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Material Uncertainty Effects on Frequency of Composite
Plates with Matrix Crack Induced Delaminations

P. Gayathri 1 and R. Ganguli1,2

Abstract: The effect of random variation in composite material properties on the
reliability of structural damage detection is addressed in this paper. A composite
plate is considered as the structure and a finite element model is used for the sim-
ulation. Damage growth due to cyclic loading is addressed. Matrix crack induced
delamination is emphasized in this paper. Thresholds for the damage accumulation
are found using finite element simulations so that the structure can be subjected to
inspections and removed from service safely. Uncertainty effects of composite ma-
terial properties on the response of the structure are quantified using Monte Carlo
simulations. Vibration modes which are robust damage indicators for fixed and
simply supported plates are identified.

Keywords: Composite Structure, Progressive Damage, Delamination, Material
Uncertainty

1 Introduction

Composite materials are now widely used in industry. Structures made of compos-
ites are susceptible to damage during operation. The damage growth phenomenon
in composites is typically more complex than that in metallic structures (Palani,
Dattaguru, Nagesh (2008), Robert (2009) and Jeom and Anil (2009)). For exam-
ple, cyclic loading on composites can result in a complex mechanism of damage
growth. Damage detection in composites has become a vital area of research in the
last two decades (Della and Shu (2007)). Delamination is one of the primary mech-
anisms of failure in composites. Delamination in a structure may occur due to many
reasons like fabrication defects, in service conditions such as low velocity impact
loading etc. Matrix cracking can also become one of the causes of delamination
under cyclic loading conditions. Following matrix crack saturation, delamination
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can start from the transverse crack tips (Nairn and Hu (1992)). The stiffness of the
composite structure reduces significantly due to delamination which directly effects
its response and vibration characteristics. Delamination beyond a certain limit may
lead to complete failure of the structure.

Typically, progressive damage in composites involves three phases, as shown in
Fig. 1. and discussed by Mao and Mahadevan (2002). Here damage index repre-
sents the loss of stiffness in the structure with 0 being undamaged and 1 indicating
complete damage. In the first phase, there is a rapid stiffness loss and this phase
is dominated by matrix cracking. In the second phase, delaminations occur in the
structure following matrix crack saturation. Finally, the third phase involves fiber
breakage, which is often the final cause of structural failure. From Fig. 1, it can be
seen that the point of transition from phase II to phase III is a good point to remove
the structure from service or subject it to detailed NDT inspection.

Since it is difficult to measure stiffness degradation, other measurements such as
strains and natural frequencies can be used to track the progress of the damage and
set appropriate thresholds (Roy and Ganguli (2005)). Mohanty, Chattopadhyay,
Wei and Peralta (2009) proposed a new damage index and used an on-line esti-
mation model with an off-line predictive model to adaptively estimate the residual
useful life of an AL-6061 cruciform specimen under biaxial loading. Strain gauge
sensors were used to estimate the current damage state of the structure. Several
recent studies have used modal information to find damage in structures. Giridhara
and Gopalakrishnan (2009) derived a damage index using frequency domain strain
energy. The method was found to be sensitive for crack detection in rectangular
plates and on a compressor blade. Raghuprasad, Lakshmanan, Gopalakrishnan and
Muthumani (2008) point out that the reduction in frequencies of a structure due to
damage is small. However, frequency reduction is the easiest method for estimat-
ing impending damage. Jean-Jacques Sinou (2007) proposed the frequency ratio
surfaces intersection method for predicting the location and depth of the crack. He
was also able to predict the crack orientation in a circular cross section beam. The
crack parameter could be identified by using only the frequency response functions
and natural frequency of the cracked structure. Thus, frequencies and strain are
useful indicators of damage in structures.

Several works have been conducted on matrix crack induced damage in compos-
ites. Kashtalyan and Soutis (2000) found the stiffness degradation in cross ply
laminates due to delamination, induced by transverse cracks and splits, using an
equivalent constraint model. Shahid and Chang (1995) developed a progressive
damage model to predict the accumulated internal damage and its effect on the
response of multi-directional composite laminated plates, which is more realistic
than cross ply laminates for many structures. Wang and Karihaloo (1997) found
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Figure 1: Schematic representation of damage growth in composites

the effect of ply angles on the intensity of delamination induced by matrix crack-
ing. Other recent efforts on progressive damage accumulation in composites are
given in (Tay, Tan, Tan and Gosse (2005), Turon, Costa, Maimi, Trias, Mayugo
(2005), Zhao and Cho (2007)). Some works have also addressed the fiber break-
age damage mechanism (Suyemasu, Kondo , Itatani, Nozue (2001) and Zhang and
Thompson (2005)).

In the present study, delamination due to matrix crack accumulation is considered
as it is an important failure mechanism for structures under fatigue loading. Fol-
lowing saturation, matrix cracking does not change the effective stiffness of the
material. However, cracks will accumulate inside the laminates and weaken the
plies, finally leading to other modes of failure like delamination and fibre break-
age, which are more critical from the structural failure point of view. Much work
has been done on the modeling of matrix cracking, which is generally the initial
phase of failure, by various researchers (Sun, Tao, Kaddour (1998), Highsmith and
Reifsnider (1982), Laws and Dvorak (1988), Hashin (1985) and Adolfson and Gud-
mundson (1997)). But, the study on the effects of accumulative damage on realistic
structures is limited. Pawar and Ganguli (2006) considered the progressive damage
accumulation in a thin-walled composite beam. In another work, Pawar and Gan-
guli (2007) studied the effect of the damage modes on the structural and aeroelastic
response of the rotor blades, taking progressive damage accumulation into consid-
eration. However, these works did not address plate structures. They also did not
consider the effect of material property uncertainty on damage detection.

Uncertainty in the material properties is a common phenomenon present in com-
posites, which in turn results in uncertainty in the strength and response charac-
teristics of the structure. Uncertainty can be of two types: aleatory and epistemic
(Moens and Vandepitte (2005)). Aleatory or random uncertainty occurs because of
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randomness in the material properties, geometry, and other properties of the struc-
ture. Epistemic uncertainty occurs due to unmodeled physical phenomenon such
as transverse shear effects, assumptions in modeling etc. Most work on compos-
ite structures focus on reducing the epistemic uncertainty by improving modeling.
Much fewer works address aleatory uncertainty. Effect of such aleatory uncertainty
must be considered while using damage detection methods so as to get more appro-
priate results. Literature shows that some researchers have considered the effects
of such uncertainties in their analysis (Singh, Yadav, Iyengar, (2001) and Yushanov
and Bogdanovich (1998)). Typically, Monte Carlo simulations or stochastic finite
element analysis (Mahadevan and Haldar (1991)), can be used to quantify uncer-
tainty effects. However, very few works address the effect of uncertainty in com-
posite material properties on structural damage detection in composites. Reliability
aspects of damage detection need to be addressed in research.

In the present work, the Shahid and Chang (1995) model is considered for modeling
matrix crack induced delamination caused by cyclic loading. The effect of material
property uncertainty on the possibility of detecting the onset of the final phase of
damage before failure is considered. Thresholds on the plate deflections and natural
frequencies, which can be used to indicate a point where the structure should be
removed are given.

2 Composite Plate Model

For a laminated composite plate, the kinematics is governed by the mid-plane dis-
placements uo, vo, the transverse displacement wo and the rotations ψx and ψy about
y and x axes, respectively, as shown in Fig. 2.

x,u

z,w

y,v

t/2

t/2

ψ ψ yx

z, w z, w

x,u y,v

Figure 2: Composite plate under transverse loading

The displacement field is then expressed as
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u(x,y,z) = uo(x,y)− zψx(x,y) (1)

v(x,y,z) = vo(x,y)− zψy(x,y) (2)

w(x,y,z) = wo(x,y) (3)

Then, the displacement components u, v and w along x, y and z directions, in terms
of midplane nodal degrees of freedom can be expressed as

{u}= [H]{δ}

where, {u}= {u v w}T , {δ}= {uo vo wo ψx ψy}T and

{
H
}

=

1 0 0 −z 0
0 1 0 0 −z
0 0 1 0 0


The strains in terms of in-plane and shear strains respectively are

ε = ε
o + zκ and γ

where,

ε
0 = [εo

x ε
o
y γ

o
xy]

T =
[

∂uo

∂x
∂vo

∂y
+

∂uo

∂y
+

∂vo

∂x

]T

κ = [κx κy 2κxy]T =
[
−∂ψx

∂x
−

∂ψy

∂y
− ∂ψx

∂y
−

∂ψy

∂x

]T

γ = [γyz γxz]T =
[

∂wo

∂y
−ψy

∂wo

∂x
−ψx

]
The stress-strain relationship with respect to x- and y-axis for the kth layer is:

σ
k =


σx

σy

τxy

=

Q̄11 Q̄12 Q̄16
Q̄12 Q̄22 Q̄26
Q̄16 Q̄26 Q̄66

k
εx

εy

γxy

 (4)

τ
k =

{
τyz

τxz

}
=
[

Q̄44 Q̄45
Q̄45 Q̄55

]k{
γyz

γxz

}
= C̄k

s γ (5)
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The laminate constitutive relations, that relate the force and moment resultants to
the strains are given by{

N
M

}
=
[

A B
B D

]{
εo

κ

}
= Cpεp (6){

Qy

Qx

}
= χ

[
A44 A45
A45 A55

]{
γyz

γxz

}
= Csγ (7)

where A, B and D are given by

(Ai j,Bi j,Di j) =
n

∑
k=1

zk∫
zk−1

Q̄k
i j(1,z,z2)dz (i, j = 1,2,6) (8)

Ai j =
n

∑
k=1

zk∫
zk−1

Q̄k
i jdz (i, j = 4,5) (9)

Q̄k
i j are the elastic constants with respect to x- and y- axis in the global coordinate

system for kth layer and χ is the shear correction factor.

2.1 Finite Element Formulation

A finite element model is developed based on the plate theory discussed in the
previous section. For discretization, the 4-node Quad elements are used and the
element degrees of freedom of this element are

δ
e = [δ e

1 δ
e
2 δ

e
3 δ

e
4 ]T and δ

e
i = [uo

i vo
i wo

i ψxi ψyi]T

Here, δ e
i represents the nodal degrees of freedom of the midplane. The displace-

ments of the midplane are interpolated by bilinear shape functions. The dynamic
equation of the system is

[Me]{δ̈ e}+[Ke]{δ e}= {Fe} (10)

The elemental mass matrix, stiffness matrix and load vector are respectively given
by:

Me =
∫

V e

ρ[N]T [N]dV =
n

∑
k=1

1∫
−1

1∫
−1

ρk[N]T

 zk+1∫
zk

[H]T [H]dz

 [N]|J|dξ dη

(11)
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Ke =
∫
Ae

(BT
b CpBb +BT

s CsBs)dA =
1∫
−1

1∫
−1

(BT
b CpBb

+BT
s CsBs)|J|dξ dη

(12)

Fe =
∫
Ae

[N]T f dA =
1∫
−1

1∫
−1

NT f |J|dξ dη (13)

where, [N] is the shape function matrix, Bb and Bs are strain displacement matrices
and f is the distributed force per unit area. A two point Gauss quadrature is used
for the numerical integration of mass matrix, bending term of stiffness matrix and
force vector, while the shear term of stiffness matrix is integrated using a single
point Gauss quadrature. Further details of the finite element formulation can be
obtained from (Cen, Soh, Long and Yao (2002) and Lam, Peng, Liu, and Reddy
(1997)).

3 Baseline model validation

In order to assess the accuracy of the finite element calculations, a laminated com-
posite plate made of AS4/3501-6 graphite epoxy material with mean values of
properties mentioned in Table 1 is considered. Uniformly distributed transverse
load is applied on the plate with two different boundary conditions namely, (a)
Fixed(clamped-clamped) on two opposite sides and (b) Simply supported on two
opposite sides.

For the validation and convergence analysis, the plate considered is of dimensions
200x200x1mm and is made of [0 90 90 0] orthotropic laminates, subjected to a
uniformly distributed transverse load of−100N/m2. The convergence of predicted
deflection is checked with mesh refinement, considering a square mesh. A 13x13
mesh is found to be sufficient for modeling the composite plate. The results of
the converged deflections are then compared with the analytical solutions based on
FSDT (Reddy (2000)) in Fig. 3 and are identical.

4 Damage Modeling

In this paper, the damage is assumed to accumulate uniformly in the composite
plate. Shahid and Chang (1995) model is used for the damage modeling. This
model predicts the accumulated damage in the structure. The damage growth mech-
anism starts with matrix cracking. Once matrix cracks saturate, the stiffness of the
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Figure 3: Deflection of composite plate under transverse loading

structure stops reducing at a crack density known as the crack saturation density
(φo). However, matrix cracks tend to induce more severe damage at the tip of the
crack such as debonding/delamination.

This transition corresponds to a change from region I to region II in Figure. 1.
The material properties of the plate are given in Table 1. The plate considered here
is a [45 -45 -45 45] balanced symmetric laminate, with dimensions and loading
identical to that mentioned in the previous section.

The effect of the debonding/delamination is modeled at the lamina mechanical
property level. Effect of debonding/delamination induced by matrix cracks on the
effective by stiffness is estimated based on the continuum damage mechanics ap-
proach.The degradation of material properties in a ply due to matrix cracking in-
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duced delamination is given by Shahid and Chang (1995).

Ed
xx(φ) = Exx(φ) (14)

Ed
yy(φ) = Eyy(φ)ds (15)

ν
d
xy(φ) = νxy(φ) (16)

ν
d
yx(φ) = νyx(φ)ds (17)

Gd
xy(φ) = Gxy(φ)ds (18)

where, ds is the material degradation factor due to matrix cracking-induced damage,
given by

ds = e−[ε̄yy(φ)/ε̄yy(φo)]η (19)

where, φo is the crack saturation density, ε̄yy(φo) is the effective transverse strain
at the saturation crack density and ε̄yy(φ) is the transverse strain at a crack density
φ . Here, η is the material parameter dictating the rate of material degradation due
to matrix cracking-induced damage, whose value for graphite/epoxy composites is
found to be appropriate at 8 (Shahid and Chang (1995)). Exx(φ),Eyy(φ),Gxy(φ)
and µxy(φ) are the effective mechanical properties including the effect of matrix
cracking at crack density φ . Since η is constant for a given material, ds varies
with the effective strain strain ratio (ε̄yy(φ)/ε̄yy(φo)). In general, the Shahid and
Chang model implies that matrix crack induced debonding or delamination damage
accumulates with an increase of crack density.

Using the mechanical properties, the ply stiffness due to presence of debonding/delamination
can be expressed as,

Qm
xx(φ) = rEd

xx(φ) (20)

Qm
yy(φ) = rEd

yy(φ) (21)

Qm
yx(φ) = rν

d
xy(φ)Ed

xx(φ) (22)

Qm
xy(φ) = rν

d
yx(φ)Ed

xx(φ) (23)

Qm
ss(φ) = Gxy(φ)ds (24)

Where

r = [1−νxy(φ)νyx(φ)]−1 (25)
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These equations are used to implement matrix crack induced delamination at the ply
level. The matrix crack saturation density is found to be φo = 3. The delamination
model is integrated into the finite element model and the variation of the transverse
modulus with the strain ratio is plotted as shown in Fig 4.
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Figure 4: Variation of the transverse modulus with strain ratio

From Fig. 4, it can be seen that there is a significant change in the transverse modu-
lus between the strain ratio of 0.5 and 1.25. Based on the loss of threshold material
stiffness, the likelihood of failure due to delamination is high after a strain ratio of
1.25 (Pawar and Ganguli (2007)). Also, the maximum deflection of the compos-
ite plates at matrix crack saturation corresponds to a value of strain ratio of about
1. This was identified in an earlier work by Pawar and Ganguli (2007) who also
suggested that this point could be used to create a threshold for the structure to be
subject to detailed NDT inspections. The logic here is that a structure rarely fails by
matrix cracking but its saturation is the trigger for delamination induced failure. So
in further studies, the effect of delamination is considered to take place between the
strain ratios of 1 and 1.25. Note that the results in this paper correspond to matrix
crack induced delamination/debonding which follows matrix crack saturation.

Fig. 5 shows the effect of delamination on the deflection of the composite plates.
Plots in the left column of Fig. 5 show the variation of the maximum deflection
of various plates with the strain ratio. As can be observed from these plots, the
deflection increases with increase in the strain ratio i.e, damage, as expected. The
increase is drastic after a strain ratio of around 1.25. This implies that beyond this
value of strain ratio, the structure will fail, which can also be observed from the
stiffness degradation in Fig. 4. The strain ratio of 1.25 marks the beginning of rapid
loss of stiffness before final failure and the values of deflection and other system
parameters at this point can be used as a threshold for removal of the structure from
service. So, the value of strain ratio of 1.25 is taken as the point of maximum
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Figure 5: Effect of delamination on the deflection of the plates

delamination before final failure and the analysis is done, considering this value.
The right side plots of Fig. 5 are the deflection curves for the two strain ratio values
of 1 and 1.25.

Table 2 gives the maximum deflection and the first five natural frequencies of the
plates at the strain ratio of 1.25 and also their percentage change due to delamina-
tion for the strain ratio increasing from 1 to 1.25. It can be seen that significant
changes in the maximum deflections occur due to delamination when compared to
the matrix crack saturated plate.

5 Monte Carlo Simulations

Monte Carlo simulations are done to account for material property uncertainty.
The threshold limit for delamination is taken at the strain ratio of 1.25. 5000 Monte
Carlo runs are simulated for the plates with the material properties and their coef-
ficients of variations as given in Table-1. The coefficient of variation is defined as
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the ratio of the standard deviation to the mean, for a Gaussian random variable. The
elastic material properties of the composite material (Exx,Eyy,Ezz,Gxy,Gxz,Gyz,rxy)
are treated as random variables. A Gaussian distribution is considered for each ran-
dom variable. Such a random variable xi is given by

xi = µ0 +σ0ri (26)

where µ0 is the mean, σ0 is the standard deviation and ri is any random number
generated form a Gaussian distribution with a mean of 0 and a standard deviation
of 1. The results of natural frequencies of these simulations are given in Fig. 6-7
for the undamaged plate, matrix crack saturated plate (r=1) and delaminated plate
(r=1.25). The matrix crack results correspond to matrix crack saturation and to
the transition from phase I to phase II in Fig. 1. Since structures typically do not
fail by matrix cracking, the transition from phase I to phase II can be considered
as the point where the structure should be monitored more closely. The second
threshold corresponds to transition from phase II to phase III and represents the
point where the structure should be removed or subjected to major inspections.
These two thresholds serve as valuable indicators of the health of the composite
structure.

The plots for the first five natural frequencies are shown in the Figs. 6-7. The plots
in the left column show the probability distribution of the natural frequencies for the
three damage cases from right to left i.e, undamaged, damage by matrix cracking
saturation and significant damage due to delamination, respectively. The right side
plots show the probability distribution curves for the left side plots along with the
deterministic values. For the fixed plate results in Figs. 6, the undamaged plates
are clearly separated from the damaged delaminated plate for all the five modes.
However, there is consider overlap between the frequencies of the matrix crack
saturated plate and the undamaged plate. Mode 1 appears useful for separating
the undamaged plate from the matrix crack saturated plate. Here, modes 4 and 5
appear good for separating the matrix crack saturation point from the delamination
end point.

For the simply supported plates in Fig. 7, there is some overlap between the matrix
crack saturated plate and the delaminated plate. However, the delaminated plate is
completely separated from the undamaged plate. Mode 1 offers good separation
between the undamaged and matrix crack saturated plates. Mode 5 offers good
separation between the matrix crack saturated and delaminated plate.

These results are summarized in Table 3. The first mode is a robust indicator for
identifying the transition between the undamaged plate and the matrix crack satu-
rated plate. For the point of substantial delamination, the higher modes such as the
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fifth mode are most robust to uncertainty. Note that modal based methods may not
be able to detect small cracks. However, most aerospace structures are designed
to tolerate a substantial amount of damage (Boller (2000), Cattarius and Inman
(2000)). Modal methods are not very susceptible to false alarms due to their insen-
sitivity to small damage. Thus, modal parameters are useful for global decision on
when to put a structure on watch for more detailed monitoring for their removal.
The decision of removal is expensive and should be taken only when substantial
amount of deterioration has taken place.

A probabilistic analysis can identify which damage indicators(for example, modes)
are less susceptible to structure uncertainty and therefore a better choice for damage
detection. The thresholds developed in this paper can be very useful for health
monitoring as they are robust to the presence of material uncertainty. Though the
result in this study apply for the specific damage model used, other damage models
and more realistic structures can also be considered.

Table 1: Material properties and uncertainty indicators of AS4/3501-6 graphite
epoxy

Ply Property Mean Value % Coeff. of variation
(Vinckenroy and Wilde (1995))

Longitudinal Modulus, Exx, GPa 141.96 3.39
Transverse Modulus, Eyy, GPa 9.79 4.27
Transverse Modulus, Ezz, GPa 9.79 4.27

In-plane shear modulus, Gxy, GPa 6 4.27
Transverse shear modulus, Gxz, GPa 6 4.27
Transverse shear modulus, Gyz, GPa 2.5 4.27

Poisson’s ratio, νxy 0.42 3.65
Density, ρ , kg m−3 1600 0

6 Conclusion

The effect of progressive damage in composites is considered. A finite element
model of a two different composite plates is used for the numerical results. The
effect of matrix crack induced delamination in composites on the plate response is
studied. The transition point between delamination and fiber breakage is identified
as the best location where the structure should be removed. The saturation of ma-
trix cracking is a good point to start observing the structure closely. Monte Carlo
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Figure 6: Effect of significant delamination and matrix crack saturation on the
natural frequencies of plate fixed on opposite ends
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Figure 7: Effect of significant delamination and matrix crack saturation on the
natural frequencies of plate simply supported on opposite ends
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Table 2: Values of deflection (mm) and natural frequencies (rad/s) at strain ratio
1.25 (significant delamination) and their percentage change (in brackets) for the
strain ratio varying from 1 (matrix crack saturation) to 1.25

Plate Type Deflection NF1 NF2 NF3 NF4 NF5
Fixed -0.263(78.74) 16.611(25.98) 22.19(25.67) 38.216(27.44) 41.493(36.5) 48.5(36.48)
SSB -1.473(83.37) 6.835(24.18) 14.523(20.2) 29.907(21.52) 31.096(25.82) 42.883(27.65)

Table 3: Modes suitable for damage monitoring under uncertainty

Plate Type Undamaged to Crack Substantial Delamination
Saturation Transition and Debonding

(Put structure on watch) (remove structure)
Fixed 1 4, 5

Simply Supported 1 5

simulations are run, taking 5000 points to consider the material property uncertain-
ties. It is found that the undamaged and the delaminated plate are clearly separated.
However, modes 1 and 4 are useful for separate the matrix cracked and delaminated
modes for the fixed plates. Modes 1, 4 and 5 are good for represent matrix cracked
plate and delaminated plate for the simply supported plates.
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