
value, or no error, it is similar to the method of deriving the error model of SINS 
algorithm or the error model of SINS algorithm. Based on the proper simplification, the 
error model corresponding to the damped SINS algorithm (8) can be obtained. 
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It can be seen that the differential equation of Euler platform error angle α does not 
contain the information of velocity error and position error, and the differential equation 
of velocity error nvδ  does not contain the information of position error. Initial alignment 
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of Euler platform error angle information using damped SINS algorithm and its error 
model is helpful to reduce the amount of calculation and simplify the complexity of error 
model analysis. 
Assuming that xα  and yα are small on quasi-static base, the expansion of the error angle 
and velocity error equation of the damped SINS Euler platform with large azimuthal 
misalignment angle is obtained. 
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Among them cosN ie Lω ω= , sinU ie Lω ω= Because the SINS algorithm with velocity 
damping is adopted, the right end of formula  does not contain velocity error term, and 
the right end of Formula zα is less than that of normal case by y z Nsα α ω−  terms, 

because the influence of 1
ω
−C is considered in this paper, the analysis is more 

comprehensive and accurate. 

2.4 Accuracy simulation of SINS nonlinear error model 
The SINS error model describes the propagation characteristics of the SINS error. The 
state estimation effect of the SINS error model is directly related to the accuracy of the 
model. In order to verify the accuracy of the nonlinear error model of SINS, the error 
model of GPS-aided SINS initial alignment composed of formulae is simulated. The 
simulation principle is shown in Fig. 1. The damping SINS algorithm and its non-
damping SINS algorithm are implemented respectively under given trajectory; initial 
Euler platform error angle and velocity error conditions. Finally, the error between the 
two error algorithms is compared. The error formula is 

( )
nn n n

Err gv v v vδ δ= − −                                          (13) 

Among them, nvδ  is the velocity error of the propagation calculus of the nonlinear error 

equation, 
n

v is the velocity solution value of the damping SINS algorithm, and n
gv  is the 

GPS speed (i.e., the real trajectory speed). 
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Figure 1: Simulation principle of SINS nonlinear error 

The trajectory simulation design is composed of five stages. 
① Given the initial value L = 30º,λ = 0º,h = 100 m ,θ =γ =ψ =0º drive at 10 /m s  

north-facing and 30 s at a uniform speed; 
② Acceleration 20 s to speed 30 /m s  with acceleration of 1 2/m s ; 
③ Uniform speed 30 s; 
④ Turn left at 9º /s Jiao angle 10 s to azimuth 90º; 
⑤ A uniform speed of 30 s, a total of 120 s simulation. 

3 UKF filtering based on complex additive noise 
The additive noise filtering model referred to in the general literature is described below. 

1 1( )
( )

k k k

k k k

x f x w
z h x v

− −= +
 = +

                                                        (14) 

This is referred to as simple additive noise, and the complex additive noise model 
referred to in this section is expressed as 

1 1 1( ) ( )
( ) ( )

k k k k

k k k k

x f x g x w
z h x j x v

− − −= +
 = +

                                       (15) 

Among them (x)  g(x)  h(x)  j(x)f , , ,  and all of them can be nonlinear functions. k kx z,  
are state and measurement vectors,   k kw v,  are state and measurement noise vectors 
respectively. The characteristic of complex additive noise model is that the model is 
linear with respect to noise. Simple additive noise is a special case of complex additive 
noise models, but the latter is more widely used. 

3.1 Standard Kalman filtering      
The state equations and measurement equations of discrete linear systems can be 
described as follows. 
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| 1 1 1 1k k k k k k

k k k k

x x w
z H x v

− − − −= Φ +Γ


= +
                                            (16) 

Formula k kx z,  is state vector and measurement vector, | 1k k−Φ , kΓ  and kH  are state 

transition matrix, noise distribution matrix and measurement matrix,   k kw v,  are system 
noise and measurement noise, and 

[ ] 0kE w = , [ ]T
k j kj kE w w Qδ= , [ ] 0kE v = , [v ]T

k j kj kE v Rδ=  ， [ ] 0T
k jE w v = ， kjδ  is 

the Dirac (Dirac) function. The optimal estimation value of state kx  is obtained by 
measurement kz .  

                          
3.2 Simplified UKF filtering 
Standard Kalman filter is a kind of linear minimum variance estimation. The state equation 
is used to describe the change rule of the estimator. The state equation is driven by noise. 
Its state estimation algorithm is recursive. The linear algorithm framework of “prediction-
correction” is adopted. UKF filtering also uses the same algorithm structure as standard 
Kalman filtering. The difference is that in Kalman filtering, the transfer of state statistics 
can be determined directly by linear equations, but not by UKF, which must evolve the 
transfer of state distribution characteristics by calculating sampling points. 
UKF filter is based on UT transform. It carefully selects a limited number of so-called 
Sigma sampling points to approximate the prior statistical characteristics of the system 
state, and then directly evolves the posterior distribution characteristics of the system 
state through nonlinear equations. In UKF filtering, it is usually necessary to augment the 
state of system process noise and measurement noise, but when both system noise and 
measurement noise are additive noise; the augmentation can be avoided, which is 
beneficial to reduce the amount of filtering calculation. The model filtering process based 
on complex noise (40) is described as follows.      
① Initialization of state variables and their mean square deviation. 

0 0 00 0 0 0[ ],P [( )( ) ]Tx E x E x x x x= = − −                                                                 (17) 

② Update time 
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Measurement update 
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Among them, [ ]k Lx  is a matrix containing L  columns, each column vector is kx , the 
other parameters are calculated as follows 

2
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， （1- + ）

，( )

                                                (20)                         

Formula L  is the dimension of state kx , α  is used to determine the distribution of a Sigma 
point near its mean (usually a small positive value, such as 1e_4 <α < 1), κ is a scaling 
factor (usually set to 0 in state estimation, 3 L−  in parameter estimation), and β  is another 
scaling factor (used for merged state distribution). For Gaussian distribution, the optimal 
value is 2, and P  represents the square root matrix of matrix P  (such as the lower 

triangular Cholesky decomposition matrix TAA = P  satisfying matrix equation A ). 

Further, if the measurement equation in model (20) is linear, if (20) formula can be 
simplified to 
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1 1 1( ) g( )k k k k

k k k k

x f x x w
z H x v

− − −= +
 = +

                                                                                          (21) 

Then we can simplify the UKF filtering algorithm, and give a brief explanation and result. 
In (21), the Sigma sampling point | 1k kχ −  satisfies the equation. 
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Substituting (53) formula in (49) formula 
k kz z

P
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 and taking note of (x)j  hour unit matrix 

is obtained. 
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                                                                                                               (25) 

Thus, when the process noise is complex additive noise and the measurement equation is 
linear, the simplified UKF filtering algorithm is deduced as follows: 
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                       (26)                        

It can be seen that the other steps of the algorithm are identical to the standard Kalman 
filter formula (46) except UT transformation for state and variance prediction. The 
simplified UKF filtering algorithm (56) avoids a series of complicated processes, such as 
resampling, solving multiple measurement and prediction equations, and calculating 
measurement and prediction errors. It is worth pointing out that the sampling strategy 
used in the analysis of UKF filtering simplification process is symmetrical Sigma 
sampling, of course, this analysis process is also applicable to simplex sampling, the 
latter sampling strategy can further reduce the amount of filtering calculation. 
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| 1kk

T
k k kx z

P P H−=
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                                                                                                              (27) 

4 Initial alignment simulation of quasi-static base under large misalignment angle 
4.1 Initial alignment filtering model 
On quasi-stationary base, starting from formulas (20) and (22) and referring to the 
damping SINS error models (24) and (25), it is assumed that the gyro measurement error 

b
ibδω  is mainly constant drift error bε  and zero mean Gaussian white noise b

aw . 

Accelerometer measurement error b
sffδ  is mainly constant bias error and zero mean 

Gaussian white noise b∇ . Ignoring gravity error term ngδ , the state equation of the initial 
filtering model can be composed of the following four vector equations 
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It is easy to see that (28) contains the product term between the trigonometric function of 
the Euler platform error angle and the noise. Theoretically, these two formulas do not 
belong to the error model (29) of simple additive noise, but they are linear with respect to 
the noise term. Therefore, the UKF model proposed in the previous section must be used 
for filtering. Obviously, it is more difficult to obtain the Jacobian matrix of the first two 
loss-of-magnitude equations in (28), but this does not hinder the application of UKF 
filtering algorithm in initial alignment. 
Suppose the state vector [  ( )   ( )  ( ) ]T n T b T b T Tx a vδ ε= ∇ , noise vector [( )  ( )  0 0]b T b T T

g aw w w= , 
establish filter state model. The observational equation is established directly by taking the 
velocity of the damped SINS (i.e. the velocity error of the quasi-static base nz vδ= ) as the 
observational variable. 

(x) g(x)x f w
z Hx v
= +

 = +
                                                                                                        (29)    

Among them [0    0  0]H I= ， v  is speed measurement noise. 

4.2 Initial alignment filtering model 
In simulation, the initial misalignment angle α (0) selects three typical cases, which 
are (0) [30  10  170]Ta = , (0) [0.3  0.1  170]Ta = and (0) [0.3  0.1  1.7]Ta = ; Then three 
filtering methods are used to estimate the misalignment angle. They are: a) large 
misalignment angle UKF filtering, b) large azimuth misalignment angle UKF filtering, c) 
small misalignment angle standard Kalman filtering. The simulation results of alignment 
errors are shown in Fig. 4 to Fig. 5, in which the misalignment angle estimation errors of 
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real line, dotted line and dotted line are respectively those of filtering method a, b) and c, 
but the estimation errors of method B and C in case 1 are invalid and method C in case 2 
is invalid. Out of these three curves. These typical simulation results show that the UKF 
filtering method based on the large misalignment error model is effective for the initial 
alignment estimation under various misalignment angles, and the UKF filtering based on 
the large azimuth misalignment error model is only suitable for the case of small 
horizontal misalignment angle, while the standard Kalman filtering requires three small 
misalignment angles. 
① Generally, the estimation speed of horizontal misalignment angle is faster than that of 
azimuth misalignment angle. Forgotten filter algorithm is helpful to avoid the 
degeneration of state estimation variance matrix and gain matrix and improve the 
convergence speed of azimuth. 
② When the misalignment angle decreases to a small value, the Kalman filter with small 
misalignment angle instead of UKF filter with large misalignment angle can reduce the 
computational complexity without losing the alignment accuracy. 
③ For general nonlinear systems, it is difficult to prove the effectiveness and convergence 
of UKF filter theoretically, but mainly rely on Simulation and experimental verification. If 
the main purpose of using UKF filter under large misalignment angle is to quickly identify 
gross misalignment, then inertial sensors can be avoided in UKF filter model. When the 
difference is incorporated into the filtering model, reducing the dimension can not only 
reduce the amount of calculation, but also reduce the chance of divergence of UKF filtering. 
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Figure 2: Alignment error of large misalignment angle 

6 Conclusions 
The misalignment angle between the theoretical navigation coordinate system and the 
calculated navigation coordinate system is expressed and the SINS nonlinear error model 
is derived based on the Euler platform error angle method. The simulation results under 
the large Euler platform error angle show that the proposed error model can accurately 
reflect the SINS error characteristics. Simplified UKF filtering method is deduced when 
both system noise and measurement noise are complex additive noise and the 
measurement equation is linear. The initial alignment simulation results on stationary 
base show that the proposed SINS error model and UKF filtering estimation algorithm 
are correct and effective. In order to reduce the computational complexity and ensure the 
stability of UKF, it is suggested that the error admission of inertial sensors is not 
necessary under the condition of large misalignment. 
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