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Facts and Effects to be Considered when Validating 2D
and 3D UD Composite Failure Conditions – experiences
from participation in the World-Wide-Failure-Exercise

R. G. Cuntze1

Abstract: The paper deals with the validation of 2D and 3D failure conditions of
unidirectional (UD) composites composed of endless fibres and thermoset matrices.
The generation of these failure conditions is shortly described and then applied to
test cases of the World-Wide-Failure-Exercises WWFE-I and II, organized by Qi-
netic in the past 20 years. The derivation of the conditions for the brittle fracture
failure experiencing UD lamina material was based on the author’s so-called Fail-
ure Mode Concept (FMC) which basically builds up on the hypotheses of Beltrami
and Mohr-Coulomb. The generally applicable FMC is applied here to UD material.
Essential topics of the paper are specific facts and effects to be considered when
validating. This includes ‘global fitting’ versus ‘failure mode fitting’ and some test
specifica.
As conclusions can be drawn from the investigations: 1. The FMC is an efficient
concept because it very strictly utilizes a ‘thinking in failure modes’ as well as the
consideration of material symmetry aspects. It has proven to be a helpful tool in
simply fitting the course of multi-axial UD strength test data, and it can capture sev-
eral failure modes in one final ‘global’ effort equation; 2. The validation was partly
successful, sometimes first after re-evaluation of test data provided by Qinetic. A
full 2D and 3D validation can be not yet achieved due to some still missing test
data and some shortfalls in the experiments.

Keywords: Failure conditions, brittle UD laminae, 2D/3D validation, test data
quality

1 Introduction

A failure condition is the mathematical formulation of a failure curve or of a failure
surface. Failure conditions are necessary for Design Verification. Static design ver-
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ification has to be performed for onset of fracture. The brittle behaving UD material
requires failure conditions which are fracture conditions. Failure conditions assess
a multi-axial stress state which acts in the critical material ‘point’ by utilizing just
one uni-axial strength R and, hopefully to make it simple, an equivalent stress σ eq

representing the multi-axial stress state. In the validation to be performed here,
the strength failure of non-cracked structural parts is addressed only which means
material strength failure. Stability failure as a structural strength failure has to be
avoided in the test because associated test data cannot be used for validation.

The FMC is based – as far as material homogenization permits to do it - on material
symmetry-related invariants, which have proven to be a helpful tool in simpler
fitting multi-axial strength test data. The FMC enables to simply capture several
failure modes in one equation, but without the short-comings of classical global
conditions, i.e. Drucker-Prager for isotropic material and Tsai-Wu for UD material.

In the WWFE, failure theories are tested. Such a failure theory is composed of
three parts, at least: 1) The failure conditions to assess tri-axial states of stress; 2)
Non-linear stress-strain modelling of the embedded UD lamina material (in strain-
hardening and strain-softening regime as main degradation domain) as analysis
input; and 3) Non-linear coding for obtaining a realistic response of lamina and
laminate test specimens considering possible changes of the fibre direction under
loading. 4) In the WWFE-II, in addition to WWFE-I one more point is to be re-
garded: Modelling of the matrix behaviour in ultra-high pressure domains.

In consequence, the validation of a failure condition is just one part of a failure
theory exercise. This has to be considered when judging just the failure conditions
of the competing WWFE contributors. Validation of UD failure conditions (point
1) is performed best with sets of multi-axial UD lamina strength test data, and
approximately with laminate test data. Later, the laminates have to deliver valuable
benchmarks.

The following questions of A.S. Kaddour from Qinetic describe the objectives of
the WWFE: “1) How well can current theories predict failure in FRP Composites?;
2) What are the boundaries of applicability of current design methodologies?; 3)
Do composite designers have the right and accurate tools?; 4) Will virtual testing
become a reality?”

Whereas WWFE-I was attributed to 2D-problems WWFE-II deals with 3D stress
states. Qinetic formulates the aims of the WWFE-II as: “Solve specific gaps iden-
tified in WWFE-I. Identify well established champions of (tri-axial) 3D failure cri-
teria. Validate and benchmark their models. Identify any gaps in the current 3D
models. Identify specific shortfalls in experimental data test results. Stimulate the
composites community to provide better tools. Provide designers with guidance for
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predicting accurate strength under 3D states of stress.”

Providing the contributors with a reliable test basis was the challenging task for
the WWFE organizers from Qinetic, because proving the capability of the tri-axial
FMC theory requires realistic, well evaluated, and well understood experimental
data. Thereby it is presumed by the author: 1) Pore-free material, no layer wavi-
ness, edge effects do not exist; 2) Constant fibre volume content (Vf = 60%); 3)
Perfect bonding of the layers.

The Part A contributions represents the prediction whereas Part B displays a dis-
cussion of the provided data and finally the correlation theory-experiment. In this
context shall be reminded: Fitting of usually not sufficiently large test data sets
means mapping of an actual stochastic situation. Model parameters are variables.
Therefore, a determined parameter is always attributed to such a specific actual
case.

2 Short Derivation of the FMC-based UD Failure Conditions

2.1 Stress states, strengths and observed strength failure modes

Fig. 1 depicts the 3D stress state {σ}= (σ1,σ2,σ3,τ23,τ31,τ21)T in a UD material
cube. For completeness and general understanding it further depicts the 5 strengths
in symbolic denotation, applied in the German guideline VDI 2014 to avoid misun-
derstanding in the application of material properties. In brackets, the US denotation
is given. It may be seen that a quasi-isotropic plane exists (2-3 plane).
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Figure 1: Transversely-isotropic material, 3D stress state.

Usual conventions are: Positive direction of the lamina orientation angle is from
x to fibre direction x1; fibre in hoop direction of a tube means 90˚ to the axial
direction. The indices t, c mean tension, compression, and 1≡ || , 2≡⊥
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The characterisation of the strength of transversely-isotropic composites (UD ma-
terial) requires the measurement of five independent lamina strengths: Rt

|| and
Rc
|| (tensile and compression strengths parallel to the fibres); Rt

⊥ and Rc
⊥ (tensile

strength and compressive strength transverse to the fibre direction); and R⊥||( shear
strength, transverse/parallel to the fibre). The measurement of just these 5 strengths
is standard. In practice, the strength in thickness direction is lower than the in-plane
one, R̂t

z < Rt
⊥ . The real UD lamina is most often slightly orthotropic instead of be-

ing fully transversely-isotropic. UD thickness data are seldom provided.

Of interest for the establishment of material strength conditions is the number of
strength failures observed in fracture tests. For the brittle UD lamina, fractography
of test specimens reveals (Fig. 2, Masters (1994); Cuntze et al (1997)) that 5
fracture modes exist: 2 FF (Fibre Failure) + 3 IFF (Inter Fibre Failure).

Of highest importance for failure are the FF, however, the wedge failure mode IFF2
might be hazardous like an FF. Its criticality depends on stacking sequence and
entire loading. Fig. 2 indicates also, that each single failure mode is governed by
one single strength only.

Note: In the following model validation or fitting or mapping of test data, respec-
tively, average (typical) values for the strength parameters are required. These
values are marked by a bar over.

2.2 Modelling of UD material failure

The FMC-based failure conditions addressed in this paper are most often termed
strength criteria, however, the term condition is more accurate due to the fact that
F = 1 is applied (F > = < 1 is termed failure criterion). They contain a minimum
number of strength parameters as material symmetry is employed which is inherent
to the chosen (homogenized) material model. Such a material model is an ideal
model and can be treated as a crystal. However, to formulate a strength condition
for a real material, there are physically missing parameters. These are the internal
friction parameters b⊥||,b⊥⊥ of the UD material that are used in the FMC equations.
These parameters are related to the corresponding friction properties as

b⊥|| = µ⊥||, b⊥⊥ ∼= 1/(1−µ⊥⊥). (1a)

Friction properties can be measured in test, see Cuntze (2010a), via the measure-
ment of the inclined fracture angle. Another method uses the σ c

2 ,τ21 tests, and
bi-axial tests(σ c

2 ,σ c
3 ), Cuntze and Freund (2004):

b⊥|| =
1 −

(
τ
⊥||
21 /R̄⊥||

)2

2σ c
2 · τ

⊥||2
21 /R̄3

⊥||

, b⊥⊥ =
1 + (σ c

2 + σ c
3)/R̄c

⊥
(σ c

2 + σ c
3)/R̄c

⊥ +
√

(σ c
2 − σ c

3)2/R̄c
⊥

(1b)
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Figure 2: Scheme of fracture failure modes of UD material

Requirements for the development of failure conditions are:

• physically-based,

• simply formulated + numerically robust and

• just need the strengths (must be always available) for pre-dimensioning; fur-
ther model parameters are assessable on the safe side

• condition shall be a mathematically homogeneous function.

Applying the FMC, Cuntze tries to formulate easy-to-handle homogeneous invariant-
based failure conditions with stress terms of the lowest possible order. The condi-
tions in mind shall be ‘engineering-like’ and shall not make a search of the fracture
plane necessary which would be necessary when directly using a Mohr-Coulomb
formulation.

The mathematical formulation of a failure condition is F = 1. This can be inter-
preted as a material stress effort E f f that reaches 100%. In the case of a global
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formulation the condition has to capture several failure modes including all stresses
and strengths. In contrast, the FMC includes the mode active stresses and just the
single mode-governing strength.

Possibilities of formulating a failure condition are given by applying:

• stresses (strains have the disadvantage of neglecting residual stresses) or

• invariants (FMC employs such stress invariants).

Experience on isotropic and UD material shows, see Cuntze and Freund (2004);
Cuntze (2004):

• Each of the observed fracture failure modes is linked to one strength;

• Material symmetry says: Number of strengths = number of elasticity proper-
ties

• Example UD material: E||, E⊥, G||⊥, ν⊥||, ν⊥⊥. and

• Application of invariants for composites is also possible.

Formulations of strength failure conditions may follow, such as performed with
Hashin/ Puck for unidirectional laminae, Mohr’s postulate: “Fracture is determined
by the stresses in the fracture plane!” This has a formulation advantage but makes
the determination of the angle of the inclined fracture plane necessary. The failure
condition is not scalar any more, e.g. the Hashin-Puck failure conditions in Puck
(1996) or Puck and Schuermann (2002).

In the case of elasticities modelling a homogenization or ‘smearing’ is applicable
for pre-assessment of elasticity properties whereas in case of strength modelling the
smearing process may not be so effective due to the fact that, e.g. for UD, the mi-
cromechanical fibre strength σ1 f determines fracture and not the macro-mechanical
tensile stress σ1, utilized in the lamina model.

Structural composites usually display brittle behaviour.

Remark on the stress field in test specimen: The critical material domain should
not exhibit a stress concentration. In contrast, a smooth high stress domain shall be
inherent in the test specimen associated with a low stress decay.

2.3 Short description of the FMC

Due to the experience above the FMC postulates in its ‘phenomenological engineer-
ing approach’: Number of failure modes equals number of strengths! This means
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for isotropic material 2 and for transversely-isotropic UD material 5 properties as
well as 5 failure modes.

Reasons for choosing invariants when generating failure conditions are presented
by Beltrami Beltrami (1885). He assumes: “At ‘onset of yielding’ the material
possesses a distinct strain energy density W”. This is composed of two portions
(shown here for the simple isotropic case): the dilatational energy (I2

1 ) and the
distortional energy (J2 ≡ ‘Mises’) in W ·6E = (1−ν) · I2

1 +(2+2ν) · J2 , wherein
E is the Young’s modulus. The invariants I2

1 describes the volume change of the
cubic material element and J2 its change of the shape. Both these changes can be
witnessed by the fracture morphology. In order to formulate a relatively simple
scalar failure condition one chooses as invariant a term that respects whether the
cubic material element will experience a volume change in the considered mode
or a shape change. The same idea is valid for UD material, Cuntze and Freund
(2004); Cuntze (2004). In the case of brittle behaving materials one energy term is
to be added, the friction energy, which is linked to a Mohr-Coulomb behaviour and
requires the use of I1.

In this way, from Beltrami, Mises (HMH), and Mohr/Coulomb (friction) may be
derived “Each invariant term in the failure function F can be dedicated to one phys-
ical mechanism in the solid cubic material element”, see Cuntze (2010a).

Therefore, the following foundations characterize the FMC:

• 1 failure mode represents 1 independent failure mechanism

• 1 failure condition represents 1 failure mechanism (interaction of stresses)

• 1 failure mechanism is governed by 1 strength.

New with the FMC is only:

• the strict thinking in failure modes,

• the individual interaction of a failure mode with the other modes by having
no impact on another pure failure mode domain, and an

• a-priori physically-based reduction of the possibilities to formulate failure
conditions.

The next chapter briefly lists all the derived failure conditions, see Cuntze (2010a,b).

2.4 Summary of the 3D FMC-based UD failure conditions

The FMC enables to formulate an equivalent stress σeq due to the fact that each
failure mode is characterized by one strength, only. For each mode, analogously to
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Mises Yielding can be written

E f f
mode= σ

mode
eq /Rmode. (2)

Eq.(2) includes all stresses that are acting together in a given mode. The vector of
the mode equivalent stresses reads (the indices σ ,τ mark the fracture causing Mohr
stress){

σ
mode
eq

}
=
(

σ
||σ
eq , σ

||τ
eq , σ

⊥σ
eq , σ

⊥τ
eq , σ

||⊥
eq

)T
. (3)

Employing mode strength R̄mode and equivalent stress σmode
eq , the following set of

formulas for the stress effort of each of the 5 modes can be provided and its rela-
tionship to the associated equivalent stress: Fσ

|| (FF 1):

E ||σf f = σ1 /R̄t
|| = σ

||σ
eq /R̄t

|| with σ1 ∼= ε
t
1 ·E|| (matrixnegligible), (4a)

Fτ

|| (FF 2):

E ||τf f =−σ1/R̄c
|| = +σ

||τ
eq /R̄c

|| with σ1 ∼= ε
c
1 ·E||, (4b)

Fσ

⊥ (IFF 1):

E⊥σ
f f = [(σ2 +σ3)+

√
(σ2−σ3)2 +4τ2

23]/2R̄t
⊥ = σ

⊥σ
eq /R̄t

⊥, (4c)

Fτ

⊥ (IFF 2):

E⊥τ
f f = [(b⊥⊥−1) · (σ2 +σ3)+bτ

⊥⊥

√
(σ2−σ3)2 +4τ2

23]/R̄c
⊥ = +σ

⊥τ
eq /R̄c

⊥, (4d)

F⊥|| (IFF 3):

E f f
⊥|| = {[b·⊥||I23−5 +(

√
b2
⊥|| · I

2
23−5 +4 · R̄2

⊥|| · (τ
2
31 + τ2

21)2]/(2 · R̄3
⊥||)}

0.5

= σ
⊥||
eq /R̄⊥||

(4e)

with

I23−5 = 2σ2 · τ2
21 +2σ3 · τ2

31 +4τ23τ31τ21. (5)

Above stresses include the nonlinearly load-dependent load stresses {σ}L and the
equally nonlinearity dependent residual stresses {σ}R from curing etc.

An optimal use of the above failure conditions in numerical analysis is described
in Cuntze (2010b).
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2.5 Interaction of failure modes

What is only missing in chapter 2.4 is the interaction of failure modes. This is per-
formed here by a probabilistic theory-based ’rounding-off’ approach’ formulated
as a series failure system model

E f f
m

= (E f f
mode 1)m + (E f f

mode 2)m + ...+ ...+ ... = 1 (6)

with the so-called (global) stress effort E f f , representing the actual portion of the
‘load’-carrying capacity of the material, and with a Weibull-related interaction
coefficient m. The mode stress efforts E f f

mode are the contributions of each partic-
ipating failure mode.

All three IFFs are interacted together with the FFs in one single ‘global’ failure
equation

E f f
m = (E f f

τ

||)
m + (E f f

σ

|| )
m +(E f f

σ

⊥)m +(E f f⊥||)
m +(E f f

τ

⊥)m = 1. (7)

For usually applied UD materials the value of m is between 2 and 3. From practical
mapping experience approximately the same value may be taken for all interaction
zones. Eq.(7) may be interpreted as an equation that considers the so-called joint
failure probability of the failure modes. For more details the reader is referred to
Cuntze (2004, 2010a,b).

For a 2D example, the interaction of the 3 IFF shall be visualized by Fig. 3. It
depicts the straight pure mode curves and the interaction curve (σ2,τ21). Herein,
the stress efforts (FFs zero) of the 3 pure IFF modes (form straight lines in Fig. 3)
read:

E f f
σ

⊥ =
σ2

R̄t
⊥

, E f f⊥|| =
|τ21|

R̄⊥||−µ⊥|| ·σ2
. E f f

τ

⊥ =
−σ2

R̄c
⊥

, (8)

wherein a simplified E f f⊥||-formulation from Cuntze (2006) was used.

A general 2D mapping formulation reads F(σ1,σ2,τ21, R̄t
||, R̄

c
||, R̄

t
⊥, R̄c

⊥, R̄⊥||) = 1.

For UD fibre reinforced plastics the associated in-plane stresses-caused fracture is
visualized in Fig. 4. The associate effort equation reads,[

ε t
1 ·E||
R̄t
||

]m

+

[
−εc

1 ·E||
R̄c
||

]
+
(

σ2

R̄t
⊥

)m

+
(
−σ2

R̄c
⊥

)m

+
(

|τ21|
R̄⊥||−µ⊥|| ·σ2)

)m

= 1. (9)



132 Copyright © 2010 Tech Science Press SDHM, vol.6, no.3, pp.123-160, 2010

 

Figure 3: Visualization of the interaction procedure. Hoop wound GFRP tube,
E-glass/ LY556/HT976.

 

Figure 4: 2D failure surface of FRP UD lamina (courtesy W. Becker)

3 Specific Aspects in Validation

3.1 ‘Isolated’ and ’embedded’ properties

Properties used as input for the analysis are generally test results from isolated UD
lamina specimens such as a tensile coupon or a 90˚ wound tube. They are load-
controlled achieved and are results of weakest link type behaviour whereas the in-
situ behaviour of a (constraint) one-sided or two-sided UD lamina, embedded in
a laminate, is deformation-controlled and therefore of redundant type, see Fig. 5.
This fact shows up that a good mapping of the course of ‘isolated UD test data’
does not involve the full information necessary for a qualified analysis of laminates
which consist of a stack of embedded laminas.

A non-linear analysis in the strain-softening domain of an embedded lamina has to
consider both the positive effect from obtaining redundancy by the embedding and
the adverse effect of notching neighbour layers by localizing of micro-cracks versus
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the end of diffuse multi-site micro-cracking when approaching the so-called charac-
teristic damage state (CDS). After reaching CDS, the number of micro-cracks prac-
tically remains about constant, whereas their width increases followed by forming
of some larger discrete micro-cracks to macro-size, eventually followed by delam-
ination. Above two facts form the in-situ effect.

 

Isolated lamina, load-controlled   

  →  weakest link type  test results. 

  A single crack is generated at the site 

  of the most unfavourable flaw 

 

IFF 1 :  

 

IFF 2 : 

 
 

Embedded lamina, strain-controlled 

  → redundant type  test results. 

  Multiple micro-cracking occurs until 

 reaching a critical damage state which 

contains a few micro-cracks per mm 

Figure 5: IFF features in isolated and embedded laminae (for F⊥|| similar), [Puck,
VDI97]

In the context above one should keep in mind: 1) Each failure mechanism is affected
by an associated typical state of stress. The failure mechanism with the highest
stress effort will dominate the failure. A mode effort has to become zero if the mode
driving stress is zero. 2) Due to IFF the curing stresses decay in parallel with
the degradation. 3) The non design-driving stresses of a mode might increase or
decrease the stress effort which is basically caused by the design driving stress.
This influence is considered in the equivalent mode stress. 4)σ2 ∼= σ3 activates the
failure mode IFF1 in ‘two planes’ and thereby ‘doubles’ fracture danger. 5)τ23
activates two different failure modes, i.e. IFF1 and IFF2, according to the fact that
the shear stress τ23 can be replaced by a normal tensile stress σ t

2 with a compressive
stress σ c

2 with IFF1 being the critical mode for the brittle UD.

Fig . 6 eventually shall depict the different criticality of the five UD failure modes.

3.2 Use of global and modal failure conditions

There are two different formulations possible, a global formulation and a mode-
wise (modal) formulation. The associated equations generally read:

One global failure condition (usual formulation) :

F({σ} ,{R̄}) = 1 (10a)
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Figure 6: Failure mode criticality

Several mode failure conditions (FMC formulation) :

F({σ} ,
{

R̄mode}) = 1. (10b)

Most often, failure conditions map a course of multi-axial test data by one global
equation not taking care whether the data belong to one or more failure mecha-
nisms or failure modes. Therefore, extrapolations out of the mapping domain may
lead to erroneous results. Further, if a correction change in the domain of one fail-
ure mode has to be made it may affect the failure surface or the curve domain of
fully independent other failure modes. This is a mathematical consequence. Fig. 7
outlines the different curves achieved with the often used ZTL global failure con-
dition and the FMC modal failure condition. As a visualizing example a case with
a high scatter of the ‘isolated’ values is chosen. The arrows indicate that, when
the transversal tensile strength R̄t

⊥ might have to be corrected after a new test se-
ries, the global curve will change in an independent but mathematically linked IFF
domain. This is physically not correct. A FMC condition remains the same in an
independent mode domain. In Eq.(11b) with the absolute signs numerically ob-
tained senseless negative efforts are made zero. With the Föppl/Macauley brackets
the same is achieved.

ZT L :
σ2

2
R̄t
⊥ · R̄c

⊥
+σ2 · (

1
R̄t
⊥
− 1

R̄c
⊥

)+
τ2

21

R̄2
⊥||

= 1 (11a)

FMC :
(

σ2 + |σ2|
2 · R̄t

⊥

)m

+
(
−σ2 + |σ2|

2 · R̄c
⊥

)m

+
(

|τ21|
R̄⊥||−µ⊥|| ·σ2)

)m

= 1 (11b)
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 Fig. 7. Consequences in use of global failure conditions. 
         Hoop wound tube, T300/LY556/HY976; crosses mark test data 

 
So, from application of global conditions the lesson was learned: A change, necessary in one 
failure mode domain, may have an impact on other physically not related failure mode domains, 
but in general not on the safe side.  
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Figure 7: Consequences in use of global failure conditions. Hoop wound tube,
T300/LY556/HY976; crosses mark test data

So, from application of global conditions the lesson was learned: A change, nec-
essary in one failure mode domain, may have an impact on other physically not
related failure mode domains, but in general not on the safe side.

3.3 Use of laminate fracture data

Using fracture data from laminates should involve the consideration of ‘embedded’
lamina properties, see chapter 3.1. Therefore, the validation of UD lamina failure
conditions becomes more difficult. However, after validation of the lamina failure
conditions, laminate fracture data are used as benchmarks. The data help to under-
stand the embedded (in-situ) effect in order to derive improvements for the input of
the laminate analysis.

3.4 Healing effects in tri-axial compressive stress states

Compressive stress states exhibit ‘healing’ (smoothing behaviour) effects due to
redundancy. This can be recognized by some ‘jumping’ of the test data when bi-
and tri-axial compression comes to act. Then torsion resistance increases not re-
ally continuously from σ c

2 = 0 on in negative direction.. Such effects occur with
different intensity, i.e. test cases (σ c

2 ,τ21) marginally, in (σ c
2 ,σ c

3 ,τ21) significantly.

3.5 Evaluation errors

A correct analysis of boundary conditions and stress state of the test specimen
is mandatory before evaluating and afterward applying the data in analysis. In
this sense, tubes instead of the flat coupon specimens will help to avoid problems
associated with the ‘free edge effect’. Such a tubular specimen can be subjected to
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internal and external pressure, to torsion and axial forces. A wide range of bi-axial
stresses can be covered by them.

But, even tube testing is not free of problems such as barrelling (bulging), caused
by end constraints, or buckling (is not a strength failure mode) of the cylinder. Fur-
ther, tubes may exhibit non-linear changes in geometry during loading (widening).
Therefore, a non-linear analysis has to take into account both, large strains and
large deformations. If these facts are not considered in test evaluation and in anal-
ysis one has compared apples and oranges. Also in the WWFE data provision, in
data evaluation un-deformed specimen geometry unfortunately has been used. This
induced more or less essential errors and complicated validation.

Real tri-axial stress states require refined specimens (e.g. see Cuntze et al (1997);
Fischer (2003)).

3.6 Residual stresses and thickness effect

Residual stresses in a lamina of the laminate are decaying with decreasing stiff-
ness caused by the degradation which accompanies increasing non-linearity. In
other words: In parallel to the decay of the stiffness the non-linear analysis releases
matrix-dominated stresses.

Thickness effect: Due to being strain-controlled, the material flaws in a thin lam-
ina cannot grow freely up to micro-crack size in the thickness direction (this is
sometimes called thin layer effect), because the neighbouring laminae act as micro-
crack-stoppers. Considering fracture mechanics, the strain energy release rate re-
sponsible for the development of damage in the 90˚ plies from flaws into micro-
cracks, increases with increasing ply thickness. Therefore, the actual absolute
thickness of a lamina in a laminate is a driving parameter for initiation or onset
of micro-cracks. A significant change of hoop stress may occur in a hoop-wound
tube under hydrostatic pressure.

3.7 Depiction of failure stresses

When trying to understand the experimental results one has to distinguish whether
the test results are fracture values in total stresses or hydrostatic pressure super-
posed fracture stresses, Fig.8. This difference is not always clearly written in the
given test information. From comparing data of various sources one can sometimes
only sort out what might be meant. For the example UD lamina, tri-axial failure
information can be provided in several ways (σhyd =−phyd):

{σ}= (σ1,σ2,σ3,τ23,τ31,τ21)T
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or

{σ}= (σadd
1 − p1,σ

add
2 − p2,σ

add
3 − p3,τ23,τ31,τ21)T . (12)

The stresses σadd are the ‘external’ stresses (also termed differential stresses) which
may be increased up to σadd

f r . This is the resistance value that marks the pressure-
dependent multi-axial fracture state of stress. In order to correctly interpret the
diagrams in the associated literature one has to carefully check whether the diagram
is of the type σx, f r(σy = σz, R̄) or of σx, f r(phyd , R̄).

 

Figure 8: Different stresses in the multi-axial compression case

4 Validation of 2D Failure Conditions (WWFE-I)

4.1 Stress state {σ}= (0,σ2,0,0,0,τ21)T , TC1 in WWFE-I, PartB

In the following it is referred to UD lamina test cases (TC) of the WWFE-I.

In Fig. 9 the circle-dotted curve shows the blind prediction in Part A on basis of
the three provided strength values. The physically required friction value could not
be provided. Therefore, a very low friction parameter (safe side) was used.

For Part B the friction parameter (average value for this physical quantity to be
taken) could be assessed from curve data. All strength values had to be adapted due
to new information in Part B. Then, the course of data could be mapped without any
problems despite of the fact that the peak point is beyond of any other test result
ever seen and measured, e.g. Fig. 3.. However it might be also possible that the
strength value at the shear axis is too low and does not represent an average shear
strength R̄⊥||. This idea is substantiated by own tests and another TC where the
same material is used and where the shear strength corresponds to the Part A value.
A ‘normal’ peak point would enable to map the scattering data at σ c

2 ≈−115MPa
excellently.
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Lessons learnt: A prediction – in the frame of a validation – makes only sense if all
physically necessary data are provided. The establishment of the Fig. 9 non-failure
envelope requires 3 strengths plus a typical friction value.

 
Figure 9: E-glass/LY556/epoxy

4.2 Stress state {σ}= (σ1,σ2,0,0,0,0)T

4.2.1 Case {σ}= (σ t
1,σ

c
2 ,0,0,0,0)T , TC6 in WWFE-I

The solid curve in Fig. 10 shows the prediction on basis of the provided strength
data. For this test cases, knowledge about the friction parameter was not required
in this TC.

For Part B the strength values could be kept. The delivered test data show a gap in
the fourth quadrant of Fig. 10. Such a gap belongs to a non-regularity in testing.
Therefore, no attempt is made to better map the course of data.

Lesson learnt: Performing reliable experiments is a very challenging task.

4.2.2 Case {σ}= (σ c
1 ,σ c

2 ,0,0,0,0)T

In the WWFE-I no test data in quadrant III could be provided. With a special test
equipment IKV-Aachen, Fischer (2003), tried to fill this gap, and to prove that an
interaction exists between FF2 (kinking failure) and IFF2 (wedge failure). As test
method, a 4-point-bending method applied to a 2-layer laminate composed of an
upper T300 ‘face sheet’ as critical layer and a ‘supporting’ T700/epoxy layer which
is stronger than the T300/epoxy.
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Figure 10: Bi-axial non-failure stress envelope (σ c

2 ,σ t
1). UD-lamina. E-

glass/MY750epoxy. Hoop wound tube data, m = 3.1. σ1 ≡ σhoop, σ2 ≡ σaxial
Provided: {R̄}= (1280,800,40,145,73)T

In Fig. 11, the obtained test results are depicted by crosses. They indicate a too
high FF2 resistance (kinking mode). This fact can be physically explained: The
test layer is one-sided embedded and not fully isolated any more. Some sort of an
elastic foundation effect takes place and increases kinking resistance.

Lesson learnt: Proof of the presumption is achieved. It can be concluded that
with increasing σ c

2 the resistance in fibre direction is reduced (The term strength
should be restricted to the measured 5 (basic) strengths). A chance for executing
an ‘isolated’ test seems to be not given.

As a warning, the Tsai-Wu curve is included in the diagram in order to show the
shortcoming of the Tsai-Wu failure conditions in this quadrant.

Lesson learnt: Tsai-Wu is not applicable here, even after using a Tsai parameter
of F̃12 =−0.4.

4.3 Stress states {σ}= (0,σ2,0,0,0,τ21)T , {σ}= (0,σ2,0,0,τ31,0)T

Fig. 12 displays the difference between the two in-plane shear curves. The shear
resistance is not increased in the negative τ31(σ2)domain. The same applies for
τ21(σ3).
Lesson learnt: The shear τ31 does not act together with σ2. This has to be con-
sidered by the IFF3 failure condition. The shear stresses τ21,τ31 are the fracture
causing stresses, not the associated shear stresses τ12,τ13.
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Figure 11: Bi-axial fail. stress envelope (σ c
2 ,σ c

1) in MPa. UD-lamina.
T300/LY556/HY917/DY070. Tsai-Wu:F̃12 =−0.4

 

Figure 12: Difference of shear fracture curves

4.4 Stress state {σ}= (σ1,0,0,0,0,τ21)T , TC2 in WWFE-I Part B

Attention has to be paid to not mixing up test results which are apples and oranges.
The situation in Fig. 13 shows a bi-axial non-failure stress envelope (τ21,σ1). he
loading is torsion with internal pressure plus axial loading. The crosses belong to
failure data from 90˚-wound tube test specimens and the others to axially wound 0˚
tube specimens. The 0˚ tube test data exhibit a too large scatter and ‘jumping’ in
the positive domain, which disqualifies the 0˚ data.

However, there is a possibility to use the 0˚ test data together with the 90˚ test
data. The axially wound tube is heavily shearing under torsion loading. Conse-
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quently, the data given are not the searched lamina stresses (τ⊥||,σ||) but stresses
belonging to the structure coordinate system (x,y). Therefore, an attempt is made to
re-evaluate the experimental data in two steps: At first, one determines an estimate
of the (non-provided) shear angle γ by a non-linear CLT analysis and secondly,
one transforms the stress data provided into the real (||-⊥) coordinate system of the
lamina. The computation will deliver the real lamina stresses, as follows:

σ || = σx(cosγ)2 +2τyx cosγ sinγ,

σ⊥ = σx(sinγ)2−2τyx cosγ sinγ, (13)

τ⊥|| =−0.5σx sin2γ + τyx cos2γ.

For instance for the point (σx,σy,τyx)= (1000, 0, 123), γ=+3˚ was obtained and
after transformation the lamina stress state⇒ (σ||,σ⊥,τ⊥||) = (1010,-10, 70) MPa.

The angles 3˚ and –2˚ in Fig. 13 result in size (rounded) and sign from the above
described CLT computation that uses the corresponding set of combined fracture
stresses given. The finding for the two chosen 0˚ test points is: Both corrected
test points practically fall (by chance fully) on the existing mapped curve. The
discrepancy is vanished!

 
Figure 13: Difference of fracture shear stress results from hoop and axially wound
tubes. Bi-axial non-failure stress envelope. UD-lamina T300/BSL914C epoxy,
{R̄}= (1500,900,27,200,80)T . m = 3.1.

Lesson learnt: For 0˚ test data the axes cannot be termed τ21 and σ1.
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4.5 Stress state {σ}= (0,σ2,σ3,0,0,0)T ≡ {σ}= (0,σ2,σ3,τ23,0,0)T

Fig. 14 represents a non-failure envelope for a bi-axial normal stress state. The
bi-axial strength Rt

⊥⊥ shall indicate that in this corner a twofold danger to frac-
ture exists. For high bi-axial compression states – due to the Poisson effect - the
IFF1/IFF2 envelope is closed by FF1.

 

Figure 14: Fracture curves in case of bi-axial normal stresses. b⊥⊥ = 1.2

Lesson learnt: Reliable UD test data (σ c
2 ,σ c

3 ) are not available, presently. How-
ever, cast iron behaves similarly in this quasi-isotropic plane and its data may be
used as supporting information, see Cuntze (2008).

5 Validation with UD lamina-composed Laminate Data, WWFE-I

Most engineers assume that FF in at least one lamina of a laminate means final fail-
ure of the laminate. Therefore, the bi-axial non-failure envelopes for final failure
of laminates predicted by the various authors do not differ that much, as long as the
laminates are ‘well-designed and have three or more fibre directions. The multi-
axial ‘strength’, better resistance, of these laminates is ’fibre dominated’. Further,
the predicted stress-strain curves of such laminates look very similar because the
fibres being much stiffer than the matrix carry almost the full loads. Different
degradation procedures after the onset of inter-fibre failure (IFF) do therefore not
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influence the predicted strains very much. This is especially true for CFRP lami-
nates.

5.1 Laminate stress-strain curve σ̂y(ε̂x), σ̂y(ε̂y) under bi-axial loading (angle-
ply), TC11

This TC of the WWFE-I, Fig. 15, needs a special carefulness, because prediction
and experiment show big a discrepancy. The test specimen is a balanced angle-ply
tube (water hose).

The roof sign shall indicate that the stress is an average (smeared) stress of the
laminate.

For the assessment of the test data curve in Puck and Schuermann (2002) the
following two CLT-based equationswhich means for a tube under internal pressure
with the ideal ±arctan

√
2 fibre orientation 54.75˚,

ε̂x = ε1− γ21/
√

2, ε̂y = ε1 + γ21/(2 ·
√

2) (14)

are cited. They confirm that the two stress-strain curves should be finally parallel,
because the shear strain will not change its sign. This is substantiated because in
the case of the full validity of net theory both curves would be identical, but of
course net theory can only deliver the tendency.

The author himself sorted out from the Part B provided data that the tensile failure
strain was higher than the value that belongs to the physical fracture loading. A
shift versus the triangle in Fig. 15 might be seen probably, however, the test curve
is lower and by that leaves another discrepancy.

Eventually the IKV Fischer (2003); Knops (2003) performed special tests using
tubes wound from GFRP and CFRP. Results, when subjected to internal pressure
loading showed an extreme dependency on small variations of the orientation angle.
In parallel, this finding was analytically investigated (non-linear with a degradation
function in strain-softening for E⊥, G||⊥, but not for the in-plane Poisson’s ratio ν⊥||
(larger ratio). These results confirm the sensitivity and prove that angle deviations
drift under degradation towards the ideal net theory angle 54.75˚. With increasing
winding angle the critical σ t

⊥ is reached at a somewhat lower pressure loading level
and also IFF1. A further finding was that a CFRP tube with its higher anisotropy-
ratio E||/E⊥ is more significantly affected than a GFRP; the stiffness change of the
virgin CFRP is higher for the same angle deviation.

Lesson learnt: The provided angle is not accurate enough to serve as validation
basis. A crossing of the curves cannot be realistic. The data background has to be
examined.
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5.2 Laminate stress-strain curve σ̂y(ε̂x), σ̂y(ε̂y) under uni-axial loading (angle-
ply), TC10

In Fig. 16 the same tubes are used as before, just the loading is now radial. This
loading causes a hoop stress σ̂y in the laminate. The figure depicts two stress-strain
curves of the simple laminate above but now under radial loading. The prediction
has two shortcomings: stiffness is higher from the origin on when compared to the
slope found in experiment, and the measured higher strains could be not calculated
by the author’s handmade tool ? using Mathcad. For Part B, a modulus decrease
could have introduced to better map the data curve. The sensitivity of deviations of
the given fibre angle plays a role, too.

 

Figure 15: Stress-strain curves for σ̂y : σ̂x = 2 : 1(pint), [+55/-55/55/-55]-laminate.
E-glass/ MY750 . ∆T= -68˚C. σ̂y = σ̂hoop. Final blind prediction point .

Lesson learnt: The quality of theory and non-linear coding in managing the load
transfer from matrix to the fibres determines the quality of the analytical results.
However, as practice requires well-designed (w.r.t. loading) laminates their anal-
ysis becomes not that non-linear in real life. For lightweight structures the design
strain is usually smaller than 0.6%.

5.3 Laminate stress-strain curve σ̂y(ε̂x), σ̂y(ε̂y) under multi-axial loading (cross-
ply), TC13

Fig. 17 shall outline some typical errors one can generate when evaluating test
results without the high carefulness needed. The test specimen is a balanced cross-
ply laminate tube whereas Fig. 16 addressed an angle-ply tube.
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Figure 16: Stress-strain curves for σ̂y : σ̂x =1:0 (radial loading by pint + axial com-
pression load). Tube. [+55/-55/55/-55] -laminate, E-glass/MY750; ∆T= -68˚C.
{R̄} = (1280,800,40,145,73)T y:=hoop direction.σ̂y ≡ σ̂hoop. Final blind predic-
tion point

Both the test curves of the cross-ply should approximately lie on top of another
the symmetric geometry and due to loading. Different curves for ε̂x and ε̂y might
indicate some bulging, however.

Hence one should check the evaluation of the test results: At fracture -according to
micro-crack spacing- net theory can be applied to roughly assess test data values of
this well-designed laminate.

In order to better understand the test curves a simple analysis shall be performed.
From Part B, as input for the simple computation can be taken: ε

f racture
x = 2.18%,

ε
f racture

y = 2.48%, and σ⊥ = τ⊥|| = 0 due to the zero matrix stiffness assumed in the
net theory model. With these values the net theory model at first lets conclude that
for this fibre-dominated laminate the maximum experimental strength of 430MPa
could be increased (vertical arrow) up to σ̂x = σ̂y= 530MPa. Secondly, a lower
effective tensile strength σ t

||=1062MPa is derived. And from this, the maximum
theoretical fracture stress of 660MPa, according to the effective fracture strength
values, may be reduced down to a value of σ̂y = 660 ·1062/1280 = 547MPa which
is to be correlated with the provided fibre tensile strength of 1280MPa. As bulging
was reported in experiment and proven by ε̂y > ε̂x. This results in a loop stain and
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a hoop stress which are higher than the vessel formula used in test data evaluation
delivered as provided data Twofold Fσ

|| failure in both 45˚ layers will reduce the
theoretical fracture value a little more.

 

Figure 17: Stress-strain curves for σ̂y : σ̂x = 1 : 1,(pint+. axial tension). [+45/-
45/45/-45]-cross-ply laminate. E-glass/MY750. ∆T= -68˚C. Final blind prediction
point. Maximum test value after correction.

Lesson learnt: Bulging seems to be responsible that the test curves do not lie on
another and for a real fracture stress higher than the 440 MPa. Part B information
seems not to be fully consistent.

5.4 Laminate initial and final non-failure envelope σ̂y(σ̂x), TC4

Fig. 18 concerns a tube subjected to pressure loading combined with axial loading.
The formulas for the test evaluation are

σ̂hoop = p(rint +∆r)/t, σ̂ax = print/2t +F/(2π · rintt)

with laminate thickness t, applied force F , and the interior radius rint .

Deficiencies are essentially located in quadrant III. The too few tests carried out
under external pressure and axial compression can be not mapped by a material
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Figure 18: Initial and final biaxial non-failure envelope σ̂y (σ̂x). [90/30/-30/30/-
30/90]n-laminate. Hoop wound tube, liner. E-glass/LY556epoxy. b⊥⊥ =
1.5, b⊥|| = 0.13, m = 3.1.{R̄}= (1140,570,35,114,72)T .

failure condition, as they are governed by buckling (structural failure condition
needed). A non-linear buckling analysis which considers the real imperfection ge-
ometry would help to sort out essential effects.

In quadrant IV kinking failure FF2 takes place. An increase of the Part A provided
relatively low R̄c

⊥= 114 to 138 MPa allows mapping. This is depicted by the dashed
curve.

The achieved maximum load on the negative hoop axis (σ̂y) is about 50% lower
than that on the negative σ̂x-axis, because the pure x-loading of the cylinder is less
buckling-critical according to the higher stiffness in axial direction than external
pressure combined with axial tension load (failure caused by IFF2, Fτ

⊥90◦). A
further explanation for the discrepancies: The external 90˚ layer (σ̂ c

y , p, F) becomes
stabilized by biaxial lateral compression (σ c

2 ,σ c
3 =−pext), and the filaments of the

internal 90˚ layer are a little stabilized by the curvature of the shell. (2) An increase
of R̄c

|| would help to fit the test data on the σ̂ c
x -axis. The author believes that coupon

buckling led to the low value of R̄c
|| = 570MPa.

Mind: sharp corners of a failure curve would be rounded by regarding the joint
failure probability.

Lesson learnt: Maximum points such as point A show what might be reached.
Lower values confirm stochastic scatter but also represent probable test short com-
ings. Structural failure points (buckling) are not usable for a validation of material
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failure conditions.

With the next test cases the 3D capacity of the derived UD failure conditions shall
be checked.

6 Validation of 3D Failure Conditions by lamina data (WWFE-II)

6.1 Stress state {σ}= (σ1 = σ3,σ2,σ3,0,0,0)T , TC5 of WWFE-II

In this TC, rectangular blocks, cut from filament wound UD panels, were exam-
ined under combined axial loading with lateral pressure. During test, a hydrostatic
pressure was first increased to a pre-determined level and then kept constant while
the transverse compressive stress σ c

2 was increased continuously until the specimen
fractured. Task is the prediction of the non-failure envelope in all four quadrants.
However for validation, test data are provided for the lower branch in quadrant III,
only. Therefore, a comparison can be only made in quadrant III which means in
the tri-axial compression domain. In the provision of data some problems with
understanding of the given stresses arose (see chapter 3.1) and were solved by the
organizer.

The slope of the course of Part B test data showed that the UD material is less
brittle than assumed in Part A (curve not shown here). In consequence, the friction
parameter b=

⊥⊥1.21, chosen in Part A, was lowered to 1.14 and secondly as lateral
strength the average value of the provided 3 test data is taken. This means the Part
A value R̄c

⊥ = 145MPa is to be replaced by 132 MPa.

Lessons learnt: After re-evaluation of the failure stresses by Qinetic the above
course of Part B data was provided. Mapping caused then no problem due to the
fact that b⊥⊥ and R̄c

⊥ had to be adapted to the provided Part B data.

6.2 Stress state {σ}= (σ1, σ2,σ3,0,0,τ21)T , TC2

The test specimen is a filament wound tube. During test, the hydrostatic pres-
sure was first increased to a pre-determined level and then kept constant while the
in-plane fracture shear stress σ c

2 was increased continuously until the specimen
fractured. Problem was the influence of hydrostatic pressure phyd on IFF3, or the
fracture failure curve τ21, f r(phyd) with σ1 = σ2 = σ3 =−phyd , and phyd an absolute
pressure value, Fig. 20.

The course of the scattering test data could be well mapped after an interpretation
of the the sudden increase (jump) at zero hydrostatic pressure. This is assumed to
be the consequence of the healing phyd and was modelled in an adequate, simple
way. Check point for TC2 and the two other linked test cases TC3 and TC4 is the
open square. TC2 and TC 3 are not treated in this paper.
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Figure 19: Tri-axial failure state of stress σ2(σ1 = σ3) for a UD E-
glass/MY750epoxy. σ1 is the stress acting at the respective coupon surface; the
diagonal is the phyd -line. {R̄} = (1280,800,40,132,73)T MPa,ν⊥|| = 0.28, m =
2.8, b⊥⊥ = 1.14

Lesson learnt: The σ c
2 domain shows some healing redundancy and has, therefore,

to be mapped for itself. Thereby, as model shear fracture strength 107 MPa is used.
Early after a common interpretation of the information on the three linked test cases
TC2 through TC4 a common check point in all 3 figures of Cuntze (2010b) could
be found.

6.3 Stress state {σ}= (σ1,σ2,σ3 = σ2,0,0,0)T , TC7

In Fig. 20 data from tests executed with dog-bone test specimens are displayed.
Searched is the longitudinal fracture stress σ1, f r(σ2 = σ3). Failure modes observed
are longitudinal splitting, kinking, kink band.
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Figure 20: Fracture stress τ21, f r vs stress σ2(= σ1 = σ3 = −phyd) for a UD T300
carbon/ PR319 epoxy. {R̄}= (1378,950,40,125,97)T MPa. ν⊥|| = 0.32. m = 2.8,
b⊥|| = 0.13,ν23 = 0.5.

Some discrepancies disturb the use of the provided test data for model validation.
It is not understood why the tendency of the curves in quadrant III and IV is so
different. Primarily, Poisson’s effect is acting at bi-axial states of compression. This
effect always causes tensile straining in the filament. Therefore, the compressive
failure strain and similar the failure stress (acting at the cross section) is increased
in quadrant III, whereas in quadrant IV the tensile failure strain (right curve) is
reduced. This would result in a similar curvature tendency.

Part B test data show a non-consistent tendency, however. With increasing fracture
failure strain the compression curve becomes more horizontally and the tension
curve more vertically. How long the vertical drop will go (the provided data set
ends at σ2 = σ3 =−300MPa) is not demonstrated. In another literature it is proven
that the tensile fracture stress will reduce with phyd till −860MPa and this is in the
sense of the Poisson effect.

In quadrant IV, it looks at −150MPa either as if the fracture strain is reduced or as
if the Poisson effect would have doubled. Below the bi-axial compression level of
σ2 = σ3 = −300MPa, the Poisson effect ‘vanishes’ and the tensile stress - acting
at the cross-section - keeps the same value of about 1500MPa. In other words, the
fracture strain of the filament would increase. Usually, the matrix reduces stiffness
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and this would increase the Poisson effect and cause the opposite curvature or ten-
dency of the provided data curve. It would become flatter instead of steeper or -
as here – practically vertical. Even if the interphase material between filament and
matrix will break then the bi-axial pressure would cause a reaction of the filament
linked to its Poisson’s ratio ν f which is not so much different to the UD value ν12 .

 

Figure 21: Through-thickness stress σ3(= σ2) vs. fibre-parallel stress σ1. UD
A-S carbon/epoxy1. {R̄} = (1990,1500,38,150,70)T MPa,ν⊥|| = 0.3. m = 2,{

ε f r
}

= (2.81,1.75,0.25,1.2,4)T %. Data from fit of provided stress-strain curves:
{R̄p0.2}= (−,−,156,137,54.6)T MPa.

Lessons learnt: Even after re-evaluation of the failure stresses by Qinetic the dis-
crepancies did not vanish and the author is still not able to explain the discrep-
ancies. The tendency in quadrant IV is not understood. Influence on the curve
have: The in-plane Poisson’s ratio ν12 (the smaller ν12, the steeper the curve),
the ‘healing’ effect from bi-axial compression (may increase failure strain), and
the so-called 2ndTg effect of the matrix beyond phyd > 200MPa, tackled in Cuntze
(2010b). Was measurement and test data evaluation correctly executed?
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7 Validation of 3D Failure Conditions by Laminate Data (WWFE-II)

7.1 Stress state {σ̂}= (0,0 ,σz, τ̂zy,0,0)T , TC10 in WWFE-II

Searched is the through-thickness failure shear stress τyz, f r(σ̂z).In Part A, an Arcan
test rig has been assumed by the author. This led to a fully different failure curve
for the laminate specimen.

Fig. 22 shows test specimen and test rig as used for obtaining the Part B test
data. Test specimens were tubes, machined from thick panels into small ‘dog-bone
pieces’ having a hollow cylinder gauge section and square ends for applying torque.
The specimens were subjected to combined axial compression and shear (torque).
A constant axial compression load was applied first and then the specimen was
twisted to failure under torque control. The fracture stress obtained when squeezing
this quasi-isotropic laminate is expected to be higher than R̂squeezing

3 = 780MPa.

Before including the provided approximate squeezing fracture value of the (struc-
ture) laminate into the (material) strength failure condition it should be clarified
that the type of fracture is to some extent of a material failure mode nature. For
instance, if filaments of the stacked layers come to lie upon another, this leads to a
failure which is not covered by a material strength failure condition. In this context,
one has to check whether the added quasi-isotropic laminate fracture values σz, f r

will really represent a final material failure. Nevertheless it is clear that onset of
squeezing practure of a laminate (not micro-cracking etc. anymore) is the “end” of
further operational use.

As the specimen is milled from a laminate brick edge effects (singularities) occur
and stress concentrations as well. Further, a non-smooth shear stress field at the
cross-section plane is present. Therefore, it can be stated that the test specimen
does not give clear experimental evidence. The specimen encounters multi-site
failure within each lamina and at the same time in all laminas (multi-ply failure).
This means that a multi-fold fracture danger is given in the stack which also lowers
the failure curve. It can be concluded that this specimen is not an adequate tool to
validate a strength failure condition.

The test specimen could not be traditionally modelled, analytically or by FEA. A
simple linear strength model was applied at the critical location which considers
the inter-acting inter-laminar stress state (σ3,τ31,τ23).

Lessons learnt: If one does not know test specimen and test rig one cannot make
a prediction. The specimen is not an adequate tool for validation. Despite of the
fact that mapping could be achieved the results cannot be generalized for design
purposes.
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Figure 22: Applied section shear load-caused maximum-thickness failure shear
stress τzy vs. applied through-thickness stress σz for a [45/-45/90/0]ns, car-
bon/epoxy laminate, IM7/8551-7. Figure a shows a 90˚-lamina of the stack of
the tube milled from a laminate block (for comparison figure b shows the tradi-
tional wound or tape-layered tube); b⊥⊥ = 1.21,b⊥|| = 0.3.tk = 0.25mm. {R̄} =
(2560,1590,70,185,90)T MPa, Rsqueezing

3 = 780MPa. ν⊥|| = 0.34,m = 2.8.

7.2 Stress state {σ̂}= (0,0,σz,0,0,0)T , TC12 in WWFE-II

The test specimen is a balanced cross-ply laminate block that is compressed in
thickness direction by a surface pressure σz =−p. To be predicted are the (average)
strain-stress curves of the in-plane normal strains ε̂x(σz) = ε̂y(σz), and εz(σz) ε̂x, ε̂y

and through-thickness (out-of-plane) normal strain ε̂z. Curing stress from effective
temperature: ∆T =-177˚ + 23˚ = -154˚: σ t

2 = 22MPa.
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Figure 23: Applied section shear load-caused maximum-thickness failure shear
stress τzy vs. applied through-thickness stress σz for a [45/-45/90/0]ns, car-
bon/epoxy laminate, IM7/8551-7.

Applying the data set provided for Part A the bottom curve is predicted for ε̂z using
E⊥ = 8400MPa. As can be seen a large discrepancy would remain.

The course of the Part B test data could be well mapped after studying the physical
situation with increasing pressure. At first a linear situation for this well-designed
laminate is faced. Then the filaments in thickness direction are more and more
pressed on another which increases the stiffness in thickness direction. This has
been modelled in Cuntze (2010b) by modifying E⊥.

The computation indicates wedge failure at about −400MPa.

 

Figure 24: Single stress-strain curves caused by a through-thickness compressive
stress σz =−p for a [0/90/0/90]ns carbon/epoxy laminate, IM7/8551-7. σx = σy =
0. Properties as for TC10

Lesson learnt: Squeezing of a laminate block cannot be modelled as a plain mate-



Facts and Effects to be Considered 155

rial failure condition problem. One should not forget a restriction by the required
design limit strain usually < 0.006. The laminate can be only re-used under thick-
ness compression but not for general loading.

8 Conclusions

- on quality of test data Part A (prediction) and Part B
It was very difficult for Qinetic to find reliable, well monitored test data to provide
the contributors with. This task is the most challenging one of the WWFEs. An
examination of several WWFE test cases is still necessary in order to satisfactorily
validate a theory on the contributors side, and to judge and compare the theories of
the contributing originators on the organizers side.

- on the FMC

• The FMC (here applied to UD material) is an efficient concept that improves
and simplifies design verification. It is simply applicable to materials, if clear
failure modes can be identified, and if the homogenized material element ex-
periences a volume change or a shape change or material internal friction. It
delivers a ‘global’ formulation of individually combined independent failure
modes, without the well-known short-comings of global failure conditions
which mathematically combine in-dependent failure modes.

• How well a static failure condition may be used for cyclic loading has to be
established. The author presented in Cuntze (2009) his ‘old’ idea of a Failure
Mode-based Damage Accumulation of Brittle Materials. Its application to
UD material is physically-based and lamina-oriented.

- on the application of the FMC-based UD failure conditions

• The UD fracture failure conditions employed are proven to work in prac-
tice. The full capacity of the 3D-fracture criteria could not be fully veri-
fied. Some essential stress combinations are merely investigated or even not
tested. Further, the organizers could not provide sufficient information on the
IFF modes.

• In the matrix-dominated load cases the IFF have a strong influence on the
stress-strain behaviour. Final failure occurs after the structure has degraded
to a level where it is no longer capable of carrying additional load. This is
most often caused by FF, however in specific cases by an IFF, too. An in-
clined wedge-shaped inter-fibre crack caused by IFF3 can lead to final failure
if it damages the neighbouring layers by its capability to cause 3D states of
stress and eventually delamination.



156 Copyright © 2010 Tech Science Press SDHM, vol.6, no.3, pp.123-160, 2010

• P predicted initial and final non-failure envelopes did not match the test re-
sults in a number of instances. Theory was expected to give the largest dis-
crepancy with test data in the high shear area because the computer software
code developed in the present work for non-linear analysis requires further
work to eliminate any convergence problems in case of high shear strains. In
case of large strains the non-linear analysis has to be further improved.

• In composite laminates, composed of stiff fibres and well-designed by net
theory, the fibre net controls the strain behaviour. Here, predictions are prac-
tically fully satisfying in the frame of the scatter of the design parameters.

• Usually a laminate is designed to be stable as a truss, and the laminae are
stacked at angles to generate a laminate robust against possible load changes.
This procedure leads to a well-designed laminate. Then the simple net theory
is approximately applicable.

- on discrepancy between theory and test

• Main lesson learned: “Analyse your analyses with respect to input and out-
put data and further, test your test data. Both may be worse than you think”.
From the applications could be learned: It’smore or less Beltrami’s hypoth-
esis + the consideration of friction all the successful FMC-conditions are
based on!

• Even in smooth stress regions a strength condition can be only a necessary
condition which may be not sufficient for the prediction of ‘onset of fracture’,
i.e. the in-situ lateral strength in an embedded lamina.

• High shear strains in practice are seldom permitted in technical applications
due to operational requirements, and further do not occur in the most often
used ‘well-designed laminates’ which are usually used in typical lightweight
structures.

• Due to the higher degree of anisotropy CFRP behaves partly pretty different
to GFRP.

• One should not mix up an increase of strength with an increase of resistance.
Of course, both these increases lead to a reduced stress effort E f f , that de-
termines the danger to fail. However, according to Eq.(2) E f f may become
smaller by a reduced equivalent stress σeq and by an increased strength R.
Both, these effects can take place under a superimposed hydrostatic stressing
which – on one side - lowers σeq and - on the other side - may improve the
strength by some ‘healing’.
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• In case of the Test Cases with not well-designed (fibre-dominated) laminates
we have to ask: What is failure? A ‘limit of deformation’ or ‘limit of usage’,
is to be defined there as a functional limit. These TCs respond to generally
interesting academic questions. One has to discriminate, always: What does
practice need and what is of scientific interest?

• Sources that may lead to a discrepancy between prediction and test are col-
lected below:

– Errors and approximations in the theory
– Errors in the experimental results and given material properties
– Errors in the evaluation of the experiment and interpretation of data
– Differences between fabricated and analysed laminate model
– Lack of sufficient test data in some domains.

• When developing and testing a laminated structure - in order to understand
remaining gaps between theory and experiment - we have always to keep in
mind:

– Experimental results can be far away from the reality like a bad theo-
retical model

– Theory ‘only’ creates a model of the reality, experiment is ‘just’ one
realisation of the reality. In this sense to say ‘Comparison with exper-
imental evidence’ in Hinton et al. (2004) is very dangerous. Unfor-
tunately in this paper some conclusions and assessments of the corre-
lations theory-test, performed by the theory originators are not accu-
rate. A test is not always an experimental evidence, for instance if it
is not correctly interpreted (TCs in WWFE-I and –II) or evaluated or
performed or . . .

– How meaningful is the scatter of test data for mapping and thereby for
modelling?

As an originator of a theory with some test experience I would like to conclude:

To obtain reliable test results is a bigger challenge than developing a theory.
Remarks: The complete development of the FMC theory and the participation in
the WWFEs were very effortful, non-funded elaborations of the author.
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