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Propagation of Cracks in Selected Specimens Subject to
Mixed-Mode

G. Dhondt1 and D. Bremberg2

Abstract: In a previous article the K-distritubion along the crack front of several
mixed-mode specimens was investigated [Dhondt, Chergui, and Buchholz (2001)].
Both the modified virtual crack closure integral method and the quarter point ele-
ment stress field method yielded results close to the available reference solutions in
the literature [Murakami (1987)]. The present paper extends these results in two as-
pects. First, the meshing procedure used to obtain a focused mesh at the crack front
is modified in order to deal with highly curved cracks. Secondly, the K-distribution
along the initial crack is used to perform a crack propagation calculation. The form
of the propagated cracks agrees well with what one expects and with experimental
evidence.
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1 Introduction

Due to weight reduction and high temperatures crack initiation life is often not
sufficient to meet lifing requirements. Therefore, crack propagation calculations
are becoming more and more standard in the development phase of an aircraft en-
gine component. Furthermore, crack propagation predictions can contribute signif-
icantly to the life extension of damaged parts. The complex loading usually leads
to a mixed-mode state at the crack front, i.e. the crack is loaded both in tension
and shear. This leads to complex crack propagation patterns, which have to be
predicted. In the past, a lot of new software developments were applied to solve
complex crack propagation shapes such as the boundary element method [Helldör-
fer (2009)], the partition of unity finite element method (PUFEM) [Melenk and
Babuska (1996)], meshless methods [Wen and Aliabadi (2010)][Belytschko, Lu,
and Gu (1994)], XFEM [Areias and Belytschko (2005)], the dual BEM [Kuhn and
Kolk (2003)] and meshless local Petrov-Galerkin solutions [Han and Atluri (2003)].

1 MTU Aero Engines, Munich, Germany
2 MTU Aero Engines, Munich, Germany and KTH Stockholm, Sweden



306 Copyright © 2010 Tech Science Press SDHM, vol.6, no.4, pp.305-327, 2010

Although each of these methods has its merits, including more advanced phenom-
ena such as large deformations, nonlinear material behavior and 3-D temperature
and residual stress fields usually proves quite difficult. In this paper, the classical fi-
nite element is taken. It is widely used and nearly every nonlinear phenomenon one
can think of has been covered. The major drawback is that the complete volume of
the cracked structure has to be meshed. Especially the introduction of the complex
crack geometry represents a real challenge. In the past, a program with the name
CRACKTRACER has been developed at MTU to cope with mode-I cracks. To this
end, the uncracked structure was meshed with hexahedrons and a local remeshing
near the crack generated a suitable focussed mesh at the front. In later years applica-
tions have shown that, although the method performed very well for mode-I cracks,
the extension to mixed-mode cracks was not realistic. Therefore, an alternative ap-
proach was started four years ago, leading to the new software CRACKTRACER
3-D[Bremberg and Dhondt (2008)][Bremberg and Dhondt (2009)]. It generates a
hexahedral tube along the crack front, while the remaining parts of the domain of
interest are automatically filled with tetrahedrons. The radius of the tube is a mono-
tonically decreasing function of the local curvature of the crack front. This more
flexible approach was tested on specimens and real engine structures and proved to
be very stable and reliable. In the present context, it is applied to the specimens
which were analyzed in [Dhondt, Chergui, and Buchholz (2001)], [Buchholz, Just,
and Richard (2003)] and [Buchholz, Wiebesiek, Teichrieb, and Fulland (2008)]
(Fig. 1).

2 Outline of the method

The procedure used in CRACKTRACER 3-D has been described extensively in
other publications [Bremberg and Dhondt (2008)]. Therefore, a short outline should
suffice. The input to CRACKTRACER 3-D consists of a CalculiX [Dhondt and
Wittig (1998–2010)] input deck of the uncracked structure, a file describing the
initial crack geometry, a crack propagation data file and a file defining a limited
volume of elements large enough to contain the crack. The requirements on the
input deck of the uncracked structure are:

• the mesh must be three-dimensional

• the calculation must be linear

• only options available in CalculiX are allowed.

In particular, the mesh of the uncracked structure is only relevant to the extent that
it should describe the geometry of the part in sufficient detail.At first, a flexible
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Figure 1: Overview of the specimen configurations

tube is generated with the crack front as trajectory line. The tube is filled with a
structured and focussed 20-node hexahedral mesh. Intersection operations includ-
ing the free boundary of the domain, the duplicated crack face and the flexible tube
result in a geometric description of a transition region connecting the tubular mesh
and the remaining input mesh that is not part of the defined domain. This transi-
tion region is automatically filled with an unstructured 10-node tetrahedral mesh by
use of NETGEN [Schöberl (1997)]. The separate and dissimilar meshes are finally
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connected by multiple point constraints. This is clearly visible in Fig. 2. At the
crack front the 20-node hexahedra are collapsed into quarter point elements. These
exhibit the characteristic 1/

√
r stress and strain singularity typical for linear elastic

crack calculations [Barsoum (1976)].

Figure 2: Mesh of the cracked Compact Tension Shear specimen

All previous actions are coded in the CRACKTRACER 3-D preprocessor. The
result is a CalculiX input deck for the cracked structure. The domain file limits
the remeshing to a part of the structure. Since the newly generate hexahedral and
tetrahedral meshes are usually more dense than the original mesh, specifying a
domain limits the number of newly created elements and consequently the size of
the cracked input deck. Furthermore, the user should try to define the crack domain
in such a way that all loading and boundary conditions are external to the domain.
This is important since the interpolation of the boundary conditions usually leads
to additional inaccuracies.

Running CalculiX on the cracked input deck generates a file containing the stresses
at the reduced integration points ahead of the crack front. The stress intensity fac-
tors are determined by comparing these stresses with the analytical expressions
for the asymptotic stress field at the crack front [Dhondt (2002)]. Therefore, the
method is also called the Quarter Point Element Stress method (QPES). This yields
KI , KII and KIII in each node along the crack front. By assuming that the crack
propagation takes place in a plane orthogonal to the maximum principal asymptotic
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stress a deflection angle ϕ and a twist angle ψ can be determined [Dhondt (2003)].
The tensor obtained by multiplying the asymptotic stress tensor by 2π

√
r is called

the self-similar stress tensor. It has the same principal values as the asymptotic
stress tensor but it has the dimension of stress intensity factor. The largest prin-
cipal value of the self-similar stress tensor is interpreted as the equivalent stress
intensity factor. It unites the effect of KI , KII and KIII in one scalar. This scalar is
used in a mode-I crack propagation law such as the Paris law to obtain the crack
propagation velocity. Usually the number of cycles is determined for a fixed crack
propagation increment, after which a new finite element calculation is performed.
For this increment it is assumed that the K-values remain approximately constant.
The size of the increment depends on the local curvature of the crack front. Indeed,
for a large curvature the crack propagation increment should be rather small in or-
der to capture the propagating crack accurately. The crack propagation increment
is subsequently triangulated and joined with the crack triangulation of the previous
increments. All actions following the CalculiX run are collected into the CRACK-
TRACER 3-D postprocessor. At that point a new crack front has been generated
and the loop can start over again.

3 The center cracked tension specimen (CCT)

The center cracked tension specimen consists of a rectangular plate under tension
with a central crack under 45◦ (Fig. 2). The width, length and thickness of the spec-
imen are 48 mm, 96 mm and 12 mm, respectively. The total length of the initial
crack is 24 mm. The Figure shows the crack at the end of the calculation. Clearly
visible is the concentric hexahedral mesh surrounding the crack front and the tetra-
hedral mesh filling the space in the domain left after meshing the tubes. In total 22
iterations were performed. Due to the rather small size of the crack iterations the
resulting tetrahedral mesh is also rather fine close to the crack extension.

The initial (iteration 1) and final (iteration 22) K-distribution is shown in Fig. 3.
The values were normalized by σ

√
πa, where σ is the normal stress applied to

the ends of the specimen and a is half the initial crack length. They agree very
well with the values reported in [Dhondt, Chergui, and Buchholz (2001)]. This
is not too surprising, since the same method (QPES) was used to determine the
stress intensity factors, only the mesh is different. At the start of the calculation
KI and KII are dominant and symmetric across the thickness, KIII is antisymmetry
and rather small. The crack propagates in such a way that mode-I is favored, i.e.
the crack twists until the loading is perpendicular to the crack face. This is clearly
illustrated by the final K-distribution which is entirely dominated by KI . Fig. 5
and Fig. 4 show the crack at the end of the calculation. It has propagated in a
direction perpendicular to the loading and in a completely symmetric way, as was
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Figure 3: K-distribution along one of the crack fronts in the CCT specimen

to be expected.

The crack length and the equivalent K-factor are shown in Fig. 6 and Fig. 7, re-
spectively. The crack length at first increases in a linear way but accelerates sub-
stantially near the end of the calculation. This is typical for stress-induced crack
propagation. This is also reflected in the equivalent K-factor: due to the crack prop-
agation the ligament which is left becomes smaller and is subject to a significantly
higher stress. This leads to an increasing stress intensity factor and an even more
strongly increasing crack propagation rate (the crack propagation rate is usually a
quadratic or even higher order function of the stress intensity factor).

4 The single edge notch specimen (SEN)

The geometry of the SEN specimen with initial crack is shown in Fig. 8. The length
(x-direction) is 100 mm, the height (z-direction) is 50 mm and the thickness (y-
direction) is 50 mm. A plane crack with straight crack front is introduced halfway
the heigth. Its length is 50 mm. At the top of the specimen a uniform displacement
is applied in y direction, whereas the bottom is fixed in all directions. The applied
displacements essentially lead to mode-III loading at the crack front, although a
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Figure 4: Final crack in the CCT speci-
men (shaded representation)

Figure 5: Final crack in the CCT speci-
men (front faces removed)

substantial mode-II component also arises due to mode coupling. The coupling of
mode-II and mode-III originates from the intersection of the crack front with the
free surface.

In Fig. 8 the different regions of the cracked mesh are clearly visible. Along the
top, bottom, and left side of the specimen one layer of brick elements is left over
from the uncracked mesh. It is on this part that the boundary conditions are ap-
plied. By excluding these elements from the crack domain (the crack domain is
defined as an element set that must be provided by the user) they are not modified
by the preprocessor and any boundary conditions and loadings do not have to be
interpolated on the new mesh. This reduces the computational time and increases
the accuracy. The crack domain is remeshed in two regions: clearly visible is the
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Figure 6: Crack length during propagation
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Figure 7: Normalized equivalent K-factor during propagation
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Figure 8: Mesh of the SEN specimen with initial crack

tube with a focussed hexahedral mesh along the crack front. The remaining part of
the crack domain was filled with tetrahedra. The mesh in the crack domain is com-
pletely independent from the original mesh in the uncracked structure. All three
meshes (the elements kept from the uncracked mesh, the hexahedral mesh in the
tube and the tetrahedral mesh elsewhere) are interconnected with linear multiple
point constraints.

Fig. 9 shows the initial and final K-distribution along the crack front. The K-values
were normalized by τ

√
πa, where τ is the mean xy shear stress at the bottom of the

specimen with initial crack and a is the initial crack length. A total of 50 iterations
was performed. At the start of the calculation KI = 0, KIII is positive and symmetric
while KII is antisymmetric through the thickness. As specified before, the intersec-
tion of the crack front with the free surface leads to the mode-II/mode-III coupling.
The initial K-distribution agrees very well with the results obtained in [Dhondt,
Chergui, and Buchholz (2001)]. At the end of the calculation mode-I is dominant,
while KII is virtually zero. The KIII values have decreased by about 80%. In this
context it should be mentioned that the deflection angle ϕ , which is essentially
triggered by mode-II is fully taken into account during propagation, while the twist
angle ψ is not taken into account. Indeed, it is not possible to incorporate the twist
in the propagating crack surface without dropping continuity requirements. Backed
by observations on the crack propagation in three point bending specimens, it is ar-
gued that mode-III leads to discontinuous crack faces reminding of factory roofs
[Suresh (2003)]. Therefore it is not surprising that mode-III does not completely
disappear during propagation.

The rather complicated crack propagation surface is shown in Fig. 11 and Fig. 10.
It is antisymmetric, which agrees with the antisymmetric nature of mode-II. Due to
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Figure 9: K-distribution along the crack front in the SEN specimen

Figure 10: Final crack in the SEN spec-
imen (shaded representation)

Figure 11: Final crack in the SEN spec-
imen (front faces removed)

the high KII values at the free surface the curvature of the crack is very strong in
these areas, but decreases while propagating. At the end of the calculation mode-II
has virtually ceased to exist and the crack curvature tends to zero. Please note that
the size of the initial crack was extended beyond the boundaries of the specimen
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out of technical remeshing reasons. The authors do not know of any experimental
results involving this specimen but hope that the present results may encourage col-
leagues to perform tests. Fig. 12 provides some insight on how the tube looks like
at the end of the calculation. In this picture the mesh of the tube and the propagat-
ing surface is superimposed by the mesh of the front surface of the specimen.The
tube surface sticks partly out of the specimen. This is not deemed to represent a
problem since these parts of the tube will tend to be stress-free.

Figure 12: Tube surrounding the final crack front in the SEN specimen

Fig. 13 shows the crack length versus the normalized number of cycles. Since
the crack front is not circular, the crack length varies along the crack front. The
crack length at a point along the crack front is defined as the Euclidean distance
from that point to a reference point defined by the user. For the SEN specimen the
center of the right-hand face in Fig. 10 was chosen as reference point. Therefore,
the minimum crack length along the initial crack front is 50 mm, the maximum
distance is

√
502 +252 = 55.9 mm. The propagation of a point in the middle of the

crack front is relatively linear, i.e. K is relatively constant. Indeed, in the symmetry
plane there is no KII contribution which needs to be converted into curvature and
so the propagation at that point is really a conversion of KIII into KI . Since the
loading is displacement-driven crack propagation rather leads to a relaxation and
no crack propagation peak is observed. The propagation at the free surface at first
slightly increases, but subsequently it decreases as the KII contribution is converted
into curvature of the crack. This is also illustrated in Fig. 14: the upper curve
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Figure 13: Crack length during propagation
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Figure 14: Normalized equivalent K-factor during propagation
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represents the Kequivalent value in the center of the crack front. After a small rise
it stays fairly constant. The equivalent stress intensity factor at the free boundary,
though, decreases quite significantly.

5 The quarter circular corner crack specimen (QCCC)

Figure 15: Mesh of the QCCC specimen with initial crack

The mesh of the QCCC specimen with initial crack is shown in Fig. 15. The size
of the specimen is 100x100x200 mm3 and the radius of the initial crack is 40 mm.
The upper surface of the specimen is fixed in all directions. The lower surface is
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Figure 16: K-distribution along the crack front in the QCCC specimen

uniformly moved in x-direction while the displacements in y an z-directions are
zero.

The initial and final (after 100 iterations) K-distribution is depicted in Fig. 16. The
forced displacements lead to mode-II at one end of the crack front and mode-III
at the other end. However, due to mode coupling all shear modes are more or less
activitated: for small values of the normalized distance mode-II is dominant, mode-
III is subdominant (values about 70 % less). At the other end of the crack front,
where macroscopically mode-III prevails, the induced mode-II values even exceed
the mode-III ones. Mode-I is zero. At the end of the calculation mode-I clearly
dominates, mode-II is nearly zero and mode-III has been reduced by about 50 %.

The crack propagation ( Fig. 18 and Fig. 17) follows well-known patterns. At the
side predominantly loaded by mode-II the crack surface veers of at an angle of 64◦,
which is close to the 70◦ you would expect for pure mode-II. At the opposite side
the crack grows in the reverse direction (KII has a different sign) but soons turns
into a horizontal plane. The whole crack surface is smoothly curved.

Fig. 19 shows the triangulation of the initial crack (extended as a full circle) and
the crack increments. The small increments allow for an accurate representation of
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Figure 17: Final crack in the QCCC
specimen (shaded representation)

Figure 18: Final crack in the QCCC
specimen (front faces removed)

Figure 19: Triangulation of the crack propagation increments in the QCCC speci-
men
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Figure 20: Crack length during propagation
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Figure 21: Normalized equivalent K-factor during propagation



Manuscript Preparation for SDHM 321

the strongly curved crack faces.

Finaly, Fig. 20 and Fig. 21 show the crack length and the equivalent K-factor as
a function of the normalized number of cycles. The reference point for the crack
length measurements was the center of the initial (part) circular crack. The maxi-
mum curves correspond to the side of the crack front which is predominantly sub-
ject to mode-II.

6 Three point bend specimen (3pb)

Figure 22: Geometry of the 3pb specimen with initial crack

The geometry of the three point bending specimen is shown in Fig. 22. It is 300 mm
long, 20 mm thick and 60 mm high. A line load of 300 N/mm is applied on the top
of the specimen in the middle. The distance between the line supports at the bottom
of the specimen is 240 mm. An initial crack with length 11 mm making an angle of
45◦ was introduced along the lower edge. This is not identical with the calculation
in [Dhondt, Chergui, and Buchholz (2001)] (where the initial crack length was 20
mm), however, the results should be qualitatively similar. The picture shows the
domain (outlined by a continuous line), the initial crack and the propagation of the
crack. The circle represents the tube at the end of the calculation. It is clear that
the crack propagation cannot leave the crack domain. If more crack propagation is
requested, the domain has to be adapted appropriately.
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Figure 23: K-distribution along the intial crack front in the 3pb specimen
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Figure 24: K-distribution along the final crack front in the 3pb specimen
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The stress intensity factor distribution is shown in Fig. 23 and Fig. 24. The applied
loading leads to a bending moment, a torque and shear forces in the crack plane.
This results in mode-I, mode-II and mode-III. KI and KIII are symmetric along the
crack front, KII is antisymmetric. At the end of the calculation, after 64 iterations,
KI is clearly dominant.

Figure 25: Final crack in the 3pb specimen (front faces removed)

Figure 26: Final crack in the 3pb speci-
men (view from above)

Figure 27: Final crack in the 3pb speci-
men (frontal view)
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Figure 28: Crack propagation in a titanium four-point bending specimen

Fig. 25, Fig. 26 and Fig. 27 show the propagated crack surface. The crack grows
gradually into the symmetry plane, as was to be expected. This also agrees with
experimental evidence [Dhondt, Chergui, and Buchholz (2001)],[Dhondt (2004)].
The main difference with the experiments is that the calculation predicts a smooth
crack surface, whereas the real crack surfaces exhibit a factory roof effect (Fig. 28;
this was really a four-point bending test, the effect, however, is the same): this is
generally attributed to a mode-III effect [Theilig (2008)][Suresh (2003)]. Since the
calculations operate with continuous surfaces, this effect cannot be modeled and
may lead to some crack retardation in the experiment.

Finally, Fig. 29 and Fig. 30 show the crack length and the equivalent K-factor
during propagation. The reference point for the crack length measurement was
the center point of the lower surface of the specimen. Since the specimen loading
is force-driven there is a clear increase of the K-factors towards the end of the
calculation.
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Figure 29: Crack length during propagation
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Figure 30: Equivalent K-factor during propagation
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7 Conclusions

A new method has been presented to calculate mixed-mode cyclic crack propa-
gation with the finite element method in a fully automatic way. Qualitatively the
results agree with common sense and with the few available experiments in the
field. First applications to aircraft engine parts have shown that the method is sta-
ble, fast and capable of taking the detailed geometry and loading conditions of
complex parts into account.
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