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Transient coupled thermoelastic crack analysis in
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Abstract: In this paper, transient crack analysis in two-dimensional, isotropic,
continuously non-homogeneous and linear elastic functionally graded materials is
presented. A boundary-domain element method based on boundary-domain inte-
gral representations is developed. The Laplace-transform technique is utilized to
eliminate the dependence on time. Laplace-transformed fundamental solutions of
linear coupled thermoelasticity for isotropic, homogeneous and linear elastic solids
are applied to derive boundary-domain integral equations. The numerical imple-
mentation is performed by using a collocation method for the spatial discretization.
The time-dependent numerical solutions are obtained by the Stehfest’s inversion
algorithm. For an edge crack in a finite domain under thermal shock, the dynamic
stress intensity factors are presented and discussed.
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1 Introduction

Functionally graded materials (FGMs) represent a new generation of composites
designed to achieve high-performance mechanical and thermal properties in com-
parison to the conventional composites and to gain the benefit from the properties
of its constituents [Suresh and Mortensen (1998)]. FGMs are two-phase composite
materials, for example, ceramic and metal alloys phases, in which the volume frac-
tions of the constituents vary continuously in space. Therefore, those materials have
a non-uniform microstructure with position dependent macro-properties and no in-
terfaces. They possess the desirable properties of metals such as high toughness,
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high mechanical strength, bonding capability and high heat, wear and corrosion
resistances of ceramics. FGMs can be employed to a wide range of engineering
structures and components such as electronic devices, thermal and corrosion re-
sistant coatings, blast protections as well as biomaterials [Paulino, Jin, and Dodds
(2003)]. Because of the inherent brittle nature of ceramics cracks may develop in
the manufacturing phase or during their services. Therefore, the crack analysis of
FGMs under extreme thermal and mechanical loadings may provide a better under-
standing of the fracture properties, which are essential to their integrity, reliability
and durability in practical engineering applications.

Initial-boundary value problems of transient linear coupled thermoelasticity for
FGMs are described by the coupled partial differential equations with variable co-
efficients, to which analytical methods can be successfully applied only for very
special simple geometry and loading conditions. In general cases, experimental
and numerical methods have to be used for investigating crack problems in FGMs.
In this context, we only mention some performed works for static problems [Jin
and Noda (1994); Lee and Erdogan (1994); Erdogan and Wu (1996); Nemat-Alla
and Noda (1996, 2000); Yildirim and Erdogan (2004); Ding and Li (2010)], for
dynamic crack analysis under thermal shock [Erdogan and Rizk (1992); Noda,
Ashida, and Matsunaga (1994); Jin and Paulino (2001); Jin (2004); Noda and Guo
(2008); Guo and Noda (2010)] and for crack propagation problems under thermal
shock [Fujimoto and Noda (2000, 2001); Noda, Ishihara, Yamamoto, and Fuji-
moto (2003); Batra and Love (2005)]. From the standpoint of numerical methods,
the finite element method (FEM) [Anlas, Santare, and Lambros (2000); Santare
and Lambros (2000); Lu, Liu, Jia, and Yu (2001); Kim and Paulino (2003, 2005);
Yildirim (2006); Dag and Yildirim (2009); Zamani and Reza Eslami (2009)], the
boundary element method (BEM) [Sládek, Sládek, and Markechova (1990, 1993);
Balaš, Sládek, and Sládek (1989); Aliabadi (2002)] and the meshless local Petrov-
Galerkin (MLPG) [Sládek, Sládek, and Zhang (2005); Sládek, Sládek, Zhang, and
Tan (2006); Gao, Zhang, Sladek, and Sladek (2008); Sládek, Sládek, Solek, Tan,
and Zhang (2009)] are often employed.

The BEM is a powerful, very accurate and efficient numerical method for frac-
ture analysis. It has been successfully applied to coupled linear thermoelasticity
in homogeneous solids [Dargush and Banerjee (1989, 1990, 1991); Tosaka and
Suh (1991); Tanaka, Matsumoto, and Moradi (1995); Chen and Dargush (1995);
Tehrani and Eslami (1998); Hosseini-Tehrani and Eslami (2000); Kögl and Gaul
(2000, 2003)]. Katsareas and Anifantis (1995) have used a time-domain BEM to
calculate stress intensity factors in the context of the quasi-static uncoupled theory
of thermoleasticity. Hosseini-Tehrani, Eslami, and Daghyani (2001) and Hosseini-
Tehrani and Hosseini-Godarzi (2004) have solved some dynamic crack problems
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of coupled thermoelasticity by a Laplace-transformed BEM in a two-dimensional
finite domain. Then, this BEM has been extended to the crack problems con-
sidering Lord-Shulman theory [Hosseini-Tehrani, Hosseini-Godarzi, and Tavangar
(2005)]. A comparison of crack growth simulation by dual BEM (DBEM) and FEM
for SEN-specimens undergoing torsion or bending loading has been presented by
Citarella and Buchholz (2008). Unfortunately, BEM extensions and applications to
FGMs are yet very limited, because the required fundamental solutions are either
not available or mathematically too complex.

The focus of this paper is on the transient analysis of coupled thermoelastic crack
problems in isotropic, continuously non-homogeneous and linear elastic FGMs un-
der thermal shock by using a boundary-domain element method (BDEM). To elim-
inate the time-dependence in the governing equations the Laplace-transform tech-
nique is applied. Fundamental solutions for homogeneous and linear thermoelas-
tic materials in Laplace-transformed domain are utilized to derive the boundary-
domain integral equation representations for the mechanical and thermal fields.
This approach leads to domain integrals involving the unknown quantities in ad-
dition to the conventional boundary integrals. The spatial discretization of the
boundary-domain integral equations is performed by a collocation method. The
arising boundary and domain integrals are computed after special regularization
procedures [Aliabadi (2002)] by the standard Gaussian quadrature. To obtain time-
dependent solutions an inverse Laplace-transform is performed by using the Ste-
hfest’s algorithm [Stehfest (1970)]. Numerical results are presented and discussed
to show the influence of the material gradation and the thermo-mechanical coupling
on the dynamic stress intensity factors (SIFs).

2 Boundary-domain integral equations

Let us consider a non-homogeneous, isotropic and linear elastic FGM in a two-
dimensional (2-D) domain Ω. The material properties (mass density ρ(xxx), Young’s
modulus E(xxx), thermal conductivity k(xxx), specific heat c(xxx), linear thermal expan-
sion coefficient α(xxx), etc) are assumed to be a differentiable function of spatial
coordinates and the Poisson’s ratio ν is taken as constant. In the absence of body
forces and heat sources, the governing equations for the transient linear coupled
thermoelasticity can be written as

σi j, j(xxx, t)−ρ(xxx) üi(xxx, t) = 0, (1)

[k(xxx)θ,i(xxx, t)],i−ρ(xxx)c(xxx) θ̇(xxx, t)

−γ(xxx)T0 u̇k,k(xxx, t) = 0,
(2)
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where σi j, ui and θ are the stresses, displacements and temperature difference, re-
spectively, γ(xxx) = E(xxx)α(xxx)/(1−2ν) is the stress-temperature modulus and T0 is
the reference temperature. Here, a comma after a quantity represents spatial deriva-
tives, superscript dots indicate time derivatives and the summation convention for
repeated indices is implied.

The relation between the stresses and the displacements with consideration of tem-
perature changes is defined by the Duhamel-Neumann constitutive equations

σi j(xxx, t) = ci jkl(xxx)uk,l(xxx, t)− γ(xxx)θ(xxx, t)δi j, (3)

where δi j is the Kronecker symbol. The elasticity tensor in Eq. (3) is given by

ci jkl(xxx) = µ(xxx)
[

2ν

1−2ν
δi jδkl +δikδ jl +δilδ jk

]
,

where µ(xxx) = E(xxx)/2(1+ν) is the shear modulus.

The boundary conditions for the mechanical and the thermal quantities are assumed
to be as follows

ui(xxx, t) = ũi(xxx, t) on Γu,

ti(xxx, t) = σi j(xxx, t)n j(xxx) = t̃i(xxx, t) on Γt ,

θ(xxx, t) = θ̃(xxx, t) on Γθ ,

q(xxx, t) = k(xxx)θ,i(xxx, t)n j(xxx) = q̃(xxx, t) on Γq,

(4)

where Γu and Γt are the parts of the boundary Γ = ∂Ω = Γu∪Γt , Γu∩Γt = /0, in
which the displacements ũi and the tractions t̃i are given; Γθ and Γq are the parts of
the boundary Γ = Γθ ∪Γq, Γθ ∩Γq = /0 with the specified temperature θ̃ and heat
flux q̃, respectively. The initial conditions are given by

ui(xxx, t)|t=0 = u̇i(xxx, t)|t=0 = 0,

θ(xxx, t)|t=0 = 0.
(5)

Applying the Laplace-transform to the governing equations (1) and (2) yields

ci jkl(xxx) ūk,l j(xxx, p)− γ(xxx) θ̄,i(xxx, p)−ρ(xxx)p2 ūi(xxx, p)
+ci jkl, j(xxx) ūk,l(xxx, p)− γ,i(xxx) θ̄(xxx, p) = 0,

(6)

θ̄,ii(xxx, p)−β
2(xxx) θ̄(xxx, p)−η(xxx)pūk,k(xxx, p)

+
k,i(xxx)
k(xxx)

θ̄,i(xxx, p) = 0,
(7)
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where p is the Laplace-transform parameter, κ(xxx) = k(xxx)/ρ(xxx)c(xxx) is the thermal
diffusivity, η(xxx) = γ(xxx)T0/k(xxx) and β 2

0 = p/κ , and the superimposed bar denotes
the Laplace-transformed domain.

Integral representations of the displacements and the temperature at an arbitrary
point xxx∈Ω are derived from the generalized reciprocal theorem for FGMs by using
the Laplace-transformed fundamental solutions of linear coupled thermoelasticity
for homogeneous materials [Balaš, Sládek, and Sládek (1989)]

ūk(xxx, p) =−
∫
Γ

[ūi(yyy, p) T̄ik(xxx,yyy, p)

− 1
Ẽ(yyy)α̃(yyy)

t̄i(yyy, p)Ūik(xxx,yyy, p)
]

dΓy

+κ0

∫
Γ

[
θ̄(yyy, p) Z̄k(xxx,yyy, p)

− k̃(yyy)
Ẽ(yyy)α̃(yyy)

q̄(yyy, p)Ūk(xxx,yyy, p)
]

dΓy + F̄(u)
k (xxx, p),

(8)

θ̄(xxx, p) =
κ0η0 p

γ0

∫
Γ

[ūi(yyy, p) T̄i(xxx,yyy, p)

− 1
Ẽ(yyy)α̃(yyy)

t̄i(yyy, p)Ūi(xxx,yyy, p)
]

dΓy

−κ0

∫
Γ

[
θ̄(yyy, p) F̄(xxx,yyy, p)

− k̃(yyy)
Ẽ(yyy)α̃(yyy)

θ̄(yyy, p) T̄ (xxx,yyy, p)
]

dΓy + F̄(θ)(xxx, p),

(9)

where xxx and yyy are the source and field points, respectively, a tilde over a quan-
tity denotes the ratio of a non-homogeneous to a homogeneous quantity that is
designated by a zero subscript. The functions F̄(u)

k and F̄(θ) describe the mate-
rial non-homogeneity and are defined in Appendix A. The functions Ūi j(xxx,yyy, p),
Ūi(xxx,yyy, p), T̄ (xxx,yyy, p) are the primary fields (displacements and temperature) and
T̄i j(xxx,yyy, p), Z̄ j(xxx,yyy, p), F̄(xxx,yyy, p) and T̄i(xxx,yyy, p) are the secondary fields (tractions
and heat flux) of the fundamental solutions of linear coupled thermoelasticity for a
homogeneous solid in the Laplace-transformed domain [Balaš, Sládek, and Sládek
(1989)]. It should be noted that Eqs. (8) and (9) are no longer pure boundary in-
tegral formulations because they involve domain integrals containing the unknown
fields and their gradients.

By taking the limit xxx→ Γ and using the asymptotic behavior of the fundamental
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solutions [Balaš, Sládek, and Sládek (1989)] the integral representations (8) and (9)
are transformed into the boundary-domain integral equations (BDIEs)

cki(xxx)ūi(xxx, p)+
∫
Γ

[ūi(yyy, p) T̄ik(xxx,yyy, p)

− 1
Ẽ(yyy)α̃(yyy)

t̄i(yyy, p)Ūik(xxx,yyy, p)
]

dΓy

+κ0

∫
Γ

[
k̃(yyy)

Ẽ(yyy)α̃(yyy)
q̄(yyy, p)Ūk(xxx,yyy, p)

−θ̄(yyy, p) Z̄k(xxx,yyy, p)
]

dΓy− F̄(u)
k (xxx, p) = 0,

(10)

c(xxx)θ̄(xxx, p)+κ0

∫
Γ

[
θ̄(yyy, p) F̄(xxx,yyy, p)

− k̃(yyy)
Ẽ(yyy)α̃(yyy)

q̄(yyy, p) T̄ (xxx,yyy, p)
]

dΓy

+
κ0η0 p

γ0

∫
Γ

[
1

Ẽ(yyy)α̃(yyy)
t̄i(yyy, p)Ūi(xxx,yyy, p)

−ūi(yyy, p) T̄i(xxx,yyy, p)]dΓy− F̄(θ)(xxx, p) = 0.

(11)

The free-term coefficients cki(xxx) and c(xxx) depend on the shape of the boundary at
the point xxx ∈ Γ and are expressed as

cki(xxx) =−
∫
Γ

Tik(xxx,yyy)dΓy,

c(xxx) =−κ0

∫
Γ

F(xxx,yyy)dΓy,
(12)

where Tik(xxx,yyy) and F(xxx,yyy) are the static counterparts of the kernels T̄ik(xxx,yyy, p) and
F̄(xxx,yyy, p), respectively. It should be noted that the boundary and the domain inte-
grals in the BDIEs (10) and (11) contain singular integrands. The strongly singular
integrals in Eqs. (10) and (11) are understood as the Cauchy principal value inte-
grals. The boundary integrals contain the strongly singular kernels T̄i j(xxx,yyy, p) and
F̄(xxx,yyy, p) as well as the weakly singular kernels Ūi j(xxx,yyy, p), Z̄i(xxx,yyy, p), T̄ (xxx,yyy, p)
and T̄i(xxx,yyy, p). The domain integrals (see Eqs. (22) and (23) in Appendix A) at
xxx ∈ Γ involve also the strongly singular kernels T̄,i(xxx,yyy, p), Ūi j,k(xxx,yyy, p) and the
weakly singular kernel Ūi, j(xxx,yyy, p). Making use of the singularity subtraction tech-
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nique and using the notations (12) the BDIEs (10) and (11) are rewritten as

ūi(xxx, p)
∫
Γ

[T̄ik(xxx,yyy, p)−Tik(xxx,yyy)] dΓy

+
∫
Γ

[ūi(yyy, p)− ūi(xxx, p)] T̄ik(xxx,yyy, p)dΓy

−
∫
Γ

1
Ẽ(yyy)α̃(yyy)

t̄i(yyy, p)Ūik(xxx,yyy, p)dΓy

+κ0

∫
Γ

[
k̃(yyy)

Ẽ(yyy)α̃(yyy)
q̄(yyy, p)Ūk(xxx,yyy, p)

−θ̄(yyy, p) Z̄k(xxx,yyy, p)
]

dΓy− F̄(u)
k (xxx, p) = 0,

(13)

θ̄(xxx, p)κ0

∫
Γ

[F̄(xxx,yyy, p)−F(xxx,yyy)]dΓy

+κ0

∫
Γ

[
θ̄(yyy, p)− θ̄(xxx, p)

]
F̄(xxx,yyy, p)dΓy

−κ0

∫
Γ

k̃(yyy)
Ẽ(yyy)α̃(yyy)

q̄(yyy, p) T̄ (xxx,yyy, p)dΓy

+
κ0η0 p

γ0

∫
Γ

[
1

Ẽ(yyy)α̃(yyy)
t̄i(yyy, p)Ūi(xxx,yyy, p)

−ūi(yyy, p) T̄i(xxx,yyy, p)]dΓy− F̄(θ)(xxx, p) = 0.

(14)

In this manner the BDIEs (13) and (14) are free from the Cauchy principal value
integrals. The first integrals on the left-side of Eqs. (13) and (14) become weakly
singular with static thermoelastic fundamental solutions. The second integrals are
regular at |yyy− xxx| → 0. To deal with the weak singularity suitable regularization
schemes for the boundary and for the domain integrals [Aliabadi (2002)] are uti-
lized. Thus, all integrals in Eqs. (13) and (14) are now regular which can be com-
puted numerically by using standard Gaussian quadrature formula.

Supplementing the BDIEs (13) and (14) with the domain integral equations (8) and
(9) we obtain a system of integral equations for the boundary unknowns and the
displacement and temperature fields at internal points.

3 Numerical solution procedure

In order to solve the system of boundary-domain integral equations an efficient
BDEM is developed. A collocation method is employed for the spatial discretiza-
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tion of the equations in the Laplace-transformed domain. The boundary Γ is di-
vided into Nb quadratic boundary elements Γq and the interior of the domain Ω

into Nd the quadrilateral domain elements Ωg. Every node within the boundary Γq

or the domain element Ωg is numbered by a local number a = 1,2,3 or s = 1, . . . ,8,
respectively. The Cartesian coordinates of the interior points on the elements are
parametrically expressed as

xi|xxx∈Γq =
3

∑
a=1

xw(q,a)
i Na(ξ ),

xi|xxx∈Ωg =
8

∑
s=1

xv(g,s)
i Ns(ξ1,ξ2),

where xw(q,a)
i and xv(g,s)

i are the Cartesian coordinates of the a-th nodal point on Γq

and the s-th nodal point on Ωg, respectively, Na(ξ ) and Ns(ξ1,ξ2) represent the
shape functions [Aliabadi (2002)]. In addition to the local numeration the global
numeration of the boundary nodes w(q,a), 1≤w≤W and the internal nodes v(g,s),
1≤ v≤V is employed, with W and V being the total numbers of the boundary and
internal nodes, respectively. A polynomial approximation for the unknown field
quantities within the introduced elements Γq and Ωg is employed

f̄ (xxx, p)|xxx∈Γq =
3

∑
a=1

f̄ (xxxw(q,a), p)Na(ξ ),

f̄ (xxx, p)|xxx∈Ωg =
8

∑
s=1

f̄ (xxxv(g,s), p)Ns(ξ1,ξ2),

where f̄ corresponds to ūi, t̄i, θ̄ or q̄.

Applying the BDIEs (8),(9), (13) and (14) at all collocation nodes and replacing
the integrals over the boundary Γ and the domain Ω by the sum of integrals over
the boundary element Γq and the element area Ωg we obtain a system of 3N (N =
W +V ) linear algebraic equations for the unknown field quantities at the collocation
points. After numerical integrations, invoking the prescribed boundary conditions
the system of linear algebraic equations can be written as

AAAbxxxb = yyyb +VVV buuu, for boundary nodes, (15)

AAAixxxb +uuui = yyyi−VVV iuuu, for internal nodes, (16)

where the superscripts b or i denote a quantity at a boundary point or at an interior
point. In Eqs. (15) and (16), the vector xxxb with a size of 3W contains the boundary
unknowns, while the vector uuui with a size of 3V consists of the unknown internal
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displacements and temperature. The vector uuu with a size of 3N is composed of the
vectors xxxb and uuui, yyyb and yyyi denote 3W and 3V vectors of the prescribed boundary
displacements, tractions, temperature and heat flux. The sizes of the matrices AAAb

and AAAi are 3W × 3W and 3V × 3W , while VVV b and VVV i are 3W × 3N and 3V × 3N,
respectively.

The system of linear algebraic equations (15) and (16) can be rewritten into the
following matrix form([

AAAb 0
AAAi III

]
−
[
VVV b

VVV i

])[
xxxb

uuui

]
=
[

yyyb

yyyi

]
, (17)

where III is the identity matrix. The system (17) is solved numerically for discrete
values of the Laplace-transform parameter p to obtain the boundary unknowns xxxb

and the internal primary fields uuui.

The time-dependent solutions can be calculated by an inverse Laplace-transform
that is an ill-posed problem, because small truncation errors may be accumulated
in the inversion process. There are many numerical inversion methods and their
comparative analysis can be found in [Davies and Martin (1979)]. In the present
paper, the Stehfest’s algorithm is employed [Stehfest (1970)], from which an ap-
proximated value fa of a function f for a specific time t can be computed as

fa(t) =
ln2

t

Ns

∑
i=1

vi f̄
(

ln2
t

i
)

, (18)

where

vi = (−1)Ns/(i+2)

×
min(i,Ns/2)

∑
k=[(i+1)/2]

kNs/2 (2k)!
(Ns/2− k)!k!(k−1)!(i− k)!(2k− i)!

.

For each time instant, we solve Ns boundary value problems in the Laplace-transformed
domain for the corresponding transform parameter p = i ln2/t. Stehfest (1970) has
suggested to use Ns = 10 for single and Ns = 18 for double precision arithmetic. In
the present analysis Ns = 18 is adopted and in this case we obtain numerical results
comparable with those computed by Durbin’s method [Durbin (1974)] that requires
a complex arithmetic and more computing time to achieve the convergence.

4 Computation of the stress intensity factors

Different methods can be used for the evaluation of stress intensity factors [Buch-
holz, Grebner, and Strathmeier (1986); Dhondt, Chergui, and Buchholz (2001)].
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In this analysis, the extrapolation technique following directly from the asymp-
totic expansion of the displacements in the vicinity of the crack-tip is employed
[Aliabadi (2002); Sládek, Sládek, and Zhang (2005)]. The asymptotic stress and
displacement fields near the crack-tip in continuously non-homogeneous and linear
elastic FGMs have the same singularity and structure as those in homogeneous and
linear elastic materials [Eischen (1987); Erdogan (1995)].

The dynamic stress intensity factors are related to the crack-opening-displacements
∆ui(ε, t) by{

KI(t)
KII(t)

}
=
√

2π

κ +1
µ

tip lim
ε→0

1√
a− ε

{
∆u2(ε, t)
∆u1(ε, t)

}
, (19)

with

κ =

3−4ν , for plane strain,
3−ν

1+ν
, for plane stress,

where KI(t) and KII(t) represent the mode-I and mode-II dynamic stress intensity
factors, µ tip is the shear modulus at the crack-tip and ε is a small distance from the
crack-tip to the considered node on the crack-faces.

5 Numerical examples

 

 Figure 1: An edge crack in a rectangular FGM plate under thermal shock

An edge crack in a rectangular, isotropic, continuously non-homogeneous and lin-
ear elastic FGM plate is considered. The plate geometry is described by the width
w = 1, length 2l = 3w and the crack length a = 0.4w (Fig. 1). The cracked plate is
subjected to a cooling thermal shock θ(xxx, t) = −θ0H(t) at the lateral side, where
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Figure 2: FGM plate with the material gradation in the x1-direction (a) and in the
x2-direction (b)
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Figure 3: Normalized mode-I dynamic SIF for the homogeneous cracked plate

θ0 is the constant amplitude and H(t) is the Heaviside step function. The material
gradation in the xi-direction is assumed to have an exponential gradation

E(xi) = E0 exp(αg|xi|) ,
k(xi) = k0 exp(βg|xi|) ,
c(xi) = c0 exp(γg|xi|) ,

(20)

with

αg =
1
`

ln
(

Eb

E0

)
, βg =

1
`

ln
(

kb

k0

)
,γg =

1
`

ln
(

cb

c0

)
,

where E0 = E(0), k0 = k(0), c0 = c(0) and Eb = E(`), kb = k(`), cb = c(`); `
is either equal to w or to l for the material gradation in the x1- (Fig. 2a) or in
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Figure 4: Time variations of the dynamic SIF for the material gradation in the
x1-direction

the x2-direction (Fig. 2b), respectively. The mass density, the Poisson’s ratio and
the linear thermal expansion coefficient are taken as constant ρ(xxx) = 1, ν = 0.25
and α(xxx) = 0.02, respectively. Plane strain condition is assumed in the numerical
analysis.

Due to the selected material gradations, the symmetry of the loading conditions and
the plate geometry only one half of the plate is considered in the numerical com-
putations. In this case, the mode-I dynamic stress intensity factor occurs whereas
the mode-II stress intensity factor is identically zero. In the plate discretization, 80
boundary and 341 interior nodes are used. The displacement and temperature fields
are modelled by 40 three-node quadratic boundary and 100 eight-node quadrilateral
domain elements. For convenience, the dynamic stress intensity factor and time are
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Figure 5: Time variations of the dynamic SIF for the material gradation in the
x2-direction

normalized as K̄I(t) = KI(t)/α0 E0 θ0
√

πa and t̄ = t k0/a2 ρ0 c0.

To test the accuracy of the proposed method we consider a homogeneous plate with
αg = βg = γg = 0. The temporal variation of the normalized mode-I dynamic stress
intensity factor is presented in Fig. 3. The corresponding numerical result obtained
by FEM using FEMLAB code (dashed line) is also shown in Fig. 3. A comparison
of both numerical methods shows a good agreement.

After the verification of the accuracy we investigate the influence of the material
gradation on the cracked FGM plate. The material parameters are the same as
in the previous homogeneous case. Four material gradient parameters αg = βg =
γg = ±0.7,±1.6 are selected. The material gradation in the x1-direction parallel
to the crack-line (Fig. 2a) is first considered. The time variations of the normal-
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Figure 6: Effect of thermo-mechanical coupling on the time variations of normal-
ized mode-I dynamic SIF for the non-homogeneous cracked plate

ized mode-I dynamic stress intensity factor for the chosen gradient parameters are
shown Fig. 4. The numerical results obtained by the BDEM and FEM agree very
well. For comparison purpose, the curve of the normalized mode-I dynamic stress
intensity factor for the cracked homogeneous plate (dot-dashed line) is also plotted
in Fig. 4. The first peak of the normalized mode-I dynamic stress intensity factor is
reduced with the decreasing gradient parameters, see Fig. 4a and Fig. 4c. In con-
trast to the homogeneous material, the peak values of the stress intensity factors
are reached at larger time instants because the velocity of the wave propagation is
lower. The opposite tendency takes place for an increase of the gradient parame-
ters, see Fig. 4b and Fig. 4d. The first peak of the stress intensity factor is enhanced
in comparison with homogeneous case.

Next, the material gradation of the FGM plate perpendicular to the crack-line (Fig. 2b)
is considered for the same gradient parameters. Fig. 5 shows the time variations of
the normalized mode-I dynamic stress intensity factor. One can see a quite good
agreement of the numerical results obtained by the BDEM and the FEM. A similar
trend as in the previous example can be observed. The first peaks of the normalized
mode-I dynamic stress intensity factor for the negative gradient parameters (Fig. 5a
and Fig. 5c) are smaller than those for an edge crack parallel to the material gra-
dation (Fig. 4a and Fig. 4c). On the contrary, for the positive gradient parameters
they are significantly larger and reached at smaller time instants than those for the
material gradation in the x1-direction, see Fig. 5b, Fig. 5d and Fig. 4b, Fig. 4d.
From Fig. 4 and Fig. 5 we can conclude that the peak values of the normalized
mode-I dynamic stress intensity factor and the time instants, at which they occur,



Transient coupled thermoelastic crack analysis in FGMs 343

depend significantly on the direction of the material gradation and the values of the
gradient parameters.

Finally, we consider a cracked FGM plate with material gradation in the x1-direction
(Fig. 2a) using the coupled theory of thermoelasticity. A measure of the thermo-
mechanical coupling can be described by

δ (xxx) =
(1+ν)

(1−ν)(1−2ν)
α2(xxx)E(xxx)T0

ρ(xxx)c(xxx)
(21)

that equals zero for an uncoupled problem, such as in the above examples. The
coupled parameter is taken as constant δ (xxx) = 0.5 and corresponds to the previ-
ously used material parameters with the reference temperature T0 = 375. The time
variations of the normalized mode-I stress intensity factor for the gradient parame-
ters αg = βg = γg =±0.7 in coupled and uncoupled cases are shown in Fig. 6. For
both gradient parameters, the position of the peaks of the stress intensity factor is
slightly shifted to the larger time instants compared to the uncoupled case, because
the wave propagation velocity is reduced. The thermo-mechanical coupling has a
minimal influence on the dynamic stress intensity factors regardless of the value of
the selected gradient parameters.

6 Conclusions

A 2-D transient thermoelastic crack analysis in isotropic, non-homogeneous and
linear elastic FGMs subjected to a thermal shock is presented in this paper. For this
purpose, a boundary-domain element method is proposed. Fundamental solutions
of linear coupled thermoelasticity for the corresponding homogeneous, isotropic
and linear elastic materials in the Laplace-transformed domain are employed to
derive the boundary-domain integral equation formulations. The material non-
homogeneity is described by additional domain integrals, which require a special
regularization and domain discretization. A collocation-based BDEM is devel-
oped in the Laplace-transformed domain. The numerical inversion of the Laplace-
transform is performed by using the Stehfest’s algorithm. For an edge crack in a
2-D FGM plate, the time variations of the dynamic stress intensity factors are pre-
sented and discussed. Numerical results obtained by the BDEM show a good agree-
ment with those obtained by the FEM. The dynamic SIFs may be significantly af-
fected by the material gradation and the thermo-mechanical coupling. The present
BDEM can be easily extended to crack problems with an arbitrarily-oriented crack
by using the sub-domain technique.
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Appendix A: Functions F̄(u)
j and F̄(θ)

The functions F̄(u)
j and F̄(θ) in Eqs. (8), (9), (13) and (14) are defined by the fol-

lowing domain integrals

F̄(u)
j (xxx, p) = p2

ρ0

∫
Ω

f (1)
i j (xxx,yyy, p)ūi(yyy, p)dΩy

+µ0

∫
Ω

f (2)
i jk (xxx,yyy, p)ūi,k(yyy, p)dΩy

+
∫
Ω

f (3)
j (xxx,yyy, p)θ̄(yyy, p)dΩy

+κ0

∫
Ω

f (4)
i j (xxx,yyy, p)θ̄,i(yyy, p)dΩy,

(22)
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F̄(θ)(xxx, p) = p2
ρ0

∫
Ω

f (5)
i (xxx,yyy, p)ūi(yyy, p)dΩy

+µ0

∫
Ω

f (6)
i j (xxx,yyy, p)ūi, j(yyy, p)dΩy

+p
∫
Ω

f (7)(xxx,yyy, p)θ̄(yyy, p)dΩy

+κ0

∫
Ω

f (8)
i (xxx,yyy, p)θ̄,i(yyy, p)dΩy,

(23)

with additional functions

f (1)
i j (xxx,yyy, p) =−

(
ρ̃(yyy)

Ẽ(yyy)α̃(yyy)
−1
)

Ūi j(xxx,yyy, p),

f (2)
i jk (xxx,yyy, p) =

2(1−ν)
1−2ν

1
α̃(yyy)

(
Ẽ, j(yyy)
Ẽ(yyy)

+
α̃, j(yyy)
α̃(yyy)

)
Ūik(xxx,yyy, p)−

(
1

α̃(yyy)
−1
)

×
(

1
1−2ν

Ūi j,k(xxx,yyy, p)+Ūk j,i(xxx,yyy, p)
)

,

f (3)
j (xxx,yyy, p) = p

(
ρ̃(yyy)c̃(yyy)
Ẽ(yyy)α̃(yyy)

−1
)

Ū j(xxx,yyy, p)

− γ0

(
Ẽ, j(yyy)
Ẽ(yyy)

+
α̃, j(yyy)
α̃(yyy)

)
Ūkk(xxx,yyy, p),

f (4)
i j (xxx,yyy, p) =

(
k̃(yyy)

Ẽ(yyy)α̃(yyy)
−1
)

Ū j,i(xxx,yyy, p)−

− 1
η0

k̃(yyy)
Ẽ(yyy)α̃(yyy)

(
Ẽ,i(yyy)
Ẽ(yyy)

+
α̃,i(yyy)
α̃(yyy)

)
Ū j(xxx,yyy, p),

f (5)
i (xxx,yyy, p) =

κ0η0 p
γ0

(
ρ̃(yyy)

Ẽ(yyy)α̃(yyy)
−1
)

Ūi(xxx,yyy, p),

f (6)
i j (xxx,yyy, p) =

κ0η0 p
γ0

[
−2(1−ν)

1−2ν

1
α̃(yyy)

(
Ẽ, j(yyy)
Ẽ(yyy)

+
α̃, j(yyy)
α̃(yyy)

)
Ūi(xxx,yyy, p)+

(
1

α̃(yyy)
−1
)

×
(

1
1−2ν

Ūi, j(xxx,yyy, p)+Ū j,i(xxx,yyy, p)
)]

,
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f (7)(xxx,yyy, p) =−
(

ρ̃(yyy)c̃(yyy)
Ẽ(yyy)α̃(yyy)

−1
)

T̄ (xxx,yyy, p)

+κ0η0

(
Ẽ, j(yyy)
Ẽ(yyy)

+
α̃, j(yyy)
α̃(yyy)

)
Ū j(xxx,yyy, p),

f (8)
i (xxx,yyy, p) =−

(
k̃(yyy)

Ẽ(yyy)α̃(yyy)
−1
)

T̄,i(xxx,yyy, p)+

+
1

η0

k̃(yyy)
Ẽ(yyy)α̃(yyy)

(
Ẽ,i(yyy)
Ẽ(yyy)

+
α̃,i(yyy)
α̃(yyy)

)
T̄ (xxx,yyy, p).


