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Classifying Machine Learning Features Extracted from Vibration 

Signal with Logistic Model Tree to Monitor Automobile Tyre 

Pressure 

P. S. Anoop1 and V. Sugumaran2 

Abstract: Tyre pressure monitoring system (TPMS) is compulsory in most countries like 

the United States and European Union. The existing systems depend on pressure sensors 

strapped on the tyre or on wheel speed sensor data. A difference in wheel speed would 

trigger an alarm based on the algorithm implemented. In this paper, machine learning 

approach is proposed as a new method to monitor tyre pressure by extracting the vertical 

vibrations from a wheel hub of a moving vehicle using an accelerometer. The obtained 

signals will be used to compute through statistical features and histogram features for the 

feature extraction process. The LMT (Logistic Model Tree) was used as the classifier and 

attained a classification accuracy of 92.5% with 10-fold cross validation for statistical 

features and 90.5% with 10-fold cross validation for histogram features. The proposed 

model can be used for monitoring the automobile tyre pressure successfully. 

Keywords: Machine learning, Vibration, accelerometer, Statistical Features, Histogram 

Features, Logistic model tree (LMT), Tyre pressure monitoring system. 

1  Introduction 

Tyres are the most important part of an automobile. A study led by the UK tire industry 

gathering censured that between the time of 2003 to 2005 around 50% of light vehicle 

crashes were because of flawed tires [Paine, Griffiths and Magedara (2007)]. The tyre 

pressure monitoring systems (TPMS) are intelligent electronic subsystems fitted on 

automobiles to monitor the tyre pressure on a real-time basis. According to the method of 

data acquisition, they are mainly classified into two categories viz. direct and indirect 

systems. TPMS are capable of giving real-time tyre-pressure information to the driver, 

using a simple low-pressure warning light or an advanced liquid crystal display 

[Velupillai and Güvenç (2007)]. Direct tyre pressure monitoring systems depend on 

integrated barometric pressure sensors and temperature sensors [The Royal Society for 

the Prevention of Accidents (RoSPA)]. Some systems use an accelerometer to detect the 

centrifugal acceleration caused by the movement of the tyre from rest there by activating 

the sensor [Wei, Zhou, Wang et al. (2012)]. Other systems rely on a low frequency 
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receiver which receives an activation signal from the main TPMS control unit which 

would be housed in the vehicle. The sensor is protected within a strong plastic case and 

may be arranged at the neck of the tyre or may be strapped to the rim of the tyre using a 

steel band. A common defect reported by direct TPMS users was that the valve stem 

would corrode and would break with the slightest amount of torque. Moreover, direct 

TPMS cannot be used in conjunction with self-sealing solvents as it clogs the port of the 

barometric pressure sensor, rendering the sensor non-operational until cleaning. Indirect 

tyre pressure monitoring systems do not depend on direct pressure information; however, 

they rely on other indirect parameter such as wheel speeds [NIRA Dynamics AB and 

Dunlop Tech GmbH]. Since indirect TPMS systems are relative in nature they must be 

reset once the tyres are pressurized to optimum pressure to ‘Re-learn’ the required 

parameters. The ‘Re-learning’ procedure may take 5 to 60 minutes of driving. Indirect 

TPMS requires the vehicle to be in motion to operate [NIRA Dynamics. TPI]. 

Many studies had been carried out in direct and indirect tyre pressure monitoring system, 

to name a few, Howard et al. [Howard, NcGinnis and Daugherty (1993)] proposed a 

system in which remote the accelerometer would be fixed on the tyre and the tyre would 

be struck with a hammer. The accelerometer would be connected to a signal analyzer. 

The author presented a remote tyre pressure monitoring approach. Based on the air 

pressure the vibration frequency peaks generated by the tyre would alter. Hill et al. [Hill, 

Malson and Turner (2000)] proposed two methods for indirect tyre pressure measurement, 

A moving piston system and an inductive powered transducer method. However the 

author(s) also reported that the the vehicle had to be in motion for the system to work. 

Craighead [Craighead (1996)] proposed a sense tyre pressure, wheel balance and damper 

condition from vibration measurements. These parameters would be supervised when the 

vehicle is driven in a normal way. It was reported that the tyre pressure could be 

predicated only up to an accuracy of 12% and that further research was needed to 

improve the classification accuracy. Wei et al. [Wei, Zhou, Wang et al. (2012)] carried 

out a research on algorithms for tyre pressure monitoring based on multiple sensor 

information fusion and Bayesian. It was concluded that the information sensor fusion was 

better than the Bayesian method. Knawar et al. [Singh, Bedekar, Taheri et al. (2012)] 

proposed a piezo electric vibration harvesting system. This system uses a sensor to 

generate electrical power from vibration harvested from a running tyre there by powering 

tyre pressure monitoring sensors. Hamed et al. [Hamed, Tesfa, Aliwan et al. (2013)] 

carried out a research on the influence of vehicle tyre pressure on suspension system. The 

response of the suspension system was analyzed by applying the time – frequency 

approach. The vertical vibrations generated by the system were used for data analysis. 

Carcaterran et al. [Carcaterran and Roveri (2013)] investigate tyre grip identification 

based on strain information where the tyre road grip condition could be estimated from 

the strain information acquired from the tyre. Dubois et al. [Dubois, Cesbron, Yin et al. 

(2013)] conducted a study in which low frequency statistical estimations of rolling noise 

of tyre and road were calculated numerically. Genovesi et al. [Genovesi, Monorchio and 

Saponara (2008)] designed a double loop antenna for tyre pressure monitoring system. 

The author claimed that it could be used to reduce complexity of sensing nodes. A 

deflated tyre would increase its contact path to the ground [Paine, Griffiths and Magedara 

(2007)]. This could add rolling resistance. Extreme under-inflation can even lead to 
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thermal and mechanical stress caused by overheating and subsequent, sudden destruction 

of the tyre itself [Mohsenimanesh, Ward and Gilchrist (2009)]. Under-inflation can 

severely affect fuel efficiency and tyre wear. Tyres lose air overtime due to natural 

diffusion; even a new, properly mounted tyre can lose pressure up to 1 psi a month 

[Persson (2005)]. Ivan et al. [Ivan, Carlos, Holly et al. (2011)] highlighted the challenges 

in developing a cost effective system-in-package for tyre pressure monitoring system. A 

tyre maintained at optimum pressure could provide the user the benefits such as improved 

fuel economy, extended tyre life, decreased downtime and maintenance and improved 

handling. Hence, there is a strong need to propose a fault diagnosis system which can 

monitor the tyre pressure using machine learning approach [Anoop, Sugumaran and 

Praveen (2017)].  

Numerous works were carried out using distinctive methodologies; however, only a very 

few in the experimental analysis for tyre pressure monitoring Machine learning technique 

was presently considered for tyre pressure monitoring; however, the usage was limited in 

the literature.  Hence, there is a strong need to design a fault diagnosis system which can 

predict the tyre pressure using machine learning approach. This study makes a novel 

attempt to find a TPMS using machine learning approach Figure 1 shows the 

methodology of the work done. The rest of the paper is organized as follows. Section 2 

presents the experimental setup and experimental procedure. In section 3, feature 

extraction is explained, followed by feature selection. The result of the classifier and 

classification accuracy of the models was discussed and the suggestion of the better 

model is proposed in section 4. Conclusions are presented in the final section (Section 5).      

 

Figure 1: Methodology 
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2  Experimental setup 

This work suggests a novel technique to monitor tyre pressure by using the machine 

learning and fault diagnosis approaches. A radial tyre was chosen for this study (Figure 2) 

because of its good fuel economy and driving comfort. Pressure readings were taken for 

different conditions; normal, puncture and idle. Tyre pressures of 28 psi were taken as 

normal and pressure readings of 22 psi and below were taken as puncture. The test 

speeds were limited from 20 km/h to 80 km/hr. The speed of the vehicle was varied in a 

normal driving method. Speeds below 20 km/h did not give sufficient amplitude hence 

they were classified as idle, irrespective of their tyre state. A tri-axial MEMS 

accelerometer was used to acquire the vibration data. Figure 3 represents the MEMS 

accelerometer module. Figure 4 illustrates the axes of the accelerometer. Figure 5 

represents the experimental setup. Table 1 shows the MEMS accelerometer specification 

and Table 2 shows the specification of DAQ system used for MEMS sensor. A total of 

360 samples of 1000 data points each at a sampling rate of 66Hz were taken. Equal 

numbers of samples were acquired for all three classes in order to ensure the experiment 

unbiased. The classes were titled as ‘Normal’, ‘Puncture’ and ‘Idle’. A data acquisition 

program written in visual C++ was used to log the incoming data. The accelerometer 

module was coated with a waterproof gum and fixed to the axel of the rear right wheel of 

the car (Figure 5). A shielded wire was used to minimize external electronic interference 

[Anoop, Sugumaran and Praveen (2016)]. Sri et al. [Sri, Vetrivel, Mathew et al. (2015)] 

presented systematic analysis has been carried to optimize the sensitivity. A shielded 

wire was used to minimize external electronic interference. According to Nyquist 

Shannon sampling theorem, the minimum sampling rate should be at least double the 

highest incoming frequency in order to avoid antialiasing effect [McLean, Alsop and 

Fleming (2005)]. Hence the minimum sampling rate must be 28.26 Hz. The sampling 

rate was set at 66 Hz.  

 

 

                                             Figure 2: Tyre used for experiments 
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           Figure 3: MEMS accelerometer module 

 

 

Figure 4: MEMS Accelerometer axis (from datasheet) 

 

 

                                    Figure 5: MEMS accelerometer fixed on the axel 
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Table 1: MEMS accelerometer specification 

Table 2: Specification of DAQ system used for MEMS sensor 

FEATURES  SPECIFICATION  

Make Self  

PC communication USB/RS232  

Number of input Channel 3  

ADC Type Successive approximation  

ADC resolution  10 bit  

Max sampling rate 15 kHz  

3  Machine learning  

Machine learning is a field of computer science which deals with the design and 

development of algorithms to develop a prediction from a supplied data set. In machine 

learning a signal will be represented in the form of statistical or histogram features. The 

selection of the right feature type for a specific application requires experimentation. 

Hence this paper reports a study conducted in which the same data set was processed 

with two different feature types. Once processed the results generated were compared.  

 

FEATURES  SPECIFICATION  

Make Freescale Semiconductor  

Weight <1 g (accelerometer only) 

5 g with supporting electronics 

 

Type MEMS  

Number of Axis 3  

Description ±1.5 g 

±6 g 

Selectable range 

 

Frequency 1 – 400 Hz (X and Y axis) 

1 – 300 Hz (Z axis) 

 

Resonance Frequency 6 kHz (X and Y axis) 

3.4 kHz (Z axis) 

 

Sensitivity 800 mV/g @ 1.5 g 

206 mV/g @ 6 g 

 

Connector LGA-14 Package 

(SMD component) 
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3.1  Statistical feature processing 

3.1.1  Feature extraction 

Vibration signals were acquired for normal as well as puncture conditions. Different 

statistical features like minimum, maximum, standard deviation, skewness etc. were 

extracted from the acquired vibration signals. Among them the most contributing and 

prominent features were selected for feature selection process.  

3.1.2  Feature selection using decision tree 

In the feature selection, the selected features were tested by using decision tree. The 

contribution of each selected features were tested and the features contributing the most 

were considered. The remaining features were rejected to reduce computational time and 

load.  

A standard decision tree consists of a number of branches,, nodes, leaves and one root. 

One branch is a chain of nodes from root to a leaf; and each node involves one attribute. 

The occurrence of an attribute in a tree provides information about the importance of the 

associated attribute [Peng, Flach, Brazdil et al. (2002)]. A decision tree is a tree based 

knowledge representation methodology used to represent classification rules. J48 

algorithm (A WEKA implementation of c4.5 Algorithm) is a widely used one to 

construct decision trees [Quinlan (1996)]. The procedure of forming the decision tree and 

exploiting the same for feature selection is characterized by the following: 

1. The set of features available at hand forms the input to the algorithm; the output is the 

decision tree. 

2. The decision tree has leaf nodes, which represent class labels, and other nodes 

associated with the classes being classified. 

3. The branches of the tree represent each possible value of the feature node from which 

they originate. 

4. The decision tree can be used to classify feature vectors by starting at the root of the 

tree and moving through it until a leaf node, which provides a classification of the 

instance, is identified. 

5. At each decision node in the decision tree, one can select the most useful feature for 

classification using appropriate estimation criteria. The criterion used to identify the 

best feature invokes the concepts of entropy reduction and information gain-discussed 

in the following sub section. 

Figure 6 represents the decision tree generated using the J48 tree algorithm. 

3.1.2.1 Information gain and entropy reduction 

Information gain measures how well a given attribute separates the training examples 

according to their target classification. The measure is used to select among the candidate 

features at each step while growing the tree. Information gain is the expected reduction in 

entropy caused by partitioning the examples according to the given feature.  

Information gain (S, A) of a feature A relative to a collection of examples S, is defined as 
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𝐺𝑎𝑖𝑛(𝑆, 𝐴) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑆) −  ∑
|𝑆𝜐|

|𝑆|
 𝜐∈𝑉𝑎𝑙𝑢𝑒(𝐴) 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑆𝜐),                                       (1) 

Where Value(A) is the set of all possible values for attribute A, and 𝑆𝜐 is the subset of S 

for which feature A has value 𝜐 (i.e. 𝑆𝜐 =  {𝑠 ∈ 𝑆 |𝐴(𝑠) = 𝜐}). Note the first term in the 

equation for Gain is just the entropy of the original collection S and the second term is the 

expected value of the entropy after S is partitioned using feature A. The expected entropy 

described by the second term is simply the sum of the entropies of each subset 𝑆𝜐  , 

weighted by the fraction of examples |𝑆𝜐| |𝑆|⁄  that belong to 𝑆𝜐 Gain (S, A) is therefore 

the expected reduction in entropy caused by knowing the value of feature A. Entropy is a 

measure of homogeneity of the set of examples and it is given by 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑆) =  ∑ −𝑃𝐼𝑙𝑜𝑔2𝑃𝑖
𝑐
𝑖=1                                                                                       (2) 

Where c is the number of classes and 𝑃𝑖  is the proportion of S belonging to class i. 

[Sugumaran and Ramachandran (2007)] 

 

 

Figure 6:  Decision tree generated using the J48 tree algorithm 

 

Number of Leaves: 16 

Size of the tree: 31 

Time taken to build model: 0.01 seconds 
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Table 3: Detailed accuracy by class for the untrained J48 

TP FP PR R F RO C 

0.858 0.067 0.866 0.858 0.862 0.919 N 

1 0.008 0.984 1 0.992 0.993 P 

0.85 0.071 0.857 0.85 0.854 0.889 I 

0.903 0.049 0.902 0.903 0.902 0.933 W 

Table 4: Cross-validation for j48 

Parameter  Value/ Action 

Correctly Classified Instances 325/360 

Kappa statistic 0.8542 

Root mean squared error 0.2463 

Root relative squared error 52.2453 % 

Incorrectly Classified Instances 35/360 

Mean absolute error                       0.0809 

Relative absolute error 18.1921 % 

Total Number of Instances 360 

Table 3 shows the detailed accuracy by class for the untrained J48 classifier. Table 4 

shows the stratified cross-validation details for the untrained J48 classifier. Table 5 shows 

the confusion matrix generated by the untrained J48 classifier. Table 6 shows the values 

for objects of the trained J48 tree classifier. 

Table 5: Confusion matrix generated the untrained J48 tree 

Classified as Normal Puncture Idle 

Normal 102 16 2 

Puncture 17 103 0 

Idle 0 0 120 

Table 6: Values for objects of the trained J48 tree 

Sl no. Objects Value 

1 Confidence factor 0.25 

2 Minimum number of objects 2 

3 Number of folds 3 

4 Seed 1 

 

From this process, the features selected were standard error, mean, skewness, kurtosis 

and median. The remaining attributes were rejected. ‘Minimum’ and ‘range’ were 

rejected even though selected by the classifier as it was found that the classification 
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accuracy would drop (by 1%) if used. Classification accuracy of 88.78% was attained for 

the untrained J48 classifier. 102/120 samples were correctly classified as normal, 103/120 

samples were correctly classified as puncture, and 120/120 samples were correctly 

classified as idle. The diagonal elements of the confusion matrix denote the correctly 

classified classes. However, 17/120 samples of the class ‘puncture’ was incorrectly 

classified as normal which is about 14.16%. Moreover 16/120 samples of the class 

‘Normal’ were incorrectly classified as puncture which is about 13.33 %. Adding to the 

previous misclassification two samples of normal were misclassified as idle this was 

about 1.81%. This indicated that a study is required in reducing misclassification thereby 

increasing the classification accuracy [Anoop, Sugumaran and Praveen (2016)]. 

3.2  Histogram feature processing 

3.2.1  Feature selection 

In feature selection process the features extracted from the feature extraction process will 

be tested to determine its contribution and the features with the best contribution would 

be selected, others would be rejected to reduce computational load. Here J48 classifier 

was used to accomplish the task of feature selection as it gave the best accuracy. The 

decision tree generated by the classifier is shown in previous papers [Anoop, Sugumaran 

and Praveen (2016)]. All 99 bins were tested with the J48 classifier. Out of which, bin 

number 32 yielded the maximum result of 88.18%. Hence bin number 32 was chosen for 

the feature selection process. From this process the features selected were H9, H15, H16, 

H18, H19, H20, H21, H22, H24 and H25. These attributes were chosen from all the other 

features by the classifier and the remaining attributes were rejected. 

Table 7: Detailed accuracy by class for the untrained J48 classifier for J48 tree 

TP FP PR R F RO C 

0.8 0.059 0.871 0.8 0.834 0.875 N 

0.864 0.091 0.826 0.864 0.844 0.886 P 

1 0.018 0.965 1 0.982 0.988 I 

0.888 0.056 0.887 0.888 0.887 0.917 W 

Table 7 shows the detailed accuracy by class for the untrained J48 classifier. Table 8 

shows the stratified cross-validation details for the untrained J48 classifier. Table 9 shows 

the confusion matrix generated by the untrained J48 classifier. Table 10 shows the values 

for objects of the trained J48 tree classifier. 

 

 

 

 

 

 



 

 

 

Classifying Machine Learning Features Extracted from Vibration                                201 

Table 8: Cross-validation for J48 

Parameters Results 

Correctly Classified Instances 293/330 

Kappa statistic 0.8318 

Root mean squared error 0.2647 

Root relative squared error 56.1433% 

Incorrectly Classified Instances 37/330 

Mean absolute error                       0.0888 

Relative absolute error 19.9839% 

Total Number of Instances 330 

Table 9: Confusion matrix generated J48 tree 

Classified as Normal Puncture Idle 

Normal 88 20 2 

Puncture 13 95 2 

Idle 0 0 110 

Table 10: Values for objects of the trained J48 tree 

Sl no. Objects Value 

1 Confidence factor 0.25 

2 Minimum number of objects 2 

3 Number of folds 3 

4 Seed 1 

From the above results it is clear that bin 32 had attained the maximum classification 

accuracy of 88.78%. 88/110 samples were correctly classified as normal, 95/110 samples 

were correctly classified as puncture, and 110/110 samples were correctly classified as 

idle. The diagonal element of the confusion matrix contains correctly classified instances. 

However, 13/110 samples of the class ‘puncture’ was incorrectly correctly classified as 

normal which is about 11.80%. Moreover 20/110 samples of the class ‘Normal’ were 

incorrectly correctly classified as puncture which is about 18.18%. Adding to the 

previous misclassification 2 samples of each of normal and puncture were misclassified 

as idle which is about 1.81% per class. This clearly indicates that a study is required to 

reduce the misclassification percentage thereby increasing the classification accuracy. 

4  Results and discussion 

4.1  Classification using statistical features and logistic model tree 

The classifier is used for building 'logistic model trees' (LMT), which are classification 

trees with logistic regression functions at the leaves. The algorithm can deal with binary 



 

 

 

202  Copyright © 2017 Tech Science Press            SDHM, vol.11, no.2, pp.191-208, 2017 

and multi-class target variables, numeric and nominal attributes and missing values. 

Table 11 shows the confusion matrix of the trained classifier. Table 12 shows the 

stratified cross-validation details. Table 13 shows the detailed accuracy by class. 

Table 11: Confusion matrix for LMT 

Classified as  Normal Puncture Idle 

Normal  106 13 1 

Puncture  13 107 0 

Idle 0 0 120 

Table 12: Cross-validation for LMT 

Parameters Results 

Correctly Classified Instances 333/360 

Kappa statistic 0.8875 

Root mean squared error 0.208 

Root relative squared error 46.97% 

Incorrectly Classified Instances 27/360 

Mean absolute error                       0.0957 

Relative absolute error 21.54% 

Total Number of Instances 360 

Table 13: Detailed accuracy by class for LMT 

TP FP PR R F RO C 

0.883 0.054 0.891 0.883 0.887 0.948 N  

0.892 0.054 0.892 0.892 0.892 0.943 P 

1 0.004 0.992 1 0.996 0.998 I 

0.925 0.038 0.925 0.925 0.925 0.963 W 

The classifier depends on three variables which are minimum number of instances, 

number of boosting iterations and weight trim. The variation of these parameters vs. the 

algorithms classification accuracy is plotted in Figure 7-9 respectively. 
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                    Figure 7: Minimum number of instances vs. classification accuracy 

 

                  Figure 8: Number of boosting iterations vs. classification accuracy 

 

                                     Figure 9: Weight trim vs. classification accuracy  

Table 14:  Values for objects of the trained LMT 

Sl no. Objects Value 

1 Minimum number of instances 2 

2 Number of boosting iterations 0 

3 Weight trim 0.1 
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Varying the parameter titled ‘minimum number of instances’ (Figure 7) from 1 to 100 in 

steps of ‘5’ does not cause any change in classification accuracy initially, however on 

further alteration the classification accuracy increases and then drops. Varying the 

parameter titled ‘Number of boosting iterations’ from 0 to 9 in steps of ‘1’ caused a 

fluctuation in classification accuracy. However, it did not improve the classification 

accuracy (Figure 8) which was maintained, varying the parameters ‘weight’ (Figure 9) 

from 0 to 0.9 in steps of ‘0.1’caused a steady drop in classification accuracy. The values 

of objects for the trained algorithm are shown in Table 14. From the confusion matrix 

(Table 11) it can be noted that 106/120 samples were correctly classified as normal, 

107/120 samples were correctly classified as puncture, and 120/120 samples were 

correctly classified as idle. The classifier achieved a maximum classification accuracy of 

92.5% after training. 

4.2  Classification using histogram and logistic model tree 

Table 15 shows the confusion matrix of the trained classifier. Table 16 shows the 

stratified cross-validation details. Table 17 shows the detailed accuracy by class. 

Table 15: Confusion matrix for LMT 

Classified as  Normal Puncture Idle 

Normal  92 13 5 

Puncture  13 95 2 

Idle 0 0 110 

Table 16: Cross-validation for LMT 

Parameters Results 

Correctly Classified Instances 297/330 

Kappa statistic 0.85 

Root mean squared error 0.2478 

Root relative squared error 52.56% 

Incorrectly Classified Instances 33/330 

Mean absolute error                       0.0942 

Relative absolute error 21.19% 

Total Number of Instances 330 

Table 17: Detailed accuracy by class for LMT 

TP FP PR R F RO C 

0.836 0.059 0.876 0.836 0.856 0.913 N  

0.864 0.059 0.88 0.864 0.872 0.931 P 

1 0.032 0.94 1 0.969 0.992 I 

0.9 0.05 0.899 0.9 0.899 0.945 W 
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The classifier depends on three variables which are minimum number of instances, 

number of boosting iterations and weight trim. The variation of these parameters vs. the 

algorithms classification accuracy is plotted in Figure 10-12 respectively. 

 

 

Figure 10: Minimum number of instances vs. classification accuracy 

 

                        Figure 11: Number of boosting iterations vs. classification accuracy 

 

                                       Figure 12: Weight trim vs. classification accuracy 

The values of objects for trained algorithm are shown in Table 18 
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Table 18: Values for objects of the trained LMT 

Sl no. Objects Value 

1 Minimum number of objects 65 

2 Number of boosting iterations 6 

3 Weight trim 0.0 

 

In existing work the classifier used was K star algorithm. Varying the parameter ‘global 

blend from 5 to 100 in steps of ‘5’ causes a steady drop in classification accuracy; the 

default value provided the best classification accuracy. As mentioned above all four 

modes were tested and yielded the same result.  From the confusion matrix it can be 

noted that 92/110 samples were correctly classified as normal, 96/110 samples were 

correctly classified as puncture, and 110/110 samples were correctly classified as idle. 

The classifier achieved a maximum classification accuracy of 87.87% after training 

[Anoop, Sugumaran and Praveen (2016)]. 

Using Logistic Model Tree algorithm varying the parameter titled ‘minimum number of 

instances’ (Figure 10) from 1 to 100 in steps of ‘5’ does not causes any change in 

classification accuracy initially, however on further alteration the classification accuracy 

increases and then drops. Varying the parameter titled ‘Number of boosting iterations’ 

from 1 to 9 in steps of ‘1’ caused a fluctuation in classification accuracy; however, did 

not improve the classification accuracy (Figure 11). Varying the parameters ‘weight’ 

(Figure 6) from 0 to 0.9 in steps of ‘0.1’ caused a steady drop in classification accuracy. 

The values of objects for the trained algorithm are shown in Table 18. From the 

confusion matrix (Table 15), it can be noted that 92/110 samples were correctly 

classified as normal, 95/110 samples were correctly classified as puncture, and 110/110 

samples were correctly classified as idle. The classifier achieved a maximum 

classification accuracy of 90% after training. So the proposed Logistic Model Tree 

algorithm having more accurate than the existing K star algorithm. 

5  Conclusion 

The tyre pressure monitoring system is very important in vehicle safety. “This paper 

proposes a machine learning approach where the vertical vibration of a wheel hub was 

used to monitor the tyre pressure. The model was tested in 10-fold cross-validation.  The 

logistic model tree was used and the highest classification accuracy of 92.5% was 

obtained by 10-fold cross-validation. The classification accuracy is high compared to the 

existing work. Hence, the Bayes Net can be practically used for the condition monitoring 

of wind turbine blade to reduce the downtime and to maximize the usage of wind energy. 

The methodology and algorithm suggested in this paper can be potentially used for any 

kind of tyre pressure monitoring system with minimal modification. This can ensure that 

a real-time tyre pressure monitoring system would be made possible if the logistic model 

tree is implemented. 
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