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Identification of Material Parameters for Structural
Analyses
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Abstract: Material parameters are adjustable coefficients in constitutive equa-
tions of the mechanical behaviour. Their identification requires a combined ex-
perimental and numerical approach, which results in a generally ill-posed inverse
problem. Methods commonly applied in computational mechanics like optimisa-
tion and neural networks are addressed, and problems like sensitivity, uniqueness
and stability are discussed. The cohesive model for describing ductile tearing is
chosen as practical example to substantiate the general considerations.
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1 Introduction

The finite element method (FEM) is a well-established, reliable and versatile tool
for assessing the structural performance, safety, durability and lifetime. Predictions
are based on mathematical models of the mechanical behaviour. The mathematics
behind is beyond dispute, it is the physics of the constitutive laws for deforma-
tion and damage that governs the reliability of the predictions. In particular, the
model parameters play a crucial role, which is regrettably often underrated. Ex-
perts of continuum mechanics, who establish sophisticated constitutive equations
for advanced applications, frequently consider parameter identification as a practi-
cal problem to be executed by material testers. The material scientists in turn tend to
distrust computational methods in general and to confuse material characterisation
for the experimental determination of so-called material properties independent of
any model.

The literature on parameter identification is much less extensive than that on ad-
vanced constitutive models. The simulations executed with a certain model appear
more intriguing than the question, how the respective material parameters have
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been determined. However, the reliability of structural analyses, which is of vital
interest for engineering purposes, depends on the accuracy of the material parame-
ters and can only be improved if the gap between constitutive modelling and testing
is reduced. This requires a mutual understanding among the specialists of the re-
spective methods and problems.

The present article aims at contributing to this process by outlining the general
principles and methods of parameter identification on the one hand and illustrating
the application for a common and comparably simple model of ductile tearing on
the other hand. Choosing a more complex constitutive model would just complicate
the presentation without any gain of deeper insight.

2 Material Characterisation and Parameter Identification

2.1 Material Parameters - Model Parameters

The notion of what material parameters are has changed in the history together with
the expansion of theory and mathematics into strength of materials, which allowed
for reducing different phenomena to just different boundary value problems (BVP)
governed by the same basic equations, namely deformation kinematics, Cauchy’s
equation of motion and material specific constitutive equations. Material parame-
ters are only meaningful in the context of the latter, i.e. a model of the mechanical
behaviour of a certain material. If this model is simple, e.g. isotropic elasticity or
elasto-plasticity, and the stress state is uniaxial, the respective BVP can be solved
analytically and the respective material parameters directly evaluated from a me-
chanical test. Thus the awareness of the catenation between a specific constitutive
model and the respective parameters has partly sunk into oblivion.

Material behaviour may be elastic or inelastic, temperature dependent, deformation-
rate and time dependent, isotropic or anisotropic. The phenomena are numerous
and the number of models proposed in the literature is even larger. The more com-
plex the phenomena are, which are subject to modelling, the more sophisticated
the models have to be and the more parameters appear in the models. No analyt-
ical solutions can be obtained any more, and due to the complex phenomena to
be described, the tests and their evaluation become more and more sophisticated.
This is the background of hybrid methods (Brocks and Steglich, 2007), which ac-
tually label the synergy between experimental and numerical methods for material
characterisation (Mahnken, 2004).

Fracture mechanics has introduced the concept of fracture toughness in terms of
stress intensity factor, K, J-Integral, crack-tip opening displacement (CTOD), δ ,
etc. (see the topical overview by Brocks et al., 2003). There are ongoing discus-
sions if and under which conditions they may be regarded as material parameters.
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The theoretical background rests on asymptotic solutions of the stress fields at crack
tips in elastic or elasto-plastic bodies. The pivotal question is, whether the fracture
toughness measured on test specimens, who are designed to match the underlying
theoretical concept, can be used for predicting crack extension in arbitrary engi-
neering structures. The simple answer is, “yes they can” as long as the stress state
in the structure resembles the stress state in the test specimen. If this is not checked
in practical applications, the predictions will most likely fail.

This problem of transferability dominated the discussions on the applicability of
JR-curves to ductile tearing for many years and finally promoted local approaches
to damage evolution (Lemaitre, 1986). The new constitutive theories came up with
new model parameters and evoked the discussion, whether these parameters may
be called material properties. On the background of constitutive modelling, this is a
pointless question, however. Understanding material parameters just as adjustable
coefficients in a certain model, gives up the universal claim of characterising in-
herent features of a material for the benefit of a more manageable and pragmatic
meaning. This perception will be adopted in the following.

2.2 The Identification Problem

The process of material characterisation is mathematically expressed as an inverse
problem (Mahnken, 2004, Brocks et al., 2008).

Let R(x, t) denote the response of a structure in terms of measurable quantities
to mechanical or thermal actions, F(x, t), with x and t being the coordinates and
the time, respectively. The response of an accordant constitutive model can be
described by a functional,

Rmod(x, t) = F t
τ=0 {G,c,F(x,τ)} , (1)

in dependence on the geometry, G, the material parameters, c = {ci}, and the load-
ing history, F(x,t). The functional F is represented by an analytical or numerical
solution of an initial boundary value problem (IBVP). It is assumed that this solu-
tion is obtained by a finite element (FE) model of the structure. Eq. (1) is addressed
as direct problem, where G, c, and F are the input and Rmod(x,t) is the output in
terms of a displacement, strain or stress field, which is recorded in a finite number
of geometrical points, xi, and time steps, t j.

For material characterisation, the structure is a test specimen that is particularly
designed for parameter identification, and hence the geometry, G, and the loading
history, F, are determinate and fixed by a test procedure. Assuming that a solution
of the direct problem, eq. (1), and a procedure for finding it exists, the functional
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mathcalF reduces to a mapping,

Rc 7→
G,F

RR : Rmod = R(c), (2)

with c ∈ Rc and Rmod ∈ RR, the spaces of physically meaningful material parame-
ters and response data, respectively.

The corresponding inverse problem consists of finding the parameter vector, c, for
a given experimentally measured response, R,

Rc 7→
G,F

RR : c = R−1 (R)
∣∣
G,F(xi,t j)

, (3)

(Bolzon et al., 2004, Mahnken, 2004). Mathematically, this implies that the given
information allows for a unique solution, i.e. R−1 is unique and R is complete. In
order that the parameters, c, may be called material parameters, i.e. transferable
to other structures, R−1 is supposed to be independent of Γ and F. It is assumed,
that the numerical calculation yields correct results, i.e. the implementation of
the material model is correct, the chosen boundary conditions represent the test
conditions and an adequate solution strategy including a reasonable meshing of the
structure has been chosen.

Numerous uncertainties interfere with the need for a unique solution, nevertheless.

The measured response contains measuring errors of various kinds, due to the test-
ing procedure and machine, the gauge, imperfections of the specimen geometry,
etc.. Random variations of test records can more or less be eliminated by averag-
ing. Systematic errors like offsets or drifts, effects of temperature etc. require a
compensation or subsequent adjustment. Response vectors from different kinds of
tests may also be weighted in the parameter identification process, according to a
subjective ranking of their respective significance.

Another important source of uncertainties is the scattering of material properties.
Various tests result in varying responses and will hence be represented by different
sets of parameters. As long as the scatter is minor with respect to engineering
purposes, mean values are acceptable. Very often only a single test is accomplished
and evaluated, anyway. But if scatter is an inherent feature, a sufficient number of
tests has to be provided and averaging is improper.

Last but not least, any material model provides an approximate representation of
the real behaviour, only. There is hence a systematic deviation between the model
response, Rmod , and the measured one, R, which can be minimised but never re-
solved. Increasing the number of parameters in a model in order to improve its
predictions is often not advisable as it may result in non-unique solutions.
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Uniqueness of material parameters is essential for any transfer to engineering struc-
tures, i.e. if the prediction of their respective mechanical behaviour is intended.
Non-uniqueness becomes obvious, if the application of the model to another spec-
imen type or loading configuration fails to yield satisfactory results, provided the
constitutive model itself is adequate. Hence, it is recommended to provide test data
for at least a second case and check the model response.

Missing uniqueness can be due to incomplete data, and additional experiments are
then required for the identification procedure. The design of appropriate tests for
parameter identification is as important as constitutive modelling itself.

Finally, stability of the solution means that the simulated structural response de-
pends continuously on the parameters. If this condition is not fulfilled, small per-
turbations in the test data, for example caused by measurement errors, may result
in uncontrolled oscillations of the model parameters. This is a model fault and will
most likely cause divergence of the optimisation procedure. Though being annoy-
ing, this is actually the least dangerous problem of all, as getting no solution is
better than getting a wrong one without realising it.

2.3 Optimisation Methods

Apart from manual fitting and trial and error, numerical optimisation techniques
are frequently applied, particularly for highly nonlinear models with numerous pa-
rameters. They minimise the “error”, i.e. the deviation between model and experi-
mental results with respect to some "target" or "quality function".

q(c) = ‖r(c)‖= ‖Rmod(c)−R‖→ min
c∈Rc

(4)

The solution will depend on the choice of the quality function.

The problem can be solved by deterministic or stochastic procedures. Determinis-
tic methods calculate variations of the parameter vector by a unique algorithm, so
that the path in the design space is always the same for identical starting vectors,
leaving no room for randomness. The advantage of this strategy is a fast conver-
gence for continuous functions. If there is more than one minimum of the target
function, the method will find the local minimum next to the starting vector only.
Stochastic methods determine variations of the parameter vector by a random gen-
erator. They are comparably slow in convergence but better suited for finding the
global minimum independent of the starting vector.

In a pure Monte-Carlo search, randomly distributed parameter vectors are gener-
ated and that one having the minimum distance to R according to eq. (4) is taken
as an estimate for the optimal parameter vector, c*. This procedure does not yield
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a very good estimate, in general, but can be used for determining a reasonable
starting vector in the parameter space.

Using deterministic optimisation methods (Mahnken and Stein, 1994, Bruhns and
Anding, 1999) to minimise eq. (4), the optimal vector, c*, is determined from the
necessary condition

∇q(c∗) = JT(c∗)r(c∗) = 0 (5)

with J being the Jacobian. As the residual, r(c), results from the numerical solution
of the IBVP, J has to be calculated by finite differences. A sequence of parameter
vectors ck+1 = ck + ∆ck = ck + αkdk with ‖rk+1‖ < ‖rk‖ is generated, where dk is
the search direction and αk is the step length. The search direction can for instance
be assumed along the direction of steepest decent, given by

dk =−∇q|ck =−JT
k rk. (6)

The search for a minimum point c* of eq. (4) is thus reduced to a sequence of
one-dimensional optimisation problems (Dennis and Schnabel, 1983).

In general, one may not expect the numerical models to depend smoothly on the
parameters and continuous derivatives to exist. The objective function may also
exhibit multiple local minima, so that the result of the minimisation process will
depend on the starting vector. In these cases, evolutionary algorithms (Schwefel,
1995) provide a way out of this trouble. They include some artificial intelligence
and use stochastics combined with search models mimicking natural phenomena,
namely genetic inheritance and Darwinian strife for survival. The individuals of
nature stand in a sequential competition to each other. Individuals, whose prop-
erties are better coordinated with the environment, have an advantage over others.
Badly adapted individuals lose the competition and are rejected.

Evolutionary algorithms (Müller and Hartmann, 1989, Furukawa and Yagawa, 1997)
maintain a population of individuals, represented by model responses, Rmod, that
evolve according to rules of selection, recombination and mutation of their genes,
represented by the parameters, c. Each individual of the population receives a
measure of its fitness in the environment by means of the target function, eq. (4).
Reproduction focuses attention on high fitness individuals. Optimisation can be
thought of as an evolution of model responses through various generations.

An evolutionary algorithm is not a random search. It uses stochastic processes, but
the result, i.e. the optimal parameter set, is non-random. Due to mutation and re-
combination, the procedure is non-deterministic, however, and therefore follows a
non-unique convergence path. This feature allows finding a global minimum of the
target function independent of the choice of the starting point. Various evolutionary
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algorithms have been proposed, such as genetic algorithms, evolutionary program-
ming, evolution strategies, genetic programming and classifier systems (Schwefel,
1995). Among the evolutionary algorithms, the evolution strategy became the most
prominent representative, which is commonly referred to be the best, i.e. fastest
and most efficient, for optimisation tasks.

2.4 Neural Networks

The concept of neural networks (NN) is derived from observations of the informa-
tion flux between biological neurons. A NN is trained to learn general nonlinear
relations. Mathematically it is a nonlinear operator, N , who maps in input vector,
x, to an output vector, y, of differing dimensions. In each synapse, incoming infor-
mation, x(n)

j , is multiplied by synaptic weights, w(n)
k j , and summed up to activations,

v(n)
k ,

v(n)
k =

Jn

∑
j=1

w(n−1)
k j x(n−1)

j , n = 1, ...,N, (7)

which yield the outgoing information, y(n)
k , via nonlinear activation functions, y(n)

k =

ϕ
(n)
k

(
v(n)

k

)
. The latter may include thresholds below which no outgoing signal is

transmitted. A so-called feed-forward neural network consists of N layers, where
the output, y(n−1) , becomes the input, x(n) , of the subsequent layer.

For the purpose of parameter identification, the operator is deployed to solve the
inverse problem of eq. (3),

RR 7→ Rc : c = N (R) , (8)

(Ghaboussi, 1991, Sumpter, 1996, Broese and Löffler, 2004), where the input of
the first layer is x(0) = R and the output of the Nth layer y(N) = c.

The synaptic weights, w(n)
k j , represent the degrees of freedom, which are adjusted to

a particular BVP defined by a particular test type and constitutive model in order
to match the relation between input, R, and output data, c. This is realised by
training of the network with the help of simulation results obtained from the model
for various parameter sets: R mod = N −1 (c).
NNs are frequently applied in combination with indentation tests to determine pa-
rameters of elasto-plastic constitutive equations (Huber et al., 2002, Bolzon et al.,
2004). A once trained network can, in principle, provide material parameters c
from test results R of the same type for all materials being described by the same
constitutive model. Thus, local scatter of material data within an inhomogeneous
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plate or billet (e.g. Rao et al., 2010) or scatter of properties between different heats
can be determined.

NNs do not allow for any quantification of the “quality” of the solution as, e.g., eq.
(4).

3 The Cohesive Model of Ductile Tearing

3.1 General Concept

The concept of a cohesive zone for modelling crack extension traces back to Dug-
dale’s strip yield model (Dugdale, 1960) and to Barenblatt’s approach of avoiding
unrealistic singular stresses at a crack tip (Barenblatt, 1962). Modern phenomeno-
logical cohesive models are realised in the context of FE models and describe var-
ious kinds of decohesion in a process zone by a relation between surface tractions
or cohesive stresses, σT = {σn,σt,σs}, having one normal and two tangential com-
ponents and the material separation, δ T = {δn,δt,δs}, where δ = [u] = u+− u−
is the displacement jump over the interface. Cohesive zones are introduced in fi-
nite element meshes as surface elements at the boundaries of solid elements along
pre-defined crack paths.

The constitutive relation of the interface elements, the so-called cohesive or, more
precisely, decohesion or separation law, σ = f(δ ), which represents the effective
mechanical behaviour due to the micromechanical processes of material separation
and fracture, cannot be measured directly. Various functions have been proposed
and used in the literature (see overview by Brocks et al., 2003), some of which are
shown in Figure 1.

All these approaches have in common, that stresses reach a maximum, the cohesive
strength, σ c, beyond which they decrease and become zero at some critical separa-
tion, δ c. Alternatively to δ c, the energy-release rate or separation energy, Γc, which
represents the area under the traction-separation law,

Γc =
δc∫

0

σn(δn)dδn, (9)

can be introduced as a cohesive parameter.

In order to quantify the various shapes, Scheider (2000) proposed a rather versatile
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Figure 1: Various separation laws for normal tractions (mode I fracture): a) linearly
decreasing (Hillerborg et al., 1976), b) third order polynomial (Needleman, 1987),
c) exponential (Needleman, 1990), d) piecewise polynomial with stress plateau
(Scheider, 2000).

and steadily differentiable cohesive law for mode I,

σn(δn) =

σc ·


2
(

δn
δ1

)
−
(

δn
δ1

)2
for δn ≤ δ1

1 for δ1 < δn ≤ δ2

2
(

δn−δ2
δc−δ2

)3
−3
(

δn−δ2
δc−δ2

)2
+1 for δ2 ≤ δn ≤ δc

(10)

which includes two additional shape parameters, δ 1 and δ 2. The parameter δ 1
should be chosen as small as numerically possible to obtain a high initial stiffness
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of the cohesive elements, as the deformation of the structure has to be dominated
by the deformation of the solid elements. The parameter δ 2 allows for a variation
between deformation controlled, δ2→ δ1, and an abrupt stress release, δ2→ δc, see
Figure 2, and hence is a third model parameter.

Γc

a)

δc

σn

δn

σc

Γc

b)

δc

σn

δn

σc

 
Figure 2: Separation laws according to Eq. (10) for a) δ 2 = δ 1 = 0.01 δ c, b)
δ 2 = 0.99 δ c.

The cohesive law is a phenomenological representation of the mechanisms of dam-
age evolution and material separation on the micro-scale. Evidence on its shape
can thus be found from cell models, and the cohesive parameters achieve a mi-
cromechanical interpretation (Brocks, 2005). Respective simulations have been
performed by Broberg (1997), Siegmund and Brocks (2000), Scheider (2009) for
ductile tearing of metals controlled by void nucleation, growth and coalescence,
and by Tijssens (2000) for brittle fracture of cementitious materials and crazing of
polymers, respectively.

3.2 Effect of the Shape

The effect of the shape of the separation law on the macroscopic mechanical be-
haviour is still discussed controversially in the literature though there is a gen-
eral consent that macroscopically brittle (elastic) fracture of ceramics and rock is
best described by a linearly decreasing traction-separation behaviour like in Figure
1a whereas ductile tearing of metals involving plasticity goes along with a stress
plateau like in Figure 1d.

Hillerborg et al. (1976) applied a cohesive model with a linearly decreasing separa-
tion function as shown in Figure 1a to the fracture of concrete. The pseudo R-curve
behaviour of concrete due to aggregates has later been incorporated by a bilinearly
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decreasing function, see e.g. Petersson (1981), Maier et al. (2006). Quasi-brittle
fracture of lamellar γTiAl was successfully modelled by Kabir et al. (2007) using
a cohesive law according to eq. (10) with δ 2 ≈ δ 1 as in Figure 2a. Lin (1998)
simulated ductile crack growth by a Dugdale-type cohesive law similar to Figure
2b.

Petersson (1981) presented the first comparative investigation on various cohesive
laws, distinguishing between linearly decreasing, Dugdale–type and two different
bilinearly decreasing models for plain and fibre reinforced concrete, respectively.
Elices et al. (2002) studied three different materials, namely concrete, PMMA
and steel with three different shapes of the cohesive law and concluded that the
traction-separation law must be chosen in dependence on the class of materials. An
analytical study of a block-peel test with an ideally rigid bulk material by Volokh
(2004) also revealed that the shape of the separation law is important.

A contradictory and hence frequently cited statement by Tvergaard and Hutchinson
(1992) that the shape of the separation law is of minor importance rests upon sim-
ulations of linear elastic fracture by a trilinear function similar to Figure 1d with
varying shape parameters δ 1 and δ 2. Due to the restrictions of this investigation
the conclusion may not be generalised. Alfano (2006) compared bilinear, linear-
parabolic, exponential and trapezoidal separation laws and concludes that whether
or not the shape has an important effect may depend on the boundary value problem
and, in particular, on the ratio between the interface toughness and the stiffness of
the bulk material. Numerical studies on ductile crack extension in C(T) and M(T)
specimens by Scheider and Brocks (2003) substantiate an effect of the shape of the
separation law on the crack growth resistance (R-curve) depending on the specimen
geometry. In addition to the effect on R-curves, Li and Chandra (2003) found an
influence on the size of the plastic zone at the crack tip.

The preceding overview shows that generalising statements on the effect of the
shape of the separation law are unhelpful as they may turn out to be either trivial
or improper. Respective investigations have to consider and distinguish between
specific classes of materials and they should particularly include studies on differ-
ent specimen geometries considering the problem of transferability. Last but not
least, it has to be noted that the shape of the separation law affects the numerical
performance of the model (Alfano, 2006).

Micromechanical studies on damage evolution in elastic-plastic materials (Broberg,
1997, Siegmund and Brocks, 2000, Scheider, 2009) as well as simulations of ductile
crack extension support the introduction of a stress plateau into the cohesive law as
in Figure 1d. Its width can be quantified by the shape parameter δ 2, if eq. (10) is
adopted. The determination of appropriate values of δ 2 would require systematic
numerical and experimental studies on various specimen geometries and on the
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transferability of the cohesive parameters in dependence on δ 2. This is actually
an open issue. Numerical performance is an additional criterion, as large values
δ 2→ 1 may derogate the convergence.

Numerical simulations of crack extension in aluminium sheet metal (Scheider et
al., 2006, Brocks and Scheider, 2007, Scheider and Brocks, 2008) have been suc-
cessfully performed with a value of δ 2 = 0.5 δ c. which will also be used in the
following examples. Thus, the model includes just two parameters, namely cohe-
sive strength, σ c, and critical separation, δ c, or cohesive energy, Γc, alternatively,
which is particularly beneficial for providing an insight into the identification pro-
cess and its problems.

3.3 Identification Process

The cohesive parameters controlling crack extension are identified on standard frac-
ture mechanics specimens like centre cracked panels, M(T), and compact speci-
mens, C(T), as well as a Kahn-specimen. The latter has been proposed by Kauf-
mann & Knoll (1964) as a simple test configuration to measure fracture toughness
of aluminium alloy sheets. It was first adopted to identify cohesive parameters by
Chabanet et al. (2003).

Global quantities like force, F , and load point or load line displacement, V , and
local quantities like CTOD, δ , and crack extension, ∆a, are monitored in the tests
and in the simulations. Their values, i.e. either a global load-displacement curve,
F(V ), or a resistance curve (R-curve), δ (∆a) or J(∆a), are taken to calculate the
quality function according to eq. (4). Crack resistance will be denoted as R(∆a) in
the following, which has the meaning of either measure, J or δ , not to be mistaken
for the symbol R used above to generally denote the response of the system. Thus
we have

q =

√√√√√ 1
Vend

Vend∫
0

(
Fmod (V )−F(V )

F(V )

)2

dV (11a)

or

q =

√√√√√ 1
∆aend

∆aend∫
0

(
R mod (∆a)−R(∆a)

R(∆a)

)2

da. (11b)

As the curves are monitored as discrete data points, the integration has to be per-
formed numerically. Obviously, test and numerical results, F and R, have to be
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assigned to identical arguments, V or ∆a, respectively. If the data are reduced to m
equidistantly distributed points the quality function can be calculated by

q =

√√√√ 1
m

m

∑
i=1

(
Fmod

i −Fi

Fi

)2

, Fi = F(Vi) (12a)

or

q =

√√√√ 1
m

m

∑
i=1

(
Rmod

i −Ri

Ri

)2

, Ri = R(∆ai). (12b)

For NNs, the complete curve can never be used but must always be reduced to a
few data points, which form an input vector of length n:

x = {F1,F2, . . . ,Fn} , or

x = {R1,R2, . . . ,Rn}
(13)

Though the data points do not necessarily have to be equidistant, it is nevertheless
advisable in order not to weight some regions of the curve more than others - unless
this is done on purpose.

(a) (b)

Figure 3: Quality function q calculated based on F(V ) data; (a) for an M(T) speci-
men, (b) for a Kahn specimen.



202 Copyright © 2010 Tech Science Press SDHM, vol.6, no.3, pp.189-212, 2010

In a numerical study, the differences in the error estimation of a structural response
using either eq. (11a) or (11b) have been investigated. Crack propagation in dif-
ferent fracture specimens made of a high strength aluminium sheet has been sim-
ulated by plane-stress models with varying cohesive parameters {σ c; Γc}. The
parameters ranges were σ c ∈ [860; 980] MPa and Γc ∈ [8; 20] kJ/m2. The refer-
ence result in this study is no experiment but the simulation with the parameter set
{920 MPa; 17 kJ/m2} (indicated by in the following Figures), i.e. the error for the
respective simulation is 0. The intention of this study was to evaluate the unique-
ness of the cohesive parameters. The quality functions calculated with the F(V )
data and m = 4 in eq. (12a) are displayed in Figure 3, namely for an M(T) panel in
Figure 3a and for a Kahn specimen in Figure 3b.

It is visible that in both cases the minimum does not have the shape of a bowl
but rather of an elongated valley, which is even more pronounced for the Kahn
specimen than for the M(T). This clearly indicates that the parameters cannot be
identified uniquely based on global mechanical quantities remote from the crack
tip. Similar results are reported by Maier et al. (2006).

   
(a)                                             (b) 

Figure 4: Quality function q calculated based on an R-curve; (a) for an M(T) spec-
imen, (b) for a Kahn specimen.

If an R-curve based on at least one local quantity, ∆a, is taken instead, the error
contours have a distinct minimum as displayed in Figure 4, again for the M(T)
panel (a) and for the Kahn specimen (b).

These results prove that only near-field data, particularly R-curves are suited for
parameter identification.

In daily routine nevertheless, parameter identification might be performed based
on force-displacement curves, since this data can easily be measured whereas more
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effort is necessary to obtain an R-curve. The following example shall therefore
display the possible error which is made during a parameter identification using
experimental F(V ) data of a Kahn specimen made of Al 2024 used for airplane
fuselages. The reason for taking a Kahn-type specimen was due to the curved
structure of the fuselage, which did not allow for manufacturing a larger flat panel.

Three different procedures have been applied, namely an evolution strategy, dif-
ferent gradient optimisation methods and a NN. Two of these strategies, the evo-
lutionary algorithm and the NN, are reported in Brocks et al. (2008). A Python
programming environment has been used for the optimisation using the SciPy li-
brary package1 for mathematical and scientific programming. It includes several
routines for constrained optimisation, from which the following three were used:

fmin_l_bfgs_b: The L-BFGS-B constrained optimiser by Zhu, Byrd, and Nocedal

fmin_tnc: Truncated Newton Code originally written by Stephen Nash and adapted
to C by Jean-Sebastien Roy.

fmin_cobyla: Constrained Optimization BY Linear Approximation

The results are displayed in Figure 5 for the NN and the gradient methods. Again,
the first striking result is that there is no unique minimum, Secondly, the three gra-
dient algorithms yield different minima due to different step sizes and gradient cal-
culations though all processes started from the same initial vector, σc = 480 MPa,
δ c = 0.08 mm. In particular, the cobyla algorithm, which uses a gradient in the
very first iteration only and then approaches the minimum with finite steps within
a trusted region, pointed in a direction quite different from to the two other algo-
rithms, which calculate the gradient in each time step and use larger step sizes.

The NN yields a point which is also located in the valley of minimum error. The
training results can be used to generate the contour plot of the quality function, q,
in Figure 5, since the whole parameter plane is scanned using 30 simulations in the
range δ c = [0.04; 0.20] mm and σ c = [470; 570] MPa.

The results of the evolution algorithm, which are not displayed in Figure 5 for
clarity, also indicate that the minimum is stretched, since 5 out of 8 individuals of
the 41st generation are located along the valley (Brocks et al., 2008). The generic
algorithm allows generating a quality surface from all performed simulations. As
a gradient algorithm proceeds only along a specific direction and does not scan the
whole parameter plane, such a plot cannot be obtained by this method. However, a
sensitivity analysis at the optimum can be performed, since gradient information is
available.

1 http://www.scipy.org
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Figure 5: Quality function q calculated based on F(V ) data of a Kahn specimen
made of Al 2024 and optimisation results from different algorithms.

3.4 Transferability

As pointed out in section 2.2 already, a numerical model is only useful, if the
parameters identified from small specimens can be transferred to real large-scale
structures, at least within well defined limits of application.

Two main questions have therefore to be answered:

(i) Which specimen should be used to identify a reliable and unique set of pa-
rameters, so that the transferability from the specimen used for parameter
identification to the structure is ensured?

(ii) Where are the limits for transferability in general?

One important issue, which is often addressed in the literature with respect to the
latter question is whether the assumption of constant and unique cohesive param-
eters is sufficiently accurate for precracked structures under either plane stress or
plane strain, see e.g. Siegmund and Brocks (1998), Banerjee and Manivasagam
(2009).

The following example investigates the alloy Al 5083 H321, which is mainly used
in shipbuilding and automotive industry. Many different experiments on pre-cracked
and uncracked sheets (thickness t = 3 mm) have been performed, in particular:
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• smooth and notched flat bars,

• C(T) specimens with W = 50, 150 and 1000 mm,

• M(T) specimens with 2W = 100 and 300 mm,

• Biaxial loaded cruciform specimen under various load ratios.

Plane-stress crack-propagation analyses using the cohesive model have been per-
formed on these specimens as reported in Scheider et al. (2006) and Brocks et al.
(2007). In these investigations, parameter identification was based on trial and er-
ror, which depending on the experience of the user leads to good results but needs
a large amount of user interaction and cannot be executed automatically. In the fol-
lowing, the determination of parameters will be approached from a different point
of view, addressing mainly the question of transferability of the parameters and
trying to answer the question, which specimen to use for identification.

 

Figure 6: Training matrix and final results for M(T) and C(T) specimen of Al 5083.

According to the previous results, only R-curves should be used. From the previ-
ous investigations it was known that an adequate parameter set is given by σ c = 560
MPa and Γc = 10 kJ/m2, using the traction-separation law of eq. (11) with δ 2 = 0.5δ c.
Here, a more detailed analysis of the identification will be presented. For this pur-
pose NNs have been trained separately for a C(T) and an M(T) specimen. The
training range is Γc = [8; 11.5] kJ/m2 and σ c = [550; 590] MPa and 11 simulations
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have been performed for each specimen. After training of the NN with an input
vector containing four CTOD values at ∆a = 1, 3, 5 and 7 mm the respective exper-
imental R-curves were fed into the network. It turned out that the results for C(T)
and M(T) specimen differ by some amount both with respect to cohesive strength
and energy, see Figure 6, where the final values for both specimens (hollow sym-
bols) and the training matrix (solid symbols) are shown in the parameter plane.
One can see that the C(T) has a higher cohesive strength but lower cohesive energy
compared to the M(T) specimen. This is in accordance with other investigations,
which indicate that a C(T) specimen has a higher stress triaxiality at the crack tip
than the M(T) specimen. As shown e.g. in Scheider et al. (2010), this leads to
increasing cohesive strength and decreasing cohesive energy.

However, even though a discrepancy between the parameters of the two specimen
geometries exists, the questions remain: (i) Does this difference significantly af-
fect the transferability for engineering purposes, and (ii) which of these specimens
should be used for parameter identification? As an answer to the first question,
each specimen has been simulated using the optimum parameter set of the respec-
tive other one. The resulting R-curves together with results of previous simulations
using the originally published parameter set (σ c = 560 MPa, Γc =10 kJ/m2) are pre-
sented in Figure 7. First of all, one can see that the differences between all curves
are less than 10% of their absolute values. Even though the simulation with param-
eters specifically optimised for the respective specimen fits the experimental results
best, marked by symbols, the two other curves lie close as well. The original set
identified by trial and error represents a reasonable compromise for both specimen
types. If safety is of major concern, one might argue that a lower R-curve which
is obtained with the C(T) specimen yields conservative results, but the differences
are too small to be generalised.

Calculating the quality function in the whole range of cohesive parameters for both
specimens will be illustrative. The contour plots are shown in Figure 8a for the
C(T) and Figure 8b for the M(T) specimen. The parameter set identified by the
NN is indicated by the symbol. The NN yielded reasonable results in both cases,
but more important is the fact that the minimum for the C(T) forms a valley again,
whereas it is more clearly distinct for the M(T). This is similar to the results in the
previous section, where the minimum for the Kahn specimen in Figure 4a is more
stretched than for the M(T) specimen in Figure 4b.

The dependence of the cohesive parameters on the stress triaxiality (Siegmund and
Brocks, 1999, Anvari et al., 2006, Banerjee and Manivasagam, 2009) is not further
delineated here, mainly because the effect is marginal under engineering aspects in
the plane-stress examples presented above. What should be kept in mind, however,
is that the cohesive parameters will emerge as different in plane stress, plane strain
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and three-dimensional models (Scheider and Brocks, 2008), i.e. for thin and thick
structures, respectively.

4 Summary and Conclusions

The identification of material parameters in constitutive equations requires a com-
bined experimental and numerical approach, which results in a generally ill-posed

      

(a)                                               (b) 

 
Figure 7: R-curves for pre-cracked specimens made of Al 5083; (a) C(T), (b) M(T).
Each subfigure contains the experiments and the numerical results with parameters
published by Scheider et al. (2006) and values specifically optimised for the C(T)
and the M(T) specimen.

    

(a)                                               (b) 

 Figure 8: Contour plot of the quality function for different specimens; (a): C(T);
(b): M(T). The parameter set obtained by NN is indicated by the white diamond.
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inverse problem. Methods commonly applied in computational mechanics, namely
optimisation procedures and neural networks have been described and applied to
determine cohesive strength and energy. The examples treat ductile crack extension
in thin aluminium sheets, which is simulated under the assumption of plane-stress
states. Evaluation of a quality (or error) function quantifying deviations between
simulation results and a reference solution, commonly obtained from testing, pro-
vide useful information on appropriate specimen geometries and measuring data
suited for parameter identification. Based on the results described above, the fol-
lowing conclusions can be drawn:

• Data of the crack-tip near-field like CTOD and crack extension, ∆a, is more
significant for identifying unique values of cohesive parameters than far-field
data. Thus R-curves are recommended for parameter identification rather
than global load-displacement curves.

• Large crack extension is beneficial for an easier evaluation and significance
of an R-curve.

• Though the Kahn-specimen is attractive for being a simple and inexpensive
test configuration for sheet metal it is poorly suited for the identification of
cohesive parameters.

• It appeared that tensile specimens like M(T) display a more distinct minimum
of the quality function than specimens with a high bending fraction. Tensile
specimens tend toward numerical instabilities in the simulations on the other
hand. Training of a NN which requires scanning of a larger parameter region
may hence encounter convergence problems.

• As training has to be executed just once, NNs are specifically suited if a
number of different tests is to be evaluated in order to determine variations
of material parameters. They do not per se provide any quantification of
the “quality” of the solution; an error function may be defined however, if a
reference solution is available, and evaluated ex post based on the simulations
performed for the training.

• Unlike gradient methods, evolutionary algorithms follow non-unique opti-
misation paths. This feature allows finding a global minimum of the quality
function independent of the choice of the starting point.
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