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Abstract: In this paper, we study the approximate solutions for some of nonlinear 
Biomathematics models via the e-epidemic SI1I2R model characterizing the spread of 
viruses in a computer network and SIR childhood disease model. The reduced differential 
transforms method (RDTM) is one of the interesting methods for finding the approximate 
solutions for nonlinear problems. We apply the RDTM to discuss the analytic 
approximate solutions to the SI1I2R model for the spread of virus HCV-subtype and SIR 
childhood disease model. We discuss the numerical results at some special values of 
parameters in the approximate solutions. We use the computer software package such as 
Mathematical to find more iteration when calculating the approximate solutions. 
Graphical results and discussed quantitatively are presented to illustrate behavior of the 
obtained approximate solutions. 
 
Keywords: Reduced differential transforms method, nonlinear biomathematics models, 
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1 Introduction 
Many applications of science and engineering the nonlinear equations appear such as fluid 
dynamics, plasma physics, hydrodynamics, solid-state physics, optical fibers, acoustics and 
other disciplines [Adomian (1994)]. The analyatic and approximate solutions many 
effective methods for obtaining to the NPDEs among of these methods are discussed in 
Ablowitz et al. [Ablowitz and Clarkson (1991); Singh, Dhar, Bhatti et al. (2016)]. In the 
present article, we use the reduced differential transform method (RDTM) which discussed 
in Keskin et al. [Keskin and Oturanc (2010); Keskin (2010)]; [Amer, Mahdy and Youssef 
(2018)], to construct an approximate numerical solution of some highly nonlinear 
differential equations in biomathematics. Reduced differential transform technique is 
iterative procedure a Taylor series solution of differential equations. This method reduces 
the size of work computational and easily applicable to many nonlinear physical problems. 
The results show that RDTM is a powerful mathematical tool for handling nonlinear ODEs. 
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The solution approach of RDTM is observed simpler than other approximate methods. Also, 
is highly accurate, rapidly converge and easily implementable mathematical tool for the 
multidimensional biomathematics models, physical problems emerging in various domains 
of engineering and applied sciences. Effectively, the analytic approximate solutions are 
discussed for two nonlinear systems of biomathematics models such as SI1I2R model for 
the spread of virus HCV-subtype4a and SIR childhood disease mode. These systems can be 
seen in El-Shahed et al. [El-Shahed, Ahmed and Abdelstar (2016); Haq, Shahzad, 
Muhammad et al. (2017)]. In biomathematics models, they play a major role in various 
fields, such as Childhood diseases are the most serious infectious diseases. Measles, 
poliomyelitis, and rubella are famous among them.  

1.1 SI1I2R model 
Model SI1I2R for the spread of virus HCV-subtype4 can be written as follows [El-
Shahed, Ahmed and Abdelstar (2016)]:             

 

, 

=                                                                                         (1)                              

 
where R denotes densities of individuals recovered. Rate of birth is equal a rate positive 
constant (c), (b), δγ ,  rate the susceptible individuals a removed after taking the 
medicine from I1, I2, respectively.  

1.2 SIR model 
The mathematical model plays an important comprehend the process of transmission 
disease and provides different techniques to control propagation. Many mathematicians 
investigated childhood disease; for instance, Henderson et al. [Henderson (1984); Singh, 
Dhar, Bhatti et al. (2016)] studied the diseases vaccination of childhood. Makinde 
[Makinde (2007)] presented the Susceptible-Infected-Recovered. 

( ) SSIp
dt
dS πβπ −+−= 1

 

                                                                                                         (2)     

 
This model shows vaccination is 100 percent efficient and rate the natural death  is unequal. 
So, size the total population  is not constant. Rate birth is  while the rate of mortality of 
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the childhood disease is very low. The parameter,  is vaccinated population at birth, where 
 rest of population is susceptible. The rate of susceptible individual suffers from 

through contact with infected individuals is . Rate the infected individuals recover is . 
More many applications of models fractional [El-Shahed, Ahmed and Abdelstar (2016); Haq, 
Shahzad, Muhammad et al. (2017)]. Researchers and mathematicians used fractional models 
problems [El-Shahed, Ahmed and Abdelstar (2016); Henderson (1984)].  
This paper are organized as follows. Preliminaries and notations of RDTM are given in 
Section 2. In Section 3, we apply the RDTM to solve two models of nonlinear 
biomathematics models (SI1I2R model for the spread of virus HCV-subtype4a and SIR 
childhood disease mode). In Section 4, we have shown the qualitative analysis for the 
model SIR. Conclusions are given in Section 5. 

2 Preliminaries and notations   
The basic idea, basic definitions and property properties of the RDTM are discussed in 
many new articles such as Mohamed et al. [Mohamed, Sayed and Al-Qarshi (2016); Keskin 
and Oturanc (2009); Keskin (2010)]. We summarized the RDTM in the following Tab. 1. 

Table 1: The fundamental operations of RDTM 
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3 Numerical results 
In this section, we used RDTM to construct analytic approximate solutions two systems 
of nonlinear biomathematics models (SI1I2R) model for the spread of virus HCV-
subtype4a and SIR childhood disease mode.  The results have been provided by software 
packages such as Mathematica 9. 

3.1 Example 1 
Let us consider SI1I2R model for the spread of virus HCV-subtype4a on homogenous 
networks is given by El-Shahed et al. [El-Shahed, Ahmed and Abdelstar (2016)]: 

 
                                                                              (3) 

=     

 
where 02.0=b , = 0.04,c 1000000,N = = 0.02,µ 0.001,=γ 001.0=δ

6
1 1042.0 −×=k , 5

2 10164.0 −×=k . 
Subject to the initial conditions: 

( ) ( ) ( )1 2(0) , 0 = 10, 0 = 20, 0 = 10AS I I R
b

=    (4)                                                               

From RDTM, we have following itearation relations: 

1 1 1 ( ) 2 2 ( )
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21 1 2 2( ) 2 2 2
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 (6) 

Eqs. (4) and (6) lead to get the results as the following taple: 

1 11 21 1
6 , 10.9025, 27.61.99999 404,1 9.983 20 4S I I R= = =× =  

2 12 22 2
6 , 11.8993, 38.01.99998 585,1 9.967 20 8S I I R= = =× =  

and so on.  
By using the software Mathematica, we obtained the component of 

)(),(),( 21 tItItS and )(tR  to the tenth iteration and we write two only for convenience. 

Finally, the differential inverse transforms are given by: 
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Consequently, the approximate series solutions take the form 
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Table 2: Numerical solution of the proposed model using RDTM 

t (t)S  1(t)I 2 (t)I  (t)R  

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

2 e+6 
1.9999 e+6 
1.99998 e+6 
1.99996 e+6 
1.99995 e+6 
1.99992 e+6 
1.99989 e+6 
1.99986 e+6 
1.99981 e+6 
1.99976 e+6 
1.9997 e+6 

10 
10.9025 
11.8993 
13.0015 
14.22 
15.5658 
17.0501 
18.6838 
20.4779 
22.4435 
24.5915 

20 
27.6404 
38.0585 
51.934 
69.9465 
92.7755 
121.101 
155.601 
196.958 
245.849 
302.954 

10. 
9.98342 
9.96782 
9.95343 
9.94045 
9.92911 
9.91962 
9.91219 
9.90705 
9.90441 
9.90449 

Figure 1: Numerical simulations for the (S I1 I2 R) model at various for the social and infection 

Figure 2: The relation between S(t) and ( )tI1
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Figure 3: The relation between S(t) and R(t) 

 

 
Figure 4: The relation between ( )tI1  and ( )tI 2  

 
Figure 5: The relation between ( )tI1  and R(t) 
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Figure 6: The relation between ( )tI 2  and R(t) 

 
Figure 7: The relation between S(t) and ( )tI 2  

This approach of efficiency is greatly enhanced by calculation further terms of 
( ) ( )tItS 1, , ( )tI2 and ( )tR  by using RDTM. Figs. (1)-(7) show the approximate 

solution of SI1I2R model. From Figs. 2 to 7, showing the relation between S(t) and 
( )tI1 ; ( )tI1  and ( )tI2 ; ( )tI1  and R(t); ( )tI2  and R(t); ( )tI2  and S(t). From the 

above Fig. 2, we S(t) is decreasing with increasing the ( )tI1 . Also, from Fig. 3, we get 
S(t) is decreasing with increasing the R(t). From Fig. 4, we ( )tI1  is increasing the ( )tI2 . 

Fig. 5, leads to get ( )tI1  is increasing the R(t). In Fig. 6, ( )tI2  is increasing R(t). In Fig. 

7, S(t) is increasing the ( )tI 2 . 

3.2 Example 2 
Let us consider SIR model [Makinde (2007)]: 
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( )1dS p SI S
dt

π β π= − − −  

                   (8) 

 
where 9,.0=p 0.4,=µ 0.03,=γ 8.0=β , 
with initial conditions: 

( ) ( )(0) 0.8, 0 = 0.2, 0 = 0S I R=       (9)                                                                  

First by applying RDTM on both sides of Eq. (8), thus we get : 
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∑  (11) 

By substituting Eq. (9) in Eq. (11) we have : 

1 1 10.408, 0.042, 0.366S I R= − = = , 2 2 20.1008, 0.02823, 0.073S I R= = − = −  
and so on. 
The components can obtain by Mathematica software. Taking transformation inverse to 
get following results.   

( ) ( ) ( ) ,=,=,=
0=0=0=

n
n

N

n

n
n

N

n

n
n

N

n
tRtRtItItStS ∑∑∑  

Consequently,  
2

2

2

( ) 0.8 0.408 0.1008 ...
( ) 0.2 0.042 0.02823 ...
( ) 0.366 0.073 ...

S t t t
I t t t
R t t t

= − + +

= + − +

= + +

                       (12) 
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Table 3: Coverage the various parameter values of effect of vaccination ( 0.4625)cp =  

Case 
0S  0I  0R  β  ν  Π  P  vR  Comments 

1 
2 

0.8 
0.8 

0.2 
0.2 

0 
0 

0.8 
0.8 

0.03 
0.03 

0.4 
0.4 

0.9 
0.3 

0.18604 
1.30232 

 

Table 4: Numerical solution of the proposed model using RDTM 

             (a): Case 1                                                                      (b) case 2 

 

4 Analysis qualitative of SIR 
Observed, R is not appear in first and second Eq. (8), we analyze model qualitatively by 
studying subsystem in closed set { }( , ) 0 1 .S I R S I+Γ = ∈ ≤ + ≤  The subsystem 
described analysis qualitatively of the long-term behavior falls into two categories: die 
out or endemic. The solution asymptotically approaches a disease free equilibrium (DFE) 
at the disease dies out naturally 0E  of the form ( )0 1 ,0E p= − . The stability of this 

equilibrium is reproduction number ( )1
v

pR β
γ π

−= + . 

The DF is locally stable if 1vR < . Global asymptotic stability for DFE is also achieved 
using a Bendixson-Dulac argument for 1vR <  i.e., there are no periodic solutions 
[Brauer and Castillo-Chavez (2001); Makinde (2007)]. For many details of eigenvalues in 
Makinde [Makinde (2007)]. 

t  (t)S  (t)I  (t)R  

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

0.800 
0.760 
0.722 
0.686 
0.652 
0.620 
0.589 
0.561 
0.533 
0.507 
0.483 

0.2000 
0.2039 
0.2073 
0.2100 
0.2123 
0.2140 
0.2151 
0.2158 
0.2160 
0.2160 
0.2150 

0.0000 
0.0359 
0.0704  
0.1035 
0.1354  
0.1660 
0.1954 
0.2237 
0.2508 
0.2769 
0.3020 

t  (t)S  (t)I  (t)R  

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

0.8000 
0.7835 
0.7677 
0.7526 
0.7380 
0.7241 
0.7107 
0.6980 
0.6858 
0.6741 
0.6630 

0.2000 
0.2041  
0.2080 
0.2118  
0.2153 
0.2187  
0.2218 
0.2248 
0.2276 
0.2302 
0.2327 

0.0000 
0.0124 
0.0242 
0.0357 
0.0467 
0.0572 
0.0674 
0.0771 
0.0867 
0.0957 
0.1043 



 
 
 
Reduced Differential Transform Method for Solving Nonlinear                             989 

 
Figure 8: Population fraction versus time for Case1 at 0.9p =  

 
Figure 9: Population fraction versus time for Case2 at 0.3p =  
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Figure 10: The relation between S(t) and I(t) 

 
Figure 11: The relation between S(t) and R(t) 
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Figure 12: The relation between I(t) and R(t) 

This approach of efficiency is greatly enhanced by calculation further terms 
of ( ),tS ( )tI and ( )tR  at 0.3p =  by using RDTM. From Figs. (9)-(12) show the 
approximate solution of SIR model. From Fig. 10, the approximate solution S(t) is 
decreasing with increasing I(t). In Fig. 11, the approximate solution S(t) is decreasing with 
increasing R(t). In Fig. 12, the approximate solution I(t) is increasing with increasing R(t). 

5 Discussion  
In this work, we present new applications of the reduced differential transform method 
(RDTM) by handling two nonlinear biomathematics models (SI1I2R model for the 
spread of virus HCV-subtype4a and SIR childhood disease mode). RDTM, which does 
not require linearization, perturbation or discretization, form the solution of this method 
is convergent power series with elegantly computed components. So, the solution 
procedure is simpler than other traditional methods. 
 
Acknowledgement: The authors are very grateful to referee for his valuable remarks 
and comments. 
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