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Abstract: Capsules are liquid droplets enclosed by a thin membrane which can resist shear deformation. They are 

widely found in nature (e.g. red blood cells) and in numerous applications (e.g. food, cosmetic, biomedical and 

pharmaceutical industries [1]), where they often flow through a complicated network of tubes or channels: this is the case 

for RBCs in the human circulation or for artificial capsules flowing through microfluidic devices. Central to these flows 

is the dynamic motion of capsules at bifurcations, in particular the question of path selection. A good understanding of 

this problem is indeed needed to elucidate some intriguing phenomena in human circulation and to design multi-

branched microfluidic devices to sort and enrich suspensions of artificial microcapsules or biological cells depending on 

their properties. 

Thanks to the extensive in vivo and in vitro experiments conducted on blood flows in branched capillaries and 

microchannels [2], it has been well established that the daughter branch with a higher flow rate receives a larger number 

of RBCs than the other branch: this is classically referred to as the Zweifach–Fung effect [3,4]. Similar phenomena have 

also been observed in experiments on suspensions, where the RBCs are modelled as flexible disks and the white blood 

cells as solid spheres [5], and in dilute suspensions of solid spheres [6]. This is a consequence of the plasma skimming 

effect due to the particle- free layer near the wall of the vessel [7] and of the particle screening effect due to the deviation 

of the particle trajectories from the background flow fluid streamlines as a result of the hydrodynamic interaction 

between the particles and vessel geometry at the bifurcation [8, 6]. 

In the dilute limit, the problem has, however, not been thoroughly studied experimentally, possibly due to the difficulty 

of manipulating individual cells. The problem has mostly been studied in recent years using two-dimensional numerical 

models [9, 10]. The results showed that, at equal flow rate between the two downstream channels, the capsule tends to 

flow into the side branch in particular when the capsule is highly deformable. But to what extent the results obtained 

from previous two-dimensional simulations can be applied to three-dimensional flows remains unclear. 

The objective of the present study is to conduct a systematic and in-depth three-dimensional numerical study of a 

deformable capsule in a branched tube and to determine the influence of inertia. Contrary to many biological systems, for 

which neglecting inertia is a good assumption, capsules are not necessarily small in size and the flow speed can be fast in 

some applications [11]. 

In the present work, we computationally study the motion of an initially spherical capsule flowing through a straight 

channel with an orthogonal lateral branch, using a three-dimensional immersed- boundary lattice Boltzmann method [12, 

13]. Our primary focus is to study the influence of the geometry of the side branch on the capsule path selection. The 

capsule is enclosed by a strain-hardening membrane and contains an internal fluid of the same viscosity as the fluid in 

which it is suspended. It is initially centered on the axis of the feed channel. We impose the flow rate split ratio between 

the two downstream branches of the bifurcation. We analyze the reference cases wherein the side channel has the same 

cross- section as the main branch, and then compare the results to other geometries, in which the side branch has a half 

cross-sectional area as compared to the main branch. We consider different capsule-to-channel size ratio, flow Reynolds 

number (Re) and ratio of capillary to Reynolds numbers, and summarize the results in phase diagrams indicating the 

critical flow split ratio above which the capsule flows into the side branch. 

The capsule trajectory does not always obey the classical Fung's bifurcation law. For Re ≤ 5 and equal flow rate split 

between the two downstream branches, the capsule will enter a branch which is narrow in the spanwise direction, but 

will not enter a branch which is narrow in the flow direction. We show that this novel phenomenon results primarily 

from the background flow which is strongly influenced by the side branch cross-section geometry. For higher values of 

Re, the capsule relative size and deformability also play a specific role in the path selection: increasing the capillary 

number generally promotes cross-stream migration of the capsule towards the side branch. The present results obtained 

for dilute systems open new perspectives on the design of microfluidic systems with optimal channel geometries and 
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flow conditions to enrich cell and particle suspensions. 
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