
Copyright © 2011 Tech Science Press SDHM, vol.7, no.1, pp.65-81, 2011

An Application of Support Vector Regression for Impact
Load Estimation Using Fiber Bragg Grating Sensors
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Abstract: Low velocity impacts on composite plates often create subsurface
damage that is difficult to diagnose. Fiber Bragg grating (FBG) sensors can be
used to detect subsurface damage in composite laminates due to low velocity im-
pact. This paper focuses on the prediction of impact loading in composite structures
as a function of time using a support vector regression approach. A time delay em-
bedding feature extraction scheme is used since it can characterize the dynamics
of the impact using the sensor signals. The novelty of this approach is that it can
be applied on complex geometries and does not require a dense array of sensors to
reconstruct the load profile at the point of impact. The efficacy of the algorithm has
been demonstrated through simulation results on composite plates and wing struc-
tures. Trained using impact data at four locations with three different energies, the
constructed framework is able to predict the force-time history at an unknown im-
pact location to within 12 percent for a composite plate and to within 10 percent
for a composite wing when the impact was within the sensor network region. Ex-
perimental validation is also presented on carbon fiber reinforced polymer wings
showing low prediction errors even with small training sets.

Keywords: Damage estimation, support vector regression, time delay embed-
ding, structural health monitoring, fiber Bragg grating sensors, impact, carbon fiber
composite, wing.

1 Introduction

In the aerospace industry, there is a push towards condition based maintenance
(CBM), as opposed to schedule based maintenance as the new maintenance paradigm.
For aerospace vehicles that operate in complex, nondeterministic environments,
the task of CBM which involves damage detection, identification, and useful life
estimation becomes especially difficult. Additional complexities arise when com-
posite structural components are involved. Survivability of composite structures
subjected to dynamic contact loads is of critical importance in many aerospace ap-
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plications. Low velocity impacts, can result in subsurface delamination that cannot
be detected using visual surface inspection, even though they result in stiffness
degradation and a significant loss in structural integrity, especially in thick com-
posites. Impact damage is also highly dependent on the mass, shape, and velocity
of the impacting objects. Currently, detection of this type of damage requires spe-
cialized non destructive evaluation (NDE) equipment like acoustic emission(Yu,
Choi, Kweon and Kim(2006)), thermography (Genest, Martinez, Mrad, Renaud
and Fahr(2008)), eddy current method (Şimşir and Ankara(2007)), and ultrasonic
scanning (Aymerich and Meili(2000)). While use of certain NDE techniques can
provide accurate estimates of damage, they all require that the structure being in-
spected be taken out of service and in some cases disassembled for inspection. For
CBM to be viable, a structural health management (SHM) approach must be em-
ployed. A robust SHM framework requires the installation of a distributed sensor
network so that damage measurements can be made quickly and frequently with-
out significant effort or expense. Several types of sensor networks are being investi-
gated, including strain gauges (Chan, Li and Ko(2001)), piezo transducers (Coelho,
Das, Chattopadhyay, Papandreou-Suppappola and Peralta(2007)), and fiber optic
sensors (Hiche, Liu, Seaver, Wei and Chattopadhyay(2009)). In this work, fiber
Bragg grating (FBG) sensors have been chosen because they can be tailored to
include multiple sensors on a single fiber resulting in a significant weight advan-
tage when implemented on a large structure. Also, FBG sensors are low weight,
require minimal space, and are immune to electromagnetic interference, which is
a concern in the harsh operating environments of aerospace structures. However,
FBGs only measure strain along the length of the fiber, a prediction scheme that
can estimate loading using randomly oriented and dispersed sensors is key to dam-
age state awareness since it could reduce installation time and the total number of
sensors required to interrogate a complex structure. Unexpected impact loading
on an aerospace structure can often lead to catastrophic failure. A passive detec-
tion approach (Grondel, Assaad, Delebarre and Moulin (2004)) is required since
the structure can be constantly monitored and the operator can be notified imme-
diately if there is an adverse event. A framework that can detect the location and
estimate the strains induced at the point of impact will allow users to conduct de-
tailed structural analysis and decide whether to take immediate action or schedule
maintenance at a later date. The work in this paper focuses on estimating the load
generated in a structure during an impact.

Although several approaches exist to determine the location of an impact, only a
few also provide force-time history reconstruction of the impact event. One method
to localize damage uses the guided waves that are emitted from the source of the
impact. This method requires explicit knowledge of wave speed, which works rel-
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atively well for homogenous structures (Betz, Thursby, Culshaw and Staszewski
(2007)). In composites however, the wave propagation speed varies as a function
of direction (Kundu, Das, Martin and Jata(2008)), which makes localization more
difficult and this approach cannot be used to estimate the induced strains. Kim and
Lee(2008), Lee(2008) used a Green’s function approach to localize damage in an
aluminum plate and reconstruct the load history. This approach assumes an infinite
plate when solving for the transfer function between the impact location and sen-
sor response. This same transfer function is used for the recovery of impact load
which means it may not be applicable to small and/or complex structures. Park and
Chang(2005) proposed a system identification technique that is based on training
data from an experiment. Since the designed transfer function does not require a
physical model, it represents the observed system response more accurately. How-
ever, the structural deformation must be linearly elastic during the impact process
and the deformation of the structure must be small enough to neglect geometric
nonlinearity. The approach used in this paper uses a machine learning technique to
take data from experimental or modeling data and use it to build a model that can
reconstruct the load history as a function of time. The support vector regression
(SVR) technique, based on the popular support vector machines classifier (Coelho,
Das and Chattopadhyay(2009)), and applied in other fields for time series predic-
tion (Huang, Chen, Hsu, Chen and Wu(2004, Shin, Lee and Kim(2005)) was cho-
sen because it performs well with high dimensional data sets and does not require
extremely large training sets for generalization. Using the FBG sensor signals from
finite element simulations and a time delay approach, impact force-time curves at
the point of impact were estimated. The objective of this work is to build a data
driven framework that can estimate the impact load at random locations accurately
even in the absence of complete strain information. The approach developed in
this paper has been tested using virtual sensing data from impact simulations on a
composite plate and wing. Experimental validation was also conducted on a carbon
fiber composite wing with surface mounted FBG sensors.

This paper is organized as follows. Sections 2 and 3 present a theoretical back-
ground on the method used for feature extraction and damage estimation respec-
tively. The simulation setup and some details regarding data collection have been
discussed in section 4. Section 5 demonstrates the effectiveness of the regression
scheme through some selected results from simulated composite laminate and wing
impacts and experimental validation. Section 6 presents some observations made
from the present study along with suggestions for further improvement of the cur-
rent work.
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2 Time Delay Embedding

The sensor response collected from an FBG is a time series signal which can be
defined as a sequence of measurements x(t), at different instants of time, of an ob-
servable x acquired at regular time intervals. In time series applications, the dynam-
ical information of the system can be extracted for a data set of scalar observations
where each of these observations correspond to the projection of the systems’ state
vector in one dimension. Taken’s theorem (Takens(1980)) states that it is possible
to reconstruct the attractor in the phase space given x(t). This can be achieved us-
ing the time embedding approach where a one-to-one differential mapping between
a finite windowed time series can be constructed. Given a time series x(t) with N
number of data points, the state space vectors can be represented as follows,

y(t) =



x(t)
x(t + τ)

x(t +2τ)
.
.
.

x(t +(DE −1)τ)


(1)

where the time instant t = nTs, Ts being the sampling time. Here DE is the embed-
ding dimension andτ is the time delay. The delay reconstruction makes it possible
to view the dynamics in terms of a scalar field and hence the best surface fitting
these points would represent the approximate dynamics of the system.

The time embedding approach is a very popular technique in the field of nonlinear
dynamics and is commonly used to predict the future dynamics of a system. To
ensure proper reconstruction, the embedding dimension and the time delay have
to be assigned properly. In data driven approaches, while introducing delay in
experimental data sets, the choice of the time delay is considered to be a very
important step. This is because when τ is chosen to be very small compared to the
internal time scale of the system, the successive components of the delay vectors
x(t) and x(t + τ) are almost linearly dependent, that is, they are highly correlated.
On the other hand, a very large delay τ , can result in an “over-folding” of the
attractor. The value of DE and τ chosen for the experimental results presented here
are 5 and 2.56 x 10−4s respectively. The values were chosen arbitrarily based on
user experience and 5 fold cross validation on the training set was used to make
sure these values were appropriate.
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3 Support Vector Regression

Support vector machines(SVMs) (Vapnik and Sterin(1977)), a popular machine
learning based approach, has been adapted for regression (Smola(1996)) problems
by using an alternative loss function. The basic idea behind support vector regres-
sion is the construction of a regression line f (~x) that has less than an ε deviation
from the target responses y for a majority of the training data and is, at the same
time, as smooth as possible. Smoothness here refers to the complexity of the con-
structed model. If f (~x) is smooth or “flat”, it will be better at rejecting noise but
worse at fitting non smooth training data when compared with non-smooth f (~x).
This tradeoff is controlled by appropriately tuning the hyperparameters during op-
timization.

Consider a data set S that will be used to build a support vector regression model.
S is given by,

S = {(~xi,yi)}m
i=1 , ~x ∈ Rn, y ∈ R (2)

where~x is a feature vector, y is a target function value and, m is the total number of
training points. If this data cannot be linearly regressed as is the case with a lot of
real world data, a nonlinear regression approach is required. To solve this problem,
consider the following linear estimation function (Lu, Lee and Chiu(2009)) (Figure
1),

f (~x) = ~w ·Φ(~x)+b (3)

where Φ(~x) denotes a mapping function from the input space to a high dimensional
feature space where the inputs can be linearly correlated with the system outputs,
~w is a weight vector, and b is a constant offset term.

There are a number of loss functions that can be used in the SVR formulation.
Although quadratic, Laplace and Huber’s loss function are common, they do not
allow for the selection of a sparse set of support vectors. For this reason, an ε-
insensitive loss function (Figure 1) which does not penalize data points within an
ε-radius tube around the regression function is used. A point which deviates from
the regression function by an amount larger than ε , gets penalized by an amount
proportional to its distance from the exterior of the ε-insensitive zone (Figure 1).
These deviations on either side of the zero penalty zone are measured using the
slack variables ξ and ξ ∗. The loss function is given by,

Lε ( f (~x),y) =

{
| f (~x)− y|− ε i f | f (~x)− y| ≥ ε

0 otherwise
(4)
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(a)                                               (b) 

 Figure 1: Schematic of (a) SVR construction and, (b) ε insensitive tube

The variables ~w and b from Eqn (3) can be estimated by minimizing the risk func-
tion given by,

R(C) = C
1
n

n

∑
i=1

Lε ( f (~xi) ,yi)+
1
2
|~w|2 (5)

where 1
2 |~w|

2 is the regularization term used to find the flattest function with suffi-
cient approximation qualities and C is a user defined constant controlling the trade-
off between the empirical risk (training error) and the regularization term which
penalizes complexity.

The risk function in Eqn (5) can be transformed into a constrained optimization
problem using the slack variables as shown.

Min
w,b,ξ ,ξ ∗

Rreg ( f ) =
1
2
|~w|2 (6)

subject to,


yi− (~w ·Φ(~xi))−b≤ ε +ξi

(~w ·Φ(~xi))+b− yi ≤ ε +ξ ∗i
ξ ∗i , ξi ≥ 0, for i = 1, ,n

.

Equation (6) can be converted into its dual Lagrangian form with the Karush-Kuhn-
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Tucker (KKT) conditions of optimality to yield,

Ld (α,α∗) =−ε

n

∑
i=1

(α∗i +αi)+
n

∑
i=1

(α∗i −αi)yi−

1
2

n

∑
i, j=1

(α∗i −αi)
(
α
∗
j −α j

)
K (~xi,~x j) (7)

subject to,


n
∑

i=1
(α∗i −αi) = 0

0≤ α∗i , αi ≤C, i = 1, ,n
.

The KKT conditions satisfied by the solution are αiα
∗
i = 0. Solving the Lagrangian

optimization problem, the general form of the SVR based regression function is
given by,

f (~x) =
n

∑
i=1

(αi−α
∗
i )K (~x,~xi)+b∗. (8)

where the optimal weight vector and bias of the regression hyperplane are given by,

~w∗ =
n

∑
i=1

(αi−α
∗
i )K (~x,~xi)

b∗ =−1
2

n

∑
i=1

(αi−α
∗
i )(K (~xi,~xp)+K (~xi,~xq))

(9)

In this work, the mapping of the data from the input space to a high dimensional
feature space was carried out using a Radial Basis Function (RBF) kernel (Coelho,
Das and Chattopadhyay(2009)) defined as,

K (~x,~xi) = e−
‖~x−~xi‖

2σ2 (10)

4 Finite Element Model

4.1 Composite Plate Model

A finite element model simulating impact on a twill weave composite plate has
been developed using ABAQUS Explicit. The dimensions of the plate specimen
are 12in x 12in x 0.06in and the material properties of the twill weave compos-
ite ply is presented in Table 1. A total of 15 simulations have been conducted,
representing impacts at five different locations (Figure 2(a)), (3,9), (4,4), (6,5),
(8,3), (10,10), each with impact energies of 0.5J, 12.5J and 50J. The bulk elastic
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properties along with the failure strength of the woven graphite epoxy plies were
calculated at the microscale using a micromechanics analysis, MAC/GMC, which
is based on the Generalized Method of Cells approach(Bednarcyk and M.(2002)).
The four ply laminate was modeled using continuum shell elements with clamped
boundary conditions. A hemispherical impactor head (Figure 2(b)) with a 1.4in
diameter was used. Hard contact and frictionless impact conditions were applied to
model the interaction between the tup and the composite structure. The virtual FBG
sensor data, from where the strains measurements were obtained, are presented in
Table 2.

Table 1: Material properties for twill weave composite.

E11 (GPa) 78.5600
E22 (GPa) 78.5600
E33 (GPa) 9.8330
ν12 0.0252
ν13 0.0392
ν23 0.0392
G12 (GPa) 5.4170
G13 (GPa) 3.7860
G23 (GPa) 3.7860

Table 2: FBG sensor locations on the composite plate

Sensor Number x-coordinate (in) y-coordinate (in) Measured strain
component

S1 3.875 2.750 εyy

S2 8.125 2.750 εyy

S3 9.375 6.750 εxx

S4 6.000 9.250 εyy

S5 2.625 6.750 εxx

4.2 Composite Wing Model

A four ply twill weave composite wing has also been simulated using ABAQUS
Explicit. The cross section of the wing is based on the NACA 0012 airfoil. The
simulated wing has an 11in chord length and a 17in span, with simply supported
edges (Figure 3(a)). A total of 15 simulations have been run consisting of impacts
at 5 locations [(2,6), (5,8), (8,4), (6.5,5), (13,3)] (Figure 3(a)). The impact energies
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simulated at each location were 5J, 15J and 50J. The material properties used in
the simulation were calculated using the MAC/GMC code. Continuum shell ele-
ments were used to model the wing. Again, hard contact and frictionless impact
conditions were applied to model the interaction between the tup and the composite
wing. When analyzing the results of the FE simulation, it was found that the high-
est strain component is along the chord length so the FBG sensors were located and
oriented as shown in Table 3.

           

(a)                                         (b) 

 Figure 2: (a) Locations of FBGs (blue) and impacts (red) [Plate dimensions in
inches], (b) finite element simulation showing impact in composite plate

Table 3: Location of FBG sensors on composite wing structure.

Sensor
Number

x-coordinate
(in)

y-coordinate
(in)

Measured
strain compo-
nent

S1 2 2 εxx

S2 11 2 εxx

S3 11 9 εxx

S4 2 9 εxx
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(a)                                                 (b) 

 
(a)       

(a)                                                 (b) 
 

(b)

Figure 3: (a) Schematic of wing showing boundary condition, location of FBGs
(blue) and impacts (red) [Plate dimensions in inches], (b) finite element simulation
showing impact on a composite wing.

5 Results and Discussion

5.1 Simulation Results

The data collected from the plate and wing simulations were smoothed to remove
some minor perturbations in the sensor response in order to make algorithm training
easier. Since the signal due to the impact is much larger than the noise present in
the signal, smoothing does not adversely affect the result. To train the algorithm,
strain data from four impact locations at all three energies were used to train the
SVR algorithm and testing is done on the remaining unseen 50J impact. Figure
4 shows a sample load history prediction for impact at (8,4). It can be seen that
the predicted loading is very similar to the simulated loading. In order to compare
the time series from the simulation and the SVR algorithm, σmax and area under
the curve (AUC) were used. In the case of impact on a plate, the response looks
Gaussian so it is possible to quantify the result in terms of the maximum value
and the variance. However, for more complex structures, the response may not be
Gaussian so AUC is a better metric for evaluating the result.

The results of the regression framework on a composite plate are shown in Table
4. It can be seen that the errors in the prediction of σmax and AUC are less than 13
percent in all cases. It must be noted that since the simulated FBGs only measure
strain in one direction, the strain information used to train the SVR algorithm is
incomplete. In a complex structure where the measured loads behave more non-
linearly with variation in impact location and energy, the prediction accuracy of
this approach may be adversely affected. In order to mitigate this effect, a larger
training set may be used.
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Figure 4: Simulated and predicted load history for impact at (8,4)

Table 4: Impact load history estimation result on composite plate

Impact Simulated Predicted Error Simulated Predicted Error
location σmax (MPa) σmax (MPa) AUC (x106) AUC (x106)
(10,10) 895 882 1.45% 22.8 21.6 5.26%
(3,9) 988 882 10.73% 27.5 26.0 5.45%
(4,4) 753 848 12.62% 24.3 21.4 11.93%
(6,5) 780 750 3.85% 27.1 27.2 0.37%
(8,4) 821 842 2.56% 26.6 28.7 7.89%

For impact on a composite wing, strain data collected only in the direction of the
chord length was used since the strains along the span were insensitive to some
impacts. Since the changes in measured strain along the chord were larger than
spanwise strain changes due to varying impact positions, it would provide better
prediction results. During data analysis, it was found that only sensors 3 and 4
(Figure 3(a)) contributed useful information about the impact. During the impact,
the trailing edge carries only small strains and as such, the information provided by
sensors in this region may not be useful. This highlights the need for careful place-
ment of the sensors on the wing so that all the sensors are able to provide useful
data. For the current set of experiments, it was found that removal of information
from sensor 1 and 2 did not change the result significantly so they were ignored
in the interest of computational efficiency. The SVR framework has been trained
using strains from all three impact energies at four locations with the test set being
the fifth unseen 50J impact. Figure 5 shows the prediction result for an impact at
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(5,8). It can be seen that while the algorithm is able to capture the general trend of
the loading, the predicted shape differs from the simulated load.

 
Figure 5: Simulated and SVR prediction result for impact at (5,8)

Table 5 shows the results of the load history reconstruction scheme when tested
on a composite wing. For all impacts between sensor 3 and 4, the algorithm was
able to estimate the load history to within 10% of σmax and the AUC. For any point
along the chord length, prediction results for impacts not between sensor 3 and
4 are inaccurate. One possible explanation for this might be a significant change
in sensor response as the impact moves closer to the simply supported boundary
condition. Inclusion of more training data closer to the simply supported region
may improve the performance of the regression framework and will be investigated
further in future work.

Table 5: Impact load history estimation on a composite wing

Impact Simulated Predicted Error Simulated Predicted Error
location σmax (MPa) σmax (MPa) AUC (x106) AUC (x106)

(8,4) 531 514 3.20% 9.01 8.32 7.66%
(13,3) 577 479 16.98% 6.56 6.05 7.77%
(6.5,5) 541 522 3.51% 10.32 9.49 8.04%
(2,6) 639 522 18.31% 11.77 9.31 20.90%
(5,8) 576 636 10.42% 10.52 11.13 5.80%
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5.2 Experimental Results

Experimental validation of the SVR impact estimation approach was conducted.
The target variable used for prediction was the load measured by a dynamic load
transducer at the tup and the input variables were the strains obtained using the
output of the four FBG sensors. Figure 6 shows an example prediction for impact
at (6.5,5). Although the amount of training data is limited, the algorithm is still
able to capture the general trend of the loading during impact.

 
Figure 6: Experimental load cell reading and SVR prediction for impact at (6.5,5).

Table 6 shows the results of the SVR algorithm on the experimental data with the
impact locations plotted in Figure 7. For impacts along the span, the algorithm
was able to predict the load with accuracies greater than 90%. For impact sites
along the chord length, the errors are much larger since there is a significant change
in the sensor response due to varying curvature. It must also be noted that after
the impact at (6.5,8) the wing started showing signs of matrix cracking and fiber
breakage which became very large after the impact at (6.5,9) as shown in Figure
8. This accounts for the high prediction errors at these locations. The use of a
larger training set along the chord length or knowledge of the complete strain state
at every sensor location should improve prediction results along the chord length.
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Figure 7: Locations of experimental impacts on the wing.

 
Figure 8: Thermographic image showing damage induced (red) on the leading edge
of the composite wing after repeated impacts.

6 Concluding Remarks

A feature extraction and regression process was presented in this paper which al-
lows for estimation of the impact load history in composite structures with complex
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Table 6: Experimental prediction results for impact on a composite wing

Impact Expt Max Predicted Prediction Expt Predicted Prediction
location Load (lbf) Load (lbf) Error AUC (lbf-s) AUC (lbf-s) Error
(3.5,5) 201.04 208.59 3.76% 2.49 2.62 5.22%
(5,5) 192.19 208.09 8.27% 2.58 2.60 0.78%

(6.5,5) 192.88 208.63 8.17% 2.54 2.61 2.76%
(8,5) 188.59 199.21 5.63% 2.47 2.55 3.24%

(9.5,5) 211.73 209.16 1.21% 2.74 2.63 4.01%
(6.5,4) 204.26 271.69 33.01% 2.49 2.98 19.68%
(6.5,5) 276.16 247.17 10.50% 2.83 2.75 2.83%
(6.5,6) 288.14 242.83 15.72% 3.05 2.60 14.75%
(6.5,7) 255.88 272.44 6.47% 2.85 2.68 5.96%
(6.5,8) 296.67 244.30 17.65% 3.47 2.60 25.07%
(6.5,9) 175.41 271.85 54.98% 2.32 2.91 25.43%

geometries. The framework developed uses time delay embedding to extract fea-
tures that capture the dynamics of the system through FBG sensor response. Since
the FBGs measure strain only in one direction, the strain information used for pre-
diction is incomplete but still provides reasonable prediction results. Using an SVR
algorithm, impact loads were predicted to within 12% on a composite plate and to
within 10% on a composite wing when the impact was within the sensor network re-
gion. Inclusion of more simulation data in the training set is needed to improve the
performance of the regression scheme. Experimental validation showed promising
results even with small training sets. Since the change in measured strains is highly
nonlinear along the chord length, more training impacts in that direction would help
improve the performance of the estimator.
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