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Abstract: Cardiomyopathy is one of the most serious public health threats. The precise 
structural and functional cardiac measurement is an essential step for clinical diagnosis 
and follow-up treatment planning. Cardiologists are often required to draw endocardial 
and epicardial contours of the left ventricle (LV) manually in routine clinical diagnosis or 
treatment planning period. This task is time-consuming and error-prone. Therefore, it is 
necessary to develop a fully automated end-to-end semantic segmentation method on 
cardiac magnetic resonance (CMR) imaging datasets. However, due to the low image 
quality and the deformation caused by heartbeat, there is no effective tool for fully 
automated end-to-end cardiac segmentation task. In this work, we propose a multi-scale 
segmentation network (MSSN) for left ventricle segmentation. It can effectively learn 
myocardium and blood pool structure representations from 2D short-axis CMR image 
slices in a multi-scale way. Specifically, our method employs both parallel and serial of 
dilated convolution layers with different dilation rates to capture multi-scale semantic 
features. Moreover, we design graduated up-sampling layers with subpixel layers as the 
decoder to reconstruct lost spatial information and produce accurate segmentation masks. 
We validated our method using 164 T1 Mapping CMR images and showed that it 
outperforms the advanced convolutional neural network (CNN) models. In validation 
metrics, we archived the Dice Similarity Coefficient (DSC) metric of 78.96%. 

Keywords: Cardiac magnetic resonance imaging, multi-scale, semantic segmentation, 
convolutional neural networks. 

1 Introduction 
Cardiomyopathy is one kind of serious cardiac diseases which major cause of death in the 
world wild. Physicians leverage cardiac magnetic resonance (CMR) images to measure 
the structural-functional indices, such as ventricular volume or ejection fraction, for 
clinical diagnosis and treatment planning. The segmentation of left ventricle (LV) on 
CMR images is necessary for further analysis. But cardiologists have to delineate 
endocardium and epicardium or other regions of clinical interest by manually. To address 
this time-consuming and error-prone problem, it is urgent to propose a method to 
accelerate and facilitate the diagnosis repeatedly and automatically. But there are a 
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number of obstacles hindering automation methods into practice. For example, the shape 
of myocardium and ventricle is multivariate in the different cardiac cycle, the number of 
pixels belongs to object are extremely less than background, and the irrevocable noise 
appears during CMR imaging. 
Many methods have been proposed past decade to solve those problems. Margeta et al. 
[Margeta, Geremia, Criminisi et al. (2011)] segment LV using random forests. But this 
method relies on image intensity and considers the segmentation task as a classification 
task. Moreover, the employed intensity standardization, estimation, and normalization 
also computationally expensive and affect the effectiveness of results. Ngo et al. [Ngo 
and Carneiro (2013)] use restricted Boltzmann machines (RBMs) to obtain segmentation 
results on a small LV dataset. But their method is semi-automated that requires user input. 
Liu et al. [Liu, Maere and Song (2019)] proposed an approach to find region of interest 
automatically, this can be used as a pre-step for segmenting organs in medical image 
processing. In recent years, the deep learning approach, especially CNN based method 
was widely applied in image segmentation. Fu et al. [Fu, Xu, Lin et al. (2016)] use deep 
learning model in retinal vessel segmentation. Wachinger et al. [Wachinger, Reuter and 
Klein (2018)] apply convolutional neural network for brain segmentation. Fu et al. [Fu, 
Xu, Zhang et al. (2019)] proposed a noise-resistant superpixel segmentation method for 
hyperspectral images segmentation. These methods design different model structures and 
directly learn the optimal network parameters for label prediction. The automated LV 
segmentation methods still need to be significantly improved. 
In this work, we propose and validate a new convolutional neural network architecture 
for LV segmentation, which can automatically train and inference on CMR image 
datasets. Our proposed model is allowed to yield accurate myocardium and blood pool 
segmentation masks in an end-to-end way. Specifically, the architecture of our proposed 
model consists of two parts: encoder and decoder. The encoder uses standard 2D 
convolution layers repeatedly for image feature extraction, and employs depth wise 
separable convocation layers which used in Xception [Chollet (2017)] for effectively 
feature calculating and feature decoupling. Furthermore, to cope with the changeable 
patterns as a multi-scale object, our model stacks a serial of dilated convolution layers 
with different atrous rates like Chen et al. [Chen, Papandreou, Schroff et al. (2017)]. For 
the segmentation task, the same spatial resolution is required for segmentation mask as 
ground-truth. Generally, common methods restore segmentation mask spatial resolution 
by adding upsampling or deconvolution layers after diminished feature map. But there 
lacks spatial information in an abstract feature. We design the graduated upsampling 
layers as the decoder to supplement the vanished spatial information pass through 
successive convolution layers. Besides, we adopt subpixel layer [Shi, Caballero, Husz´ar 
et al. (2016)] to do efficient upsampling and get more accurate segmentation masks. We 
validated our method using 164 CMR images and showed that it outperforms the 
advanced convolutional neural network (CNN) models.  
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2 Methodology 
This section presents our proposed encoder-decoder model for multi-scale LV 
segmentation. The base architecture of the proposed model is depicted in Fig. 1. This 
model takes short-axis CMR images as input. The main idea of our model design is 
inspired by U-Net [Ronneberger, Fischer and Brox (2015)]. There are two branches with 
different duties in model, encoder, and decoder. The encoder mainly responds to feature 
extraction and semantic encoding, and the decoder mainly responds to spatial information 
recovery. Skip connections links between them. To get more accurate segmentation and 
robustness performance, we introduce ASPP block [Chen, Papandreou, Schroff et al. 
(2017)] and subpixel layer into the network. 

 
Figure 1: The architecture of our proposed MSSN network (best view in color). It 
consists of two parts, encoder and decoder. A blue block represents standard 1×1 
convolution to reduce channel. The parallel multi-scale block uses dilated convolution 
layers with rates=[6, 12, 18]. The serial multi-scale block uses dilated convolution layers 
with rates=[3, 5, 7]. ⊕ represents residual connection 

2.1 Encoder and decoder 
Inspired by the successful of convolution [Krizhevsky, Sutskever and Hinton (2012); 
Simonyan and Zisserman (2014); He, Zhang, Ren et al. (2016)] in image recognition 
tasks. We use continuous convolution layers with ReLU nonlinear activation function as 
the encoder for image feature extraction. The decreased feature map contains more 
representational information, it is beneficial for an object to identification. With the 
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reduction of the feature map size, there exists more semantic information but less spatial 
information. While segmentation task needs to generate results are the same with the 
original image at the resolution level. Inspired by the Upsampling or Deconvolution (also 
called Transposed convolution layer) layers in FCN [Long, Shelhamer and Darrell 
(2015)], U-Net, we design a bilinear upsampling layer for space dimension recovery. But 
the giant upsampling gap between feature map and the scaling object will cause distortion. 
To get more fine segmentation mask, we use skip connection on strides=×8, ×4, ×2 level 
to combine fine appearance information at shallow layers and coarse semantic 
information at deep layers. The end segmentation result is a dense feature map predicting 
the probability of each pixel in the input image. 

2.2 Multi-scale feature extraction 
The shape of endocardial and epicardial contours is variability across different cardiac 
cycle phases. In order to fit object scales, some methods would crop [Zeiler and Fergus 
(2014)] or warp [Girshick, Donahue, Darrell et al. (2014)] apply multi-scale images 
sequentially from coarse-to-fine as image pyramid [Chen, Papandreou, Kokkinos et al. 
(2018); Chen, Yang, Wang et al. (2016)], which however leads to loss of the exact 
position of the segmented pixels. Inspired by Spatial Pyramid Pooling (SPP) [He, Zhang, 
Ren et al. (2015)] and Atrous Spatial Pyramid Pooling (ASPP) [Chen, Papandreou, 
Schroff et al. (2017)], we use dilated convolution layers with different rates in both serial 
and parallel compound manner. In this fashion, the model can capture multiscale 
information without multi-scale inputs. In this experiment, we revisit parallel dilated 
convolution layers with rates=[6, 12, 18] and three serial dilated convolution layers with 
rates=[3, 5, 7]. The serial dilated convolution layers with different rates and strides 
formed the multi-scale block. 

2.3 Subpixle layer 
Segmentation tasks require that the size of the segmented mask be the same as that of the 
original input image. Although the reduced high-level feature maps obtained by 
continuous downsampling operations are beneficial to classification tasks, the reduced 
size is not conducive to segmentation tasks. Upsampling with too large gaps will result in 
inadequate segmentation mask. With the success of subpixel convolutional layer in a 
single image and video super-resolution task, we employ the sub-pixel convolution layer 
in our decoder to upscale the feature maps into the original output. The critical periodic 
shuffling (PS) operation can be described in the following mathematical formula: 

, , , , mod(/ / , ) mod( , )( ) x r y rx y c C r y r C x r cT T       ⋅ ⋅ + ⋅ +=
                                                         (1) 

where the x , y , c  represent the dimensions of the feature map, and the r is scale factor. 

3 Experiments and evaluation 
In this section, we present the evaluation of our method on 164 short-axis T1 Mapping 
CMR images datasets for automated LV segmentation task. Compare our method with 
other advanced segmentation models on metrics of Dice Similarity Coefficient (DSC), 



 
 
 
A Multi-Scale Network with the Encoder-Decoder Structure                                          113 

Jaccard Coefficient (also known as IoU) and Confidence (also called as Precision). 

3.1 CMR datasets 
The CMR images dataset used in our study is obtained from one hospital. All 164 images 
are 2D short-axis native T1 Mapping CMR images. The spacing sizes of images are 
ranges from 1.172×1.172×1.0 mm3 to 1.406×1.406×1.0 mm3. The original dimension size 
is 256×218×1 pixels. The ground-truth of myocardium segmentation masks for all image 
samples are provided by an experienced cardiologist contour manually. The CMR images 
in the dataset are randomly divided into training, validation and testing sets as 5-fold 
cross-validation. 

3.2 Data pre-process 
We observe that the CMR images are anisotropy in three dimensions. To have a better 
performance of the model, we process image data before feeding images into the model. 
The first step we apply on images is resampling, we use Simple-ITK software package 
sampling the spacing size to 1×1×1 mm3 for isotropy. There is a wide range of pixel 
intensities in CMR imaging, which will directly influence the learning performance of 
deep learning model. Then, we normalize the pixel intensity distribution of each imaging 
range from -1.0 to 1.0. In MR imaging scan, there is a broad scan range on chest 
radiograph in MR images. For the purposes of removing unnecessary background pixels 
and zooming segment object, we crop each image to get our region of interest (ROI). 
Cropping images to reduce input spatial dimensions can also accelerate computations. 

3.3 Implementation details 
To have an unbiased evaluation, we use 5-fold cross validation in our experiments stage. 
According to the dataset, we implement LV myocardium and blood poo segmentation 
separately in this study. For algorithm Implementation, we use Keras neural networks 
library which uses TensorFlow as backend. The object function we adopted is dice loss, 
which optimizes the Dice Similarity Coefficient (DSC) directly. But we set dice loss as 
negative DSC for Keras purpose because neural networks library always minimizes the 
value of the loss. Moreover, the optimizer we applied is RMSprop [Tieleman and Hinton 
(2012)] with learning rate 0.003 and leave the other parameters of this optimizer at their 
default values. We use a batch size of 32 continued 40 epochs. To enhance the 
generalization ability of network and enlarge the size of datasets [Pan, Qin, Chen et al. 
(2019)], we adopt real-time data augmentation in train stage, which rotate and shift 
images randomly in each iteration. The model training and testing is performed on a 
single NVIDIA Tesla M40 GPU. 

3.4 Results 
To verify the performance on LV segmentation of our proposed method, we apply our 
model compare with other advanced segmentation methods with the same datasets and 
experimental settings. 
The qualitative LV myocardium and LV blood pool segmentation results and the 
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quantitative comparison with evaluation metrics of myocardium segmentation. To 
visually show the segmentation effect, we overlap the original image, segmentation mask 
and ground-truth with different colors as Fig. 2 and Fig. 3 and make a numerical 
description using evaluation index in Tab. 1. 
The qualitative LV myocardium and LV blood pool segmentation results are shown in 
Fig. 2 and Fig. 3, respectively. In the figure, each row corresponds to one image of the 
patient. The original T1 Mapping CMR image is displayed in the first column. To have 
more expressive illustration about the accuracy of automated segmentation mask, we 
overlap segmentation mask generated by automated algorithm on ground-truth delineated 
manually by cardiologist expert. The color blue represents the area of correct 
segmentation; the red represents the area of model unidentified which is the object, and 
the green represents the area of model misidentified which does not object. We compared 
our method with U-Net and DeepLab V3+ [Chen, Zhu, Papandreou et al. (2018)]. It is 
easy to observe that, the results yield by our model have larger blue (correct) areas and 
less red and green (wrong) areas. 

 
Figure 2: The qualitative myocardium segmentation results comparison (best view in 
color). Each row represents an example sample. The first column is the original T1 
Mapping CMR image. The second column is ground-truth of LV myocardium delineated 
by a cardiologist. The third to sixth columns are overlapped segmentation masks with 
ground-truth which predicted by (c) U-Net, (d) DeepLabV3+, (e) MSSN without subpixel 
and (f) MSSN with subpixel, respectively. Color representation of column (c) to (f): blue: 
correct pixels, red: unidentified pixels, green: misidentified pixels 

The quantitative comparison on evaluation metrics of myocardium segmentation is 
shown in Tab. 1. Evaluation metrics we including are Dice Coefficient (DSC), Jaccard 
Coefficient (JACC) and Confidence (CONF, also called precision) [Taha and Hanbury 
(2015)]. Our method archived a mean DSC value of 78.96%, Jaccard index value of 
65.84% and a confidence value of 69.14%. It compared to U-Net and DeepLabV3+ of 
75.11%, 61.14%, 64.09% and 77.23%, 63.59%, 66.32%, respectively. 
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Figure 3: The qualitative blood pool segmentation results comparison (best view in 
color). Each row represents an example sample. The first column (a) is the original T1 
Mapping CMR image. The second column (b) is ground-truth of LV blood pool 
delineated by a cardiologist. The third to sixth columns are overlapped segmentation 
masks with ground-truth which predicted by (c) U-Net, (d) DeepLabV3+, (e) MSSN 
without subpixel and (f) MSSN with subpixel, respectively. Color representation of 
column (c) to (f): blue: correct pixels, red: unidentified pixels, green: misidentified pixels 

Table 1: Quantitative comparison of myocardium segmentation 

Methods DSC JACC CONF 

U-Net 75.11% 61.14% 64.09% 

DeepLabV3+ 77.23% 63.59% 66.32% 

MSSN 77.83% 64.49% 67.51% 

MSSN + subpixel 78.96% 65.84% 69.14% 

4 Conclusions 
In this work, we proposed a novel end-to-end CNN model for fully automatic LV 
segmentation on T1 mapping CMR image datasets. The model employed serial and 
parallel dilated convolution layers with different dilate rates for more accuracy and 
robustness multi-scale myocardium extraction. And graduated subpixel upsampling 
layers with concatenate layers in decoder combine spatial features to from shallow layers 
and semantic features from deep layers. The combination of spatial information and 
semantic information can remedy the loss of spatial information caused by upsampling to 
produce more accurate segmentation masks. And the practicability and performance of 
our segmentation method are successfully demonstrated though evaluating on CMR 
image datasets and compared with other advanced segmentation methods. 
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