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Feature-Based Vibration Monitoring of a Hydraulic Brake System 

Using Machine Learning 

T. M. Alamelu Manghai1 and R. Jegadeeshwaran2  

Abstract: Hydraulic brakes in automobiles are an important control component used not 

only for the safety of the passenger but also for others moving on the road. Therefore, 

monitoring the condition of the brake components is inevitable. The brake elements can be 

monitored by studying the vibration characteristics obtained from the brake system using 

a proper signal processing technique through machine learning approaches. The vibration 

signals were captured using an accelerometer sensor under a various fault condition. The 

acquired vibration signals were processed for extracting meaningful information as 

features. The condition of the brake system can be predicted using a feature based machine 

learning approach through the extracted features. This study focuses on a mechatronics 

system for data acquisitions and a signal processing technique for extracting features such 

as statistical, histogram and wavelets. Comparative results have been carried out using an 

experimental study for finding the effectiveness of the suggested signal processing 

techniques for monitoring the condition of the brake system.   

Keywords:  Vibration signals,statistical features, histogram features, wavelet decomposition, 

machine learning, decision tree. 

1  Introduction 

Early detection of the faults can preclude the system from malfunction. Therefore, a 

decision support tool is necessitated for monitoring the condition of any system to 

categorize catastrophes. The brake system in an automobile is one such essential control 

component responsible for the safety. Faults are not fairly noticeable in an automobile 

brake system. Many studies have been reported in the literature for monitoring the brakes 

by measuring the parameters like brake temperature, friction force, and braking force 

[Richard, Marshall, Bailey et al. (2004); Reinecke (1988); Reinecke (1992)]. No such 

mechatronics system has been proposed for measuring the brake failures such as pad wear, 

the air in the brake fluid, oil leak, etc. Hence a feature based condition monitoring study 

has been reported in the present study to monitor the brake system. Vibration and acoustic 

emission (AE) are the two elements are widely suggested for many fault prediction studies. 

Ruoyu and David introduced an approach for health monitoring of rotational machine and 
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detecting fault location using Empirical Mode Decomposition (EMD)-based AE 

measurement [Li and He (2012)]. Elasha et al investigated the internal AE and external 

vibration measurement to identify the bearing fault in a helicopter gearbox. The bearing 

fault signatures were extracted using a signal processing technique [Elasha, Greaves, Mba 

et al. (2015)]. The AE signal is stochastic in nature. AE techniques require sophisticated 

sensors and data acquisition hardware. Hence, the vibration signal analysis is one of the 

comprehensive and convenient elements for the analysis.  

Bozhidar et al discussed vibration estimation with piezoelectric transducers and their 

application. The elements of change are tentatively characterized and examined 

[Dzhudzhev, Ivancheva, Kachulkova et al. (2013)]. Saruhan et al. described that the 

vibration examination system is a solid and precisely detecting system which detects to 

defect in the rolling element bearings (REBs) [Saruhan, Sarodemir, Çiçek et al. (2014)]. 

Ragini et al. reviewed recent research and advancements in rolling bearing vibration 

analysis techniques. The bearing fault and bearing characteristic frequencies (BCF) were 

discussed and reviewed [Sidar, Prakash and Gopal (2015)]. Haifeng et al. proposed a novel 

fault detection technique for solenoid-operated valves (SOV) based on vibration signal 

measurement. The amplitude of the vibration signal was separated by a de-noising 

algorithm based on its analyzed signals, to detect faults and Wavelet [Guo, Wang and Xu 

(2016)]. These measured vibration signals should be analyzed to get the meaningful 

conclusion. In vibration analysis, the vibration can be analyzed using either using Time 

domain analysis or a frequency domain analysis. The frequency domain analysis using Fast 

Fourier Transform (FFT) was traditionally followed approach for frequency domain 

analysis. However, FFT is not suitable for non-stationary signals. 

Katalin Agoston presented a method for detecting electrical and mechanical faults which 

occur frequently in an induction motor. Each type of faults (electrical or Mechanical faults) 

creates a vibration with a particular frequency. Through monitoring and analyzing the 

vibration spectrum these particular fault conditions can be detected [Agoston (2015)]. Zhou 

et al introduced a winding vibration model combined with electromagnetic force 

examination for measuring the twisting vibrations under different conditions [Zhou (2016)]. 

Buono et al. investigated to detect possible cavitation issue by implementing a proper 

numerical system. Bianchini et al. [Bianchini, Immovilli, Cocconcelli et al. (2011)] 

presented a diagnostic strategy based on the vibration analysis to distinguish faults. They 

have also investigated the physical connection between faults and vibration spectrum parts 

and the improvement of a kinematic model to anticipate fault frequencies for limited faults 

on linear roller bearings. Nasiri et al. [Nasiri, Mahjoob, Vahid-Alizadeh et al. (2011)] 

presented the mechanized cavitation fault detection in centrifugal pumps using vibration 

signature investigation. A neural network model was developed to distinguish the defective 

conditions. Bossio et al [Bossio, Bossio and De Angelo (2013)] proposed a new strategy 

for processing vibration signals in order to detect and analyze faults in variable speed wind 

turbines with permanent magnet synchronous generators. The proposed strategy depends 

on a resampling of the procured vibration signals with a specific speed independent 

vibration spectrum. The hydraulic brake system is also producing the vibration under 

different operating conditions. The produced vibration directly relates to the fault 

conditions. Hence, vibration is the most suited one for a condition monitoring study 

[Buonoa (2017)]. 



 

 

 

Feature-Based Vibration Monitoring of a Hydraulic                                                      151 

 

 

The vibration signatures captured from the brake system is non-stationary because of wear 

and tear. A proper signal processing techniques can solve such problems [Alamelu 

Manghai, Jegadeeshwaran and Sugumaran (2017)]. Nowadays, retrieving the meaningful 

information contained in the vibration signals are the alternate way for analyzing the 

signals based on its signature. The commonly used indices are the features which can be 

computed from the raw vibration signal and which highlight differences between records, 

making them useful for fault diagnosis and trending [Guo, Wang and Xu (2016)]. The 

vibration signals can be examined using techniques like wavelet analysis, waveform 

examination, spectral analysis, etc. Such investigation will give the data required to settle 

on a choice about when intercession is required for maintenance. The consequences of such 

examination are solved using a machine learning approaches in order to determine the 

original cause of the fault. In recent years, feature based study on machine learning 

approach is gaining momentum in the fault diagnosis field. The feature is an individual 

quantifiable property or characteristic of a phenomenon being monitored. There are many 

features such as statistical, histogram, wavelets, and AR-MA through which a detailed fault 

diagnosis study can be made. There are numerous studies have been reported using 

statistical features [Sugumaran and Ramachandran (2011); Jegadeeshwaran and Sugumaran 

(2015)]. However, there is a huge scope for other features such as histogram and wavelets. 

Hence, in this study, vibration signal acquisition and vibration signal analysis for extracting 

information as features in a brake system has been discussed with the help of an 

experimental study. 

The paper is structured as follows: 

The experimental setup, experimental procedure, and fault simulation procedure have been 

described in Section II. Vibration signal analysis has been discussed in Section III. 

Statistical feature extraction and histogram feature extraction has been discussed in Section 

IV and V. Wavelet feature extraction has been discussed in Section VI. The effectiveness 

of the feature extraction techniques have been evaluated and a comparative study has been 

discussed in Section VII. 

2  Experimental Studies 

The effectiveness of the features on the classification accuracy is the main objective of this 

study. An experimental study was carried out for finding the right features for monitoring 

the brake system. 

2.1  Experimental setup 

A commercial passenger vehicles (Maruti Swift) brake system was considered as an 

experimental test model (Figure 1) [Jegadeeshwaran and Sugumaran (2013)]. The test 

setup consists of the disc and rear drum brake coupled together by a common drive shaft 

which was run by a DC motor (1HP). The vibration signals were acquired using data 

acquisition hardware.  
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Figure 1: Experimental Setup-Hydraulic Brake system 

A wireless Data Acquisition (DAQ-Model NI 9234, 4 channel, 51.2 k Samples/sec) 

hardware was used for acquiring the vibration signals (Figure 2). The data acquisition 

hardware consists an inbuilt signal-conditioning unit, charge amplifier and an analog-to-

digital converter (ADC). The vibration signal in digital form was captured using NI-Lab 

VIEW. Vibration signal was acquired using the piezoelectric type shear accelerometer. An 

uni-axial accelerometer (500 g range, 10 mV/g sensitivity and) as shown in Figure 3 was 

used for acquiring the vibration signals. Figure 4 shows the chassis used for vibration signal 

acquisition. Vibration signal was acquired using the piezoelectric type shear accelerometer. 

An uni-axial accelerometer (500 g range, 10 mV/g sensitivity and) as shown in Figure 3 

was used for acquiring the vibration signals. Figure 4 shows the chassis used for vibration 

signal acquisition.  

2.2  Experimental Procedure 

Initially, all the components were assumed to be good (i.e. brand new brake components 

were used). The vibration signals were acquired under the constant parameters (Wheel 

speed: 667 rpm; brake force: 7 kgf) using the accelerometer. Then, the most frequently 

occurring faults were simulated one at a time on the brake system and the corresponding 

vibration signals were acquired. The following faults namely, Air in the brake fluid, Oil 

spill on the brake disc, drum brake pad wear, disc brake pad wear (Inner, inner and outer, 

uneven-inner, uneven-inner & outer), mechanical fade, brake oil leak were simulated one 

at a time while all other components remain in good condition and the corresponding 

vibration signals were acquired [Jegadeeshwaran and Sugumaran (2013)].  

The vibration signals were captured from the brake system with the following settings 

[Jegadeeshwaran and Sugumaran (2015)]: 

1) Sample length: 1024 chosen arbitrarily. 

2) Sampling frequency: 24 kHz (As per Nyquist sampling theorem). 

3) Number of samples: Minimum of 55 trials.  

Once the faults were simulated, the vibration signals were recorded. Figure 5. shows the 

graphical program which was used for the vibration signal acquisition. Figure 6 and Figure 
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7 show the sample vibration signals acquired from the brake system under good and air in 

brake fluid condition respectively. 

 

    

Figure 2: Data acquisition hardware-NI9234-4 channel DAQ 

    

Figure 3: IEPE type accelerometer 

 

 

Figure 4: Data acquisition hardware with CDAQ chassis NI9191 
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Figure 5: LabVIEW graphical program for acquiring the signals. 

 

Figure 6: Sample vibration signal under good condition. 

 

 

Figure 7: Sample vibration signal under air in brake fluid condition. 

3  Vibration signal analysis 

Vibration analysis is an indispensable part of many conditions monitoring programs for 
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rotating equipment, and each analyst comprehends the significance of using frequency-

based spectra to recognize machine faults. The vibration-based diagnosis has been the most 

prominent monitoring strategy due to the simplicity of measurement. At the point when 

vibration elements of a segment are obtained, its health condition can be dictated by 

comparing these patterns with those relating to its typical and failure conditions. One such 

technique which is commonly employed for the condition monitoring approach is feature 

extraction technique. Many features can be extracted from to vibration signals. They are (i) 

Statistical feature, (ii) histogram feature, and (iii) wavelet feature. 

3.1  Statistical feature extraction 

The statistical features can be extracted from the time domain signals frequency domain 

signals. Many authors have studied the statistical feature extraction techniques for various 

CM applications. Chinmaya et al. [Chinmaya, Kar and Mohanty (2008)] proposed a 

statistical feature extraction technique to find a detection of defects in a multistage gearbox 

under transient loads. Saravanan et al. [Saravanan, Cholairajan and Ramachandran (2009)] 

described the extraction of statistical features from the vibration signals acquired under 

different fault conditions of the gearbox. Shen et al. [Shen, Wang, Kong et al. (2013)] 

proposed a new intelligent machine fault diagnosis scheme based on the extraction of 

statistical parameters from the wavelet packet transform (WPT) clearing, a distance 

evaluation technique (DET) for the dimensionality reduction of the feature space for 

making health status decision mechanism.  

Table 1: Statistical Features 

Name of 

the 

Statistical 

Features 

 

Formula/Description 

Standard 

error √
1

𝑛 − 2
[∑(𝑦 − �̅�)2 −

∑[(𝑥 − �̅�)(𝑦 − �̅�)]2

∑(𝑥 − �̅�)2
] 

Standard 

Deviation √
𝑛 ∑ 𝑥

2
− (∑ 𝑥)

2

𝑛(𝑛 − 1)
 

Sample 

Variance √
𝑛 ∑ 𝑥

2
− (∑ 𝑥)

2

𝑛(𝑛 − 1)
 

Kurtosis 
{

𝑛(𝑛 + 1)

(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)
∑ (

𝑥𝑖 − �̅�

Sd

)
4

}

−
3(𝑛 − 1)2

(𝑛 − 2)(𝑛 − 3)
 

Skewness 𝑛

(𝑛 − 1)(𝑛 − 2)
∑ (

𝑥𝑖 − �̅�

Sd

)
3

 

Li et al. [Li, Zhu, Jiang et al. (2015)] described a feature extraction and evaluation 

technique for the rotating machinery fault diagnosis. Based on the central limit theory, an 
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extraction method was given to get the statistical features with the assistance of a signal 

processing apparatuses. The statistical features can be extracted using visual basic macro 

code [Jegadeeshwaran and Sugumaran (2015)] and Matlab. 

The statistical examination of the vibration signals yields diverse statistical parameters. 

Like, mean, median, mode, standard error, standard deviation, minimum, maximum, sum, 

count, crest factor, impulse factor, K-factor, shape factor, sample variance, skewness, 

kurtosis [Sujatha (2010)]. These statistical features can be extracted from the vibration 

signals using either Matlab code or a visual basic program. Table 1 shows the formulae 

used for extracting the statistical features from the raw vibration signals. 

3.2  Histogram feature extraction 

A distinction in the scope of amplitude for various classes could be seen when the size of 

the signs was measured in a time domain. Variation in the vibration amplitude can be 

visualized as a histogram plot. This histogram gives some significant data to characterize 

the fault condition [Elangovan (2011); Kankar, Satish and Harsha (2011)]. 

Indira et al. illustrated the systematic mathematical approach based on histogram features 

extracted from the vibration signal, to pick the number of bins and the minimum number 

of samples required to train the classifier with factual strength in order to get best grouping 

precision [Indira, Vasanthakumari, Sakthivel et al. (2011)]. Madhusudana et al. presented 

the blame finding of the face milling tool in view of machine learning approach using 

histogram features and K-star algorithm strategy. Histogram features were extracted from 

the gained vibration signals acquired from acquired signal [Madhusudana, Hemantha and 

Narendranath (2016)]. 

Joshuva and Sugumaran presented a vibration based wind turbine blade fault detection 

approach through histogram feature analysis [Joshuva and Sugumaran (2016)]. Figure 8 

shows the sample histogram feature extracted from two bin ranges. 

    

Figure 8: Sample histogram features extracted from the vibration signals 

3.3 Wavelet feature extraction 

The wavelet transform (WT) is a time-frequency deterioration of a signal into an 

arrangement of wavelet basis functions. The Continuous Wavelet Transform (CWT) and 

the Discrete Wavelet Transform (DWT) are the two different features which are frequently 
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used in various fault diagnosis approaches. 

The wavelet transform of f(t) is defined as 

WTf(a, b) = 〈f(t). Ψa,b(t)〉 =  
1

√a
∫ f(t)Ψ (

t−b

a
)

∞

0
dt,  (1) 

Where Ψa,b(t) is the scaled and shifted version of the transforming function, called a 

“mother wavelet” or “base wavelet”, which is defined as  

Ψa,b(t) =  
1

√a
 Ψ (

t−b

a
),  (2) 

Where t, a, b ϵ R, a ≠ 0 is continuous variables, a is scale factor of the base wavelet the is 

responsible for “resolution” analysis, and b is a shift factor that is responsible for location 

on the time axis. The function  Ψa,b(t) is called the base wavelet (or mother wavelet) and 

is continuous wavelet when parameters t, a, b changes continuously. The discrete wavelet 

analysis can be implemented by the scaling filter, which is a low pass filter related to the 

scaling filter, which is low pass filter related to the scaling function φ(t) and the wavelet 

filter, which is a high-pass filter related to the wavelet function Ψ(t). 

Discrete wavelets do the scaling and translation operations in discrete steps, limiting the 

choice of wavelet scales and translation a and τ to discrete numbers, but the analysis is still 

sufficiently accurate. This is expressed in the below form, 

Ψj,k(t) =  
1

√s0
j

 Ψ (
t−kτ0s0

j

s0
j )  (3) 

where j and k are integers. 

There are many studies have been reported in the literature for various studies. The time 

scale space is sampled at discrete intervals as a result of discretizing the wavelets. It results 

in series of wavelet coefficients, and the process is called wavelet series decomposition 

[Roshan, Chandan and Ajoy (2014)]. Baydar et al. [Baydar and Ball (2003)] examined the 

acoustic signals with WT to recognize the different faults in gearboxes. Peng and Chu 

presented the application of the wavelet transform in machine fault diagnostics. These 

vibration signals were separated into few principle angles, including the time-frequency 

examination of signals, the singularity recognition for signals, the de-noising and extraction 

of the powerless signals, the fault feature extraction, the pressure of vibration signals and 

the system identification [Peng and chu (2004)]. Saravanan and Ramachandran presented 

the layout of discrete wavelet transforms and afterward exhibited a model to investigate 

the vibration signals created by a bevel gearbox under different fault conditions [Saravanan 

and Ramachandran (2010)]. Newland [Newland (1994)] described the applications of the 

wavelet transform for extracting features from the vibration signals and for fault detection 

and diagnosis. Jing et al. [Jing and Qu (2000)] proposed a de-noising method based on the 

wavelet analysis extraction of mechanical vibration signals and they have successfully 

applied it for detecting faults in the roller bearing. Seker et al. [Seker and Ayaz (2003)] 

described a systematic approach for extracting the features from the vibration signals 

measured from the 5-HP motors to identify the impacts of bearing faults under each aging 

cycle of induction motors. Muralidharan et al. [Muralidharan and Sugumaran (2012)] 

presented the discrete wavelet features extracted from the vibration signals of good and 

defective conditions mono-block centrifugal pumps. 
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Using wavelets to expel noise from a signal requires distinguishing which segment or 

segments contain the noise, and afterward recreating the signal without those parts. In this 

case, less noisy and more high-frequency data was filtered out of the signal. During this 

stage, the loss of a significant number of the original signal's sharpest features is inevitable. 

Hence, a suitable approach called thresholding is required for optimal denoising. This 

includes discarding of just the bit of the subtle elements that exceeds a certain limit. 

 

Figure 9: Original and de-noised signal under good condition 

The thresholding value is changed level to level. The Wavelet features can be extracted for 

every condition using the Daubechies wavelets ''db 1" to ''db15". Based on the literature 

study, the level 5 approximation was used for the de-composition [Saravanan and 

Ramachandran (2010)]. From each db wavelets, the relevant statistical features were 

extracted. The wavelet features can be extracted from the vibration signals using MATLAB 

graphical user interface. Figure 9 shows the original and de-noised signal of a vibration 

signal acquired under good condition. Figure 10 shows the decomposition of the db wavelet 

under each level (from db 1 to db 5). 
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Figure 10: Decomposition signal for Daubechies wavelets (level 5) 

4  Results and Discussion 

The experiment was carried out for finding the better features extraction techniques for 

monitoring the health condition of a signal. All the features extracted through feature 

extraction techniques were classified using a decision tree algorithm to find the 

effectiveness of the features extracted from the vibration signals. A decision tree is a tree-

based knowledge structure used to select features through the classification rules [Peng, 

Flach, Brazdil et al. (2002)]. Decision trees are built using a top-down approach. A J48 

decision tree is an algorithm used to generate a decision tree which can be used for both 

feature selection and feature classification. Jegadeeshwaran and Sugumaran used decision 

tree algorithm for segregating the fault conditions of a hydraulic brake system 

[Jegadeeshwaran and Sugumaran (2014)]. 

4.1  Statistical feature classification using decision tree 

1) Twelve statistical features namely, maximum, minimum, mean, skewness, standard 

error, median, standard deviation, kurtosis, range, sum, variance, and count were 

extracted from the acquired raw vibration signal through visual basic code. 
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Table 2: Statistical Features extracted from the raw vibration signals 

Statistical Features Value 

Mean -0.00253707 

Standard Error 0.00238446 

Median 0.004668 

Mode -0.066255 

Standard Deviation 0.238446019 

Sample Variance 0.056856504 

Kurtosis 1.901427642 

Skewness -0.089974498 

Range 2.476281 

Minimum -1.213803 

Maximum 1.262478 

Sum -25.37070428 

Count 10000 

 

2) All the extracted features were classified using the decision tree algorithm. 

3) The input to the algorithm was the extracted features; the output was a classification 

accuracy. 

4) The decision tree provides 97.09% classification accuracy over the statistical features 

that were extracted from the raw vibration signals.  

Total number of data points     550 

Total number of data points that are correctly classified  534 

Total number of data points that are misclassified  16 

Classification accuracy      97.09% 

5) The decision tree uses a 10-fold cross validation for finding the classification accuracy. 

6) Table 2 shows the sample statistical features extracted from the raw vibration signals. 

4.2  Histogram feature classification using decision tree 

1) The value between the maximum and minimum value of the vibration signal was 

divided into a number of frequency ranges called as bins.  

2) Totally 70 bins were extracted from the vibration signal. All the 69 bin ranges (2-70) 

were classified one by one using a decision tree algorithm. 

3) Table 3 shows the sample histogram features extracted from the vibration signals under 

59th bin. 

4) The bin range 59 produced better classification accuracy as 97.83%.  

Total number of data points     550 

Total number of data points that are correctly classified  538 
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Total number of data points that are misclassified  12 

Classification accuracy      97.83% 

5) Here also, the 10-fold cross-validation was used for the classification purpose.  

6) Compared to statistical features, the histogram features produced a better accuracy. 

Table 3: Histogram features extracted from the raw vibration signal 

H26 H27 H28 H29 H30 H31 H32 

0 0 1863 5724 2413 0 0 

0 2 1956 5630 2412 0 0 

0 2 1930 5622 2446 0 0 

0 0 1899 5435 2666 0 0 

0 2 1960 5687 2351 0 0 

0 0 2017 5539 2444 0 0 

 

4.3  Wavelet feature classification using decision tree algorithm 

1) The original signal was decomposed using the Daubechies wavelets. 

2) From the final decomposed de-noised signal, the relevant features were extracted. 

Figure 9 and Figure 11 show the original and de-noised signal using Daubechies 

wavelets (level 5) for good and air in brake fluid condition respectively. 

 

Figure 11:  Decomposed vibration signals using Daubechies wavelets 

3) Table 4 shows the threshold values used for de-composing the signals. 

4) Table 5 shows the sample statistical features extracted from the decomposed signals.  

5) The extracted features were classified using the decision tree algorithm. 

6) The wavelet features produced 96.06% classification accuracy using 10-fold cross-

validation. 

Total number of data points     550 

Total number of data points that are correctly classified  528 
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Total number of data points that are misclassified  22 

Classification accuracy      96.06% 

Table 4: Thresholded value for decomposition signal 

Level Threshold value 

1 1.976 

2 1.109 

3 0.218 

4 0.753 

5 0.391 

Table 5: Statistical Features extracted from the decomposed wavelet signals 

Statistical Features Value 

Mean - 0.002748489 

Standard Error 0.001346671 

Median -0.052772291 

Mode 0 

Standard Deviation 0.134667065 

Sample Variance 0.0181352 

Kurtosis -1.38358  

Skewness 0.365127 

Range 0.446107 

Minimum -0.191509 

Maximum 0.2545979 

Sum -27.484894 

Count 10000 

 

4.4  Comparative study 

1) It is often needed to compare all the three feature extraction technique for identifying 

the better feature set for the fault diagnosis study. 

2) Table 5 shows the histogram and statistical features produced better accuracy over the 

wavelets for the same vibration signals.  

3) In particular, the histogram features produced a better accuracy than the other two 

features.  

4) Hence, the histogram can be taken as a better feature for the fault diagnosis study.  

5) The objective of this research is to find the effective feature extraction for a brake fault 

diagnosis study. 

6) The vibration signals acquired from the brake system can be analyzed using a statistical 
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learning process as discussed above. There is no much study on the histogram and 

wavelet features for a hydraulic brake system. Hence, this research outcome will help 

the researchers who are doing research in the brake health condition monitoring study. 

Table 5: Overall Classification Accuracy-Comparative study 

S. No Name of the Classifier Classification Accuracy (%) 

1 Statistical features 97.09 

2 Histogram features 97.83 

3 Wavelet Features 96.06 

5  Conclusion 

In this paper, the possible feature extraction techniques were discussed for a brake fault 

prediction process through machine learning. It deals with the vibration analysis based on 

the features extracted from the raw vibration signals. The vibration signals were acquired 

using a piezo-electric transducer through a data acquisition process. Set of statistical, 

histogram and wavelet features were extracted from the vibration signal using feature 

extraction techniques. The effectiveness of the feature extraction techniques was studied 

using a model based classification procedure through machine learning. The decision tree 

algorithm was used for finding the effectiveness of the features that were considered in the 

study. From the decision tree results, the histogram features produced a better result than 

the other two features. Hence, this histogram and decision tree combination can be 

considered for the practical applications of the fault diagnosis study on the hydraulic brake 

system.    
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Appendix A 

VB Code for extracting statistical features: 

For i = 1 To 55 

    ChDir _ 

        "F:\Academics\BFD-Latest_signals\Air in brake fluid" 

    Workbooks.OpenText Filename:= _ 

        "F:\Academics\BFD-Latest_signals\Air in brake fluid\a (" & i & ").lvm" _ 

        , Origin:=437, StartRow:=1, DataType:=xlDelimited, TextQualifier:= _ 

        xlDoubleQuote, ConsecutiveDelimiter:=False, Tab:=True, Semicolon:=False, _ 

        Comma:=False, Space:=False, Other:=False, FieldInfo:=Array(Array(1, 1), _ 

        Array(2, 1)), TrailingMinusNumbers:=True 

     Application.Run "ATPVBAEN.XLAM!Descr", ActiveSheet.Range("$B:$B"), "", "C" 

_ 

        , False, True 

    Range("B3:B15").Select 

    Selection.Copy 

    Windows("Book1").Activate 

    Range("A" & i & "").Select 

    Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _ 

        :=False, Transpose:=True 

    Windows("a (" & i & ").lvm").Activate 

    ActiveWindow.Close 

    Next i 

End Sub 
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Appendix B 

VB Code for extracting histogram features: 

 

Sub BFD_Hist() 

' 

' BFD_Hist Macro 

 

For i = 1 To 55 

    Workbooks.OpenText Filename:= _ 

        "F:\Academics\BFD-Latest_signals\Air in brake fluid\a (" & i & ").lvm" _ 

        , Origin:=437, StartRow:=1, DataType:=xlDelimited, TextQualifier:= _ 

        xlDoubleQuote, ConsecutiveDelimiter:=False, Tab:=True, Semicolon:=False, _ 

        Comma:=False, Space:=False, Other:=False, FieldInfo:=Array(Array(1, 1), _ 

        Array(2, 1)), TrailingMinusNumbers:=True 

    Windows("Book1").Activate 

    Windows("a (1).lvm").Activate 

    Range("P1").Select 

    ActiveSheet.Paste 

     Application.Run "ATPVBAEN.XLAM!Histogram", ActiveSheet.Range("$B:$B"), "" 

_ 

        , ActiveSheet.Range("$P:$P"), False, False, False, False 

    Range("B2:B15").Select 

    Selection.Copy 

    Windows("Book1").Activate 

    Range("A" & i & "").Select 

    Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _ 

        :=False, Transpose:=True 

    Windows("a (" & i & ").lvm").Activate 

    ActiveWindow.Close 

Next i 

End Sub 

 

 

 


