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Abstract: We are presenting the numerical analysis for stochastic SLBR model of 
computer virus over the internet in this manuscript. We are going to present the results of 
stochastic and deterministic computer virus model. Outcomes of the threshold number C∗ 
hold in stochastic computer virus model. If C∗ < 1  then in such a condition virus 
controlled in the computer population while C∗ > 1 shows virus spread in the computer 
population. Unfortunately, stochastic numerical techniques fail to cope with large step 
sizes of time. The suggested structure of the stochastic non-standard finite difference 
scheme (SNSFD) maintains all diverse characteristics such as dynamical consistency, 
bounded-ness and positivity as well-defined by Mickens. On this basis, we can suggest a 
collection of plans for eradicating viruses spreading across the internet effectively. 
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1 Literature survey 
A computer virus is a program that can copy itself and infect a computer without the 
permission or knowledge of the user. Virus stands for vital information resources under 
siege. A computer virus has two features as the potential to duplicate itself and the 
potential to affix itself to an alternative computer folder. They spread via disks, network 
or services such as email. Earlier viruses were propagated by computer programs or by 
hiding in floppy disks. Modern viruses transmit in a subtler way such as phishing which 
is a fraudulent practise of sending emails inquiring personal information [Patil and 
Jadhav 2014)]. A virus-infected computer shows various symptoms. A small number of 
signs that may inform that a computer has the virus are slow response time, random hard 
drive crashes and great pop-up ads. A carefully engineered computer virus can disrupt 
production and cause billions of dollars in damages. For example, the con-flicker, also 
known as down up virus, which was discovered in 2008, had infected millions of 
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computers across the world. The estimated damage was over $9.1 billion [Zhu, Yang and 
Ren (2012)]. Viruses have evolved over a period. Their numbers are increasing each day, 
and they are becoming more sophisticated and harmful. Each new virus assimilates new 
features along with the old ones, thus making it more difficult to detect and erase 
[Albazzaz and Almuhanna (2016)]. The computers that we usually use do not have 
adequate built-in security measures as compared to larger systems, thus leaving it to the 
users to purchase, install and utilise anti-virus software. Among significant types of 
computer viruses, the first type is called the boot sector virus. The boot sector is that first 
portion of our hard disk where routines to load our operating system reside. If these 
routines are disturbed or modified, our computer will not be able to work. As the name 
suggests, the boot sector virus modifies the boot sector program and is loaded in the 
memory whenever the computer is turned on. The virus is attached with the system 
executable files for example exe, .com etc. Chernobyl virus detects all the Microsoft 
office files and corrupts them. It also deletes the logical partition information of the disks. 
Users cannot access their files from the drives because of this virus. Logic bomb virus 
occurs only when a particular condition is met. The condition could be any date or any 
completion of the process (time). After the condition is met, the virus is invoked. This 
virus can be discovered by chance. Trojan horse virus is embedded in the computer 
programs. When we run these programs, this virus is activated. Its primary purpose is 
destruction. The Redlof virus is a polymorphic virus, which is written in VB Script 
(language). When instructions are being written, this virus is embedded in the programs. 
It corrupts the folder data file, which is the part of windows active desktop. An ideal 
structure of a computer virus holds three subroutines. The task of first sub-routine known 
as infect-executable, is to find executable files and infect them by copying its code into 
them. Next sub-routine, namely do-damage also called the virus payload, is a code which 
delivers the malicious part of the virus. The final sub-routine trigger-pulled inspects if the 
required conditions are met in order to deliver its payload [Patil and Jadhav (2014)]. 
Much work has been done on the concept of computer viruses such as new techniques for 
virus detection and its prevention. New researches help us to understand how 
sophisticated viruses work. To inspect computer viruses, the compartment modelling 
technique of risky viruses was proposed by Cohen et al. [Cohen (1987); Murray (1988)]. 
In last decade of the twentieth century, the authors were the first ones to typical the 
spreading behaviour of the computer virus. This paved the way for developing 
mathematical models for computer virus propagation [Billings, Spears and Schwartz (2002); 
Han and Tan (2010); Mishra and Jha (2007); Piqueira and Araujo (2009); Piqueira, 
Vasconcelos, Gabriel et al. (2008); Ren, Yang, Yang et al. (2012); Ren, Yang, Zhu et al. 
(2012); Wierman and Marchette (2004); Yuan and Chen (2008)]. Just like any biological 
virus, the computer virus also contains a dormant period. During this period a single 
computer is vulnerable to a computer virus but is not infectious yet. An exposed computer, 
which is infected in dormancy, will not transmit the virus to other computers quickly; but it 
still can be infected. The delay used in some models of computer virus is also based on 
these characteristics. It shows that although the exposed computer does not infect other 
computers, it still has infectivity [Han and Tan (2010); Zhu, Yang and Ren (2012)]. The 
authors proposed SLB and SLBS models in which they observed that the computer has 
latency, [Yang, Yang, Zhu et al. (2013); Yang, Yang, Wen et al. (2012)] and in this period 
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of latency it also has infectivity. Multilayer networks can be responsible for spreading 
computer viruses. Examples of computer virus include mobile phone virus, which can use 
3G, 4G, Wi-Fi, or Bluetooth as a tool to communicate with other networks. Founded on the 
notion of the multilayer network, the IBMF (Individual-Based Mean Field) was applied to 
the SLBS model by Zhang [Zhang (2018)]. A model was developed to expect the activities 
of worm on the network. A time-delayed SIQVD worm propagation model with variable 
infection rate was framed. This model can be utilized for internet worms [Yao, Fu, Yang et 
al. (2018)]. Research has been conducted on the susceptible, latent, breaking-out, 
quarantine and susceptible (SLBQRS) computer virus model. Three finite-difference 
patterns have been used to solve the warm virus’s system [Fatima, Ali, Ahmed et al. 
(2018)]. HAM (Homotopy Analysis Method) has been utilized to solve the modified 
nonlinear SIR epidemiological model of computer viruses [Noeiaghdam, Suleman and 
Budak (2018)]. The propagation mechanism of computer viruses is explored by the node-
based models. To examine the dynamic behaviour of a computer virus a model named 
SLIS which is node-based has also been proposed which demonstrated that the virus-free 
equilibrium is asymptotically or exponentially stable [Yu, Hu and Zeng (2019)]. However, 
the influence of installing anti-virus software and the period of inactivity was not taken into 
account. The interaction frequency of afresh entered computers on the internet from 
vulnerable status to unprotected status is the same as that of vulnerable status entering into 
infected status. This tabloid works on the stochastic model of a computer virus, namely 
SLBRS model. It describes the vulnerability of uninfected computers and how they can get 
infected from the internet. We suppose that computers which join the internet are 
categorized into four classes. A threshold factor C∗  is used to determine the dynamic 
characteristics of the suggested model. 
Mathematical modelling has become very advanced to understand the viruses thoroughly. 
Formation of models and simulation allows us to analyze the sensitivity and make a 
comparison of conclusive opinions originating out of examples. Lots of studies are 
present on computer virus transmission dynamics models. Nonlinear initial value 
problems (IVPs) do not always, provide analytical solutions to specific issues and 
classical explicit finite-difference schemes such as Runge-Kutta, and Euler methods can 
bring confusion and unexpected fluctuations for discretization parameters [Mickens 
(1994, 2005]. Many types of research have been done on various computer virus models 
[Cai and Li (2010); Peng, He, Huang et al. (2013)]. Stochastic differential equation 
models play an essential role in many branches of applied sciences such as industries, 
including population dynamics, finance, mechanics, medicine and biology as they 
provide an extra degree of realism compared to their deterministic counterpart [Bayram, 
Partal and Buyukoz (2018)]. The usual quantitative explicit techniques for ODEs never 
maintain dynamical possessions as we have seen in the deterministic modelling. We have 
also seen that in explicit stochastic techniques do not maintain the dynamical possessions 
in the stochastic case. So, from this a question arises and need to research more: Could 
we develop the random emphatical scheme which maintains all the dynamical 
possessions? A rule introduced in the deterministic case, which has been used to start the 
notion stochastic nonstandard finite difference technique (SNSFD). These regulations 
were given by Mickens. This is the primary point of this paper. 
This paper is divided into the following sections: 
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In Section 2, we have explained the deterministic computer model and its equilibria. Next 
section is about the formulation of the stochastic computer model. Section 4 explains the 
stochastic numerical techniques for stochastic computer virus model and their convergence 
analysis. Section 5 deals with the comparison of deterministic and stochastic numerical 
outcomes. Finally, in the last section, we shall present our deduction and give the future work. 

2 Deterministic computer virus model 
Here, we observe the deterministic computer virus model presented by Yang et al. [Yang, 
Zhang, Li et al. (2012)]. Consider at any non-specific time t, the defined variables are S 
(exemplifies uninfected computers’ fraction), L (exemplifies infected computers’ fraction in 
latency), B  (exemplifies infected computers’ fraction which is broke-out) and R 
(exemplifies recovered computers’ fraction with short-term immunity). The communication 
dynamics of computer virus model is illustrated below. 

 
Figure 1: Flow map of computer virus model 

The variables of the model are illustrated as µ (depicts the connected and withdrawn 
computer rate from the internet), β (pronounces the bilinear incidence rate of virus-free 
computers with infected computers), 𝜀𝜀 (pronounces the latent computers break out rate), 
𝑟𝑟  (pronounces the breaking out computers recovery rate) and 𝛼𝛼  (pronounces the 
recovered computer rate that become virus-free). 
The governing equations of the computer virus model as follows: 

 

dS
dt

= μ − βS(L + B) + αR − μS     
dL
dt

= βS(L + B) − εL + μL             
dB
dt

= εL − γB − μB                          
dR
dt

= γB − αB − μR                         ⎭
⎪⎪
⎬

⎪⎪
⎫

               (1) 

 S + L + B + R ≤ 1                 (2) 
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with conditions S ≥ 0, L ≥ 0, B ≥ 0, R ≥ 0 
The reduced form of computer virus model is 
dS
dt

= μ(1 − S) − βS(L + B) + α(1− S − L − B)  
dL
dt

= βS(L + B) − (ε + μ)L                                         
dB
dt

= εL − (γ + μ)B                                                        ⎭
⎪
⎬

⎪
⎫

           (3) 

with conditions S ≥ 0, L ≥ 0, B ≥ 0 and S + L + B ≤ 1. 

2.1 Equilibria of the computer virus model 
Given below are two ways of equilibrium points of computer virus model (3) as: 
Virus-free equilibrium is V1 = (S, L, B) = (1,0, ,0) 
Virus existence equilibrium is  
E1 = (So, Lo, Bo) =
�(γ+μ)(μ+ε)
β(μ+γ+ε)

, (γ+μ)(μ+α)β(μ+γ+ε)−(γ+μ)(γ+μ)(μ+ε)(μ+α)
β(μ+γ+ε)(α+μ+ε)(γ+μ)+αε

, ε
(1−γ−μ)

�(γ+μ)(μ+α)β(μ+γ+ε)−(γ+μ)(γ+μ)(μ+ε)(μ+α)
β(μ+γ+ε)(α+μ+ε)(γ+μ)+αε

�� 

 C∗ = β(μ+γ+ε)
(µ+ε)(µ+γ), C

∗ is the computer virus transmission generation number of model (3). It 
has an important part in virus dynamics. 

3 Stochastic computer virus model 
Let C(t) = [S, L, B]T formulates the SDEs of computer virus model (3). We will 
determine the expectations E∗[∆C]  and  E∗[∆C∆CT] . In order to find them the likely 
changes and their related transition probabilities are as follows (see Tab. 1). 

Table 1: Changes that may occur in the computer virus model 
𝑇𝑇𝑖𝑖=Transition P𝑖𝑖= Probabilities 

 (ΔC)1 = [1 0 0]T  P1 = μ(1 − S)Δt  

 (ΔC)2 = [-1 1 0]T  P2 = βS(L + B)Δt  

 (ΔC)3 = [1 0 0]T  P3 = α(1 − S − L − B)Δt  

 (ΔC)4 = [0 -1 1]T  P4 = εL Δt  

 (ΔC)5 = [0 -1 0]T  P5 = μL Δt  

 (ΔC)6 = [0 0 -1]T  P6 = (γ + μ)BΔt  

Following is the expectation of computer virus model (3):  
E∗[∆C] = ∑ Pi6

i=1 (∆C)i 

.Expectation =E∗[∆C] = �
μ(1 − S) − βS(L + B) + α(1 − S − L − B)   
βS(L + B) − (ε + μ)L                                         
εL − (γ + μ)B                                                       

� Δt 

The variance of the computer virus model is defined as Var= E∗[∆C∆CT] =
∑ Pi6
i=1 [(∆C)i][(∆C)i]T. 
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 E∗[∆C ∆CT] = �
W11 W12 W13
W21 W22 W23
W31 W32 W33

�Δt  

where 
W11 = μ(1 − S) + βS(L + B) + α(1− S − L − B), W12 = −βS(L + B), W13 = 0, W21 =
−βS(L + B), W22 = βS(L + B) + (ε + μ)L, W23 = −εL , . W31 = 0, W32 = −εL, W33 =
 εL + (γ + μ)B.  
The SDE satisfy the diffusion processes, therefore, 
dC
dt

= (C, t) + H(C(t), t) dB
dt

. 

where, (C, t) = E∗[∆C]
∆t

 and H(C, t) = �E∗[∆C ∆CT]
∆t

 , then the SDE of computer virus 
model (3) is  
dC = (C, t)dt + H(C, t)dB.                            (4) 
Here, we have C(0) = Co = [0.2, 0.7, 0.1]T , 0 ≤ t ≤ C  as initial conditions and B as 
Brownian motion. 

3.1 Euler maruyama technique 
We used the parameters given by Yang et al. [Yang, Zhang, Li et al. (2012)] and euler 
maruyama technique presented in Maruyama [Maruyama (1955)], to analyze the 
numerical outcome of SDE (4).  
The euler maruyama technique of (4) as: 
 Cn+1 = Cn + f(Cn, t)Δt + L(Cn, t)∆Bn.                (5) 
where Δt and ∆Bn is normally distributed between stochastic drift and stochastic diffusion, 
i.e., ∆Bn~N(0, 1). The confidence interval holds the solution to stochastic differential 
equations for both equilibria as presented in the above numerical investigations. The 
outcome of deterministic computer virus model for the virus-free symmetry V1∗ = (1,0,0) 
and C∗ = 0.0300 < 1  may control the virus in the computer population through the 
internet. The viral equilibrium E1∗ = (0.4353, 0.5625, 0.001607) and C∗ = 2.2974 > 1 
shows that the virus rapidly infects to the computer population through the internet. 

4 Parametric perturbation of stochastic computer virus model 
In this technique, we shall choose parameters from the system (3) and change into the 
random parameters with small noise as βdt = βdt + σdB. So, the stochastic system (3) is 
as follows [Allen, Allen, Arciniega et al. (2008)]. 

 
dS = [μ(1 − S) − βS(L + B) + α(1 − S − L − B)]dt − σS(L + B)dB  
dL = [βS(L + B) − (ℰ + μ)L]dt + σS(L + B)dB                                      
dB = [ℰL(t) − (γ + μ)B]dt                                                                             

�          (6) 

with initial conditions C(0) = [S(0), L(0), B(0)]T = [0.2, 0.7, 0.1]T  where σ is 
casualness of each compartment of the computer virus model. 
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4.1 Equilibria of stochastic computer virus model 
Two equilibria of the stochastic computer virus model (6) are as follows: 
Virus-free equilibrium = (VFE) = (S, L, B) = (1,0,0). 
Virus existence equilibrium= (VEE)= (So, Lo, Bo) 
where, 

 So = (γ+μ)(μ+ε)
β(μ+γ+ε) , Lo = (γ+μ)(μ+α)β(μ+γ+ε)−(γ+μ)(γ+μ)(μ+ε)(μ+α)

β(μ+γ+ε)(α+μ+ε)(γ+μ)+αε
, 

 Bo = ε
(1−γ−μ)

[(γ+μ)(μ+α)β(μ+γ+ε)−(γ+μ)(γ+μ)(μ+ε)(μ+α)
β(μ+γ+ε)(α+μ+ε)(γ+μ)+αε

]  

4.2 Stochastic euler technique 
The designed form of the model (6) as presented in Raza et al. [Raza, Arif and Rafiq 
(2019)]: 

 
 Sn+1 =  Sn + h[μ(1 − Sn) − βSn(Ln + Bn) + α(1 − Sn − Ln − Bn) − σSn(Ln + Bn)∆Bn]      
Ln+1 =  Ln + h[βSn(Ln + Bn) − (ℰ + μ)Ln + σSn(Ln + Bn)∆Bn]                                                  
Bn+1 = Bn + h[ℰLn − (γ + μ)Bn]                                                                                                           

� 

                               (7) 
where “h” is represented as the discretized parameter of the method and i.e., ∆Bn~N(0,1). 

4.3 Stochastic runge-kutta technique 
The designed form of the model (6) as presented in Raza et al. [Raza, Arif and Rafiq (2019)]: 
First Stage 
 A1 = h[μ(1 − Sn) − βSn(Ln + Bn) + α(1 − Sn − Ln − Bn) − σSn(Ln + Bn)∆Bn] 
 B1 = h[βSn(Ln + Bn) − (ℰ + μ)Ln + σSn(Ln + Bn)∆Bn] 
 C1 = h[ℰLn − (γ + μ)Bn] 
Second Stage 

 A2 = h[μ �1 − (Sn + A1
2
� − β �Sn + A1

2
� ��Ln + B1

2
�+ �Bn + C1

2
�� + α�1 − (Sn +

A1
2

) − (Ln + B1
2

)− (Bn + C1
2

)� − σ(Sn + A1
2

) ��Ln + B1
2
� + �Bn + C1

2
�� ∆Bn] 

 B2 = h �β(Sn + A1
2

) �(Ln + B1
2

) + (Bn + C1
2

)� − (ℰ + μ)(Ln + B1
2

) + σ(Sn +
A1
2

) �(Ln + B1
2

) + (Bn + C1
2

)�∆Bn� 

 C2 = h �ℰ(Ln + B1
2

) − �γ+ μ)(Bn + C1
2

)�� 

Third Stage 

 A3 = h[μ �1 − (Sn + A2
2
� − β �Sn + A2

2
� ��Ln + B2

2
�+ �Bn + C2

2
�� + α�1 − (Sn +

A2
2

) − (Ln + B2
2

)− (Bn + C2
2

)� − σ(Sn + A2
2

) ��Ln + B2
2
� + �Bn + C2

2
�� ∆Bn] 
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 B3 = h �β(Sn + A2
2

) �(Ln + B2
2

) + (Bn + C2
2

)� − (ℰ + μ)(Ln + B2
2

) + σ(Sn +
A2
2

) �(Ln + B2
2

) + (Bn + C2
2

)�∆Bn� 

 C3 = h �ℰ(Ln + B2
2

) − �γ+ μ)(Bn + C2
2

)�� 

Fourth Stage 

 A4 = h[μ �1 − (Sn + A3
2
� − β �Sn + A3

2
� ��Ln + B3

2
�+ �Bn + C3

2
�� + α�1 − (Sn +

A3
2

) − (Ln + B3
2

)− (Bn + C3
2

)� − σ(Sn + A3
2

) ��Ln + B3
2
� + �Bn + C3

2
�� ∆Bn] 

 B4 = h �β(Sn + A3
2

) �(Ln + B3
2

) + (Bn + C3
2

)� − (ℰ + μ)(Ln + B3
2

) + σ(Sn +
A3
2

) �(Ln + B3
2

) + (Bn + C3
2

)�∆Bn� 

 C4 = h �ℰ �Ln + B3
2
� − �γ+ μ)(Bn + C3

2
)�� 

Final Stage 

Sn+1 = Sn + 1
6

[A1 + 2A2 + 2A3 + A4]   

Ln+1 = Ln + 1
6

[B1 + 2B2 + 2B3 + B4]    

Bn+1 = Bn + 1
6

[C1 + 2C2 + 2C3 + C4]   ⎭
⎪
⎬

⎪
⎫

              (8) 

where “h” is represented as the discretized parameter of the method and i.e., ∆Bn~N(0,1). 

4.4 Stochastic NSFD technique 
The recommended frameworks of SNSFD for the model (6) as presented in Raza et al. 
[Raza, Arif and Rafiq (2019)]: 

Sn+1 =  Sn+h[μ+α(1−Ln−Bn)]
1+h[(α+μ)+β(Ln+Bn)+σ∆Bn(Ln+Bn)]

                            

Ln+1 = Ln+hSn[β(Ln+Bn)+σ∆Bn(Ln+Bn)]
1+h(ℰ+μ)

                                   

Bn+1 =    B
n+hℰLn

1+h(γ+μ)
                                                                      ⎭

⎪
⎬

⎪
⎫

            (9) 

where “h” is represented as the discretized parameter of the method and i.e., ∆Bn~N(0,1). 

4.4.1 Convergence analysis 
Here we are to discuss the following theorems: 
Theorem 1 
For any given initial value ( Sn (0), Ln (0), Bn (0)) ∈ R+

3  system (9) has a unique non-
negative solution ( Sn, Ln,  Bn) ∈ R+

3  on n ≥ 0, almost surely. 

Theorem 2 
For all n ≥ 0 is a non-negative invariant set for the system (9). 
Proof:  Rewriting the system (9) as follows: 
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 S
n+1−Sn

h
= [μ(1 − Sn)− βSn(Ln + Bn) + α(1 − Sn − Ln − Bn) − σSn(Ln + Bn)∆Bn] 

 L
n+1−Ln

h
= [βSn(Ln + Bn) − (ℰ + μ)Ln + σSn(Ln + Bn)∆Bn] 

 B
n+1−Bn

h
= [ℰLn − (γ + μ)Bn] 

Adding the corresponding sides, we have  

 (S
n+1+Ln+1+Bn+1)−(Sn+Ln+Bn)

h
= μ − μ(Sn + Ln + Bn) 

 (Sn+1 + Ln+1 + Bn+1)− (Sn + Ln + Bn) = hμ − hμ(Sn + In + Zn) 
 (Sn+1 + Ln+1 + Bn+1) ≤ 1 
almost surely. 

Theorem 3 
The discrete dynamical system (9) has the same equilibria as that of the continuous 
dynamical system (6) for all n ≥ 0. 
Proof: For solving the system (9), we get two states as follows: 
VFE i.e., V3 = (Sn, Ln, Bn) = (1,0,0). 
VPE i.e., E3 = (Sn, Ln, Bn). 
where, 

 Sn = (γ+μ)(μ+ε)
β(μ+γ+ε) , Ln = (γ+μ)(μ+α)β(μ+γ+ε)−(γ+μ)(γ+μ)(μ+ε)(μ+α)

β(μ+γ+ε)(α+μ+ε)(γ+μ)+αε
, 

 Bn = ε
(1−γ−μ)

[(γ+μ)(μ+α)β(μ+γ+ε)−(γ+μ)(γ+μ)(μ+ε)(μ+α)
β(μ+γ+ε)(α+μ+ε)(γ+μ)+αε

]  

almost surely. 

Theorem 4 
The eigenvalues of the discrete dynamical system (9) lie in the unit circle for all n ≥ 0. 
Proof: 
We consider F, G, and H from the system (9) as follows: 

 F = S+hμ+hα−hαL−hαB
1+hβL+hβB+hα+hμ+hσL∆Bn+hσB∆Bn

 

 = L+hSβL+hSβB+hSσL∆Bn+hSσB∆Bn
1+h(ε+μ)

 

 H = β+hεL
1+h(γ+μ)

 

 ∂F
∂S

= 1
1+hβ(L+B)+h(α+μ)+hσ(L+B)∆Bn

, 

  ∂F
∂L

= −hα(1+hβL+hβB+hα+hμ+hσL∆Bn+hσB∆Bn)−hβ−hσ∆Bn(S+hμ+hα−hαL−hαB)
(1+hβL+hβB+hα+hμ+hσL∆Bn+hσB∆Bn)2   

 ∂F
∂B

= −hαB(1+hβL+hβB+hα+hμ+hσL∆Bn+hσB∆Bn)−hβ−hσ∆Bn(S+hμ+hα−hαL−hαB)
(1+hβL+hβB+hα+hμ+hσL∆Bn+hσB∆Bn)2  

 ∂G
∂S

= hβL+hβB+hσL∆Bn+hσB∆Bn
1+h(ε+μ)
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 ∂G
∂L

= 1+hSβ+hSβB+hSσ∆Bn
1+h(ε+μ)

 

 ∂G
∂B

= hSβ+hSσ∆Bn
1+h(ε+μ)

 

 ∂H
∂S

= 0 

 ∂H
∂L

= hε
1+h(γ+μ)

 

 ∂H
∂B

= 1
1+h(γ+μ)

 

Now we want to linearize the model about the equilibria of the model for virus-free 
equilibrium V1 = (S, L, B) = (1,0,0) and 𝐶𝐶∗ < 1. 
The given Jacobean is 

 J =

⎣
⎢
⎢
⎢
⎡
∂F
∂S

∂F
∂L

∂F
∂B

∂G
∂S

∂G
∂L

∂G
∂B

∂H
∂S

∂H
∂L

∂H
∂B⎦
⎥
⎥
⎥
⎤
 

 J(1,0,0) =

⎣
⎢
⎢
⎢
⎡

1
1+hα+hμ

−hα(+hα+hμ)−hβ−hσ∆Bn(1+hμ+hα)
(1+hα+hμ)2

−hαB(1+hα+hμ)−hβ−hσ∆Bn(1+hμ+hα)
(1+hα+hμ)2

0 1+hβ+hσ∆Bn
1+h(ε+μ)

hβ+hσ∆Bn
1+h(ε+μ)

0 hε
1+h(γ+μ)

1
1+h(γ+μ) ⎦

⎥
⎥
⎥
⎤

 

The eigenvalues are  

 λ1 = 1
1+hα+hμ

< 1, λ2 = 1+hβ+hσ∆Bn
1+h(ε+μ)

< 1 when 𝐶𝐶∗ < 1. 

 λ3 = 1
1+h(γ+μ)

< 1 

This is guaranteed to the fact that all eigenvalues of the Jacobean lie in the unit circle. So, 
the system (9) is LAS around V1. 

4.5 Numerical trials 
By using the values of parameters given in Yang et al. [Yang, Zhang, Li et al. (2012)], 
the numerical simulation is: 

Table 2: Parameter values 
 
Parameters 

Values 
VFE EE 

Α 0.01 0.01 
Β 0.015 1.15 

Γ 0.2 0.2 
Ε 0.002 0.002 
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Μ 0.5 0.5 
𝜎𝜎 0.05 Estimated 

4.5.1 Euler maruyama technique  
The simulation for the system (5) is as follows: 

 
        (a)                     (b) 

 
          (c)        (d) 

Figure 2: (a) Uninfected computers fraction for VFP at h=0.1 (b) Uninfected computers 
fraction for VFP at h=2 (c) Infected computers attached with network fraction for VP at 
h=0.1 (d) Infected computers attached with network fraction for VP at h=2 

4.5.2 Stochastic euler technique 
We pretend the solutions of the model (7) by utilizing Matlab database and parameters 
values assumed in Yang et al. [Yang, Zhang, Li et al. (2012)] (see Tab. 2) 
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(a)                    (b) 

 
           (c)                   (d) 
Figure 3: (a) Uninfected computers fraction for VFP at h=0.1 (b) Uninfected computers 
fraction for VFP at h=3 (c) Infected computers attached with network fraction for VP at 
h=0.1 (f) Infected computers attached with network fraction for VP at h=3 

4.5.3 Stochastic runge kutta technique 
We pretend the solutions of the model (8) by utilizing Matlab database and parameters 
values assumed in Yang et al. [Yang, Zhang, Li et al. (2012)] (see Tab. 2) 
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(a)  (b) 

 
            (c)       (d) 

Figure 4: (a) Uninfected computers fraction for VFP at h=0.1 (b) Uninfected computers 
fraction for VFP at h=4 (c) Infected computers attached with network fraction for VP at 
h=0.1 (d) Infected computers attached with network fraction for VP at h=4 

4.5.4 Stochastic NSFD technique 
We pretend the solutions of the model (9) by utilizing Matlab database and parameters 
values assumed in Yang et al. [Yang, Zhang, Li et al. (2012)] (see Tab. 2) 
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(a)                      (b) 

 
(c)                    (d) 

Figure 5: (a) Uninfected computers fraction for VFP at h=0.1 (b) Uninfected computers 
fraction for VFP at h=100 (c) Infected computers attached with network fraction for VP 
at h=0.1 (d) Infected computers attached with network fraction for VP at h=100 

4.5.5 Comparison section 
Comparison of explicit stochastic techniques with proposed SNSFD technique can be 
observed in this section as follows: 
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                (a)                    (b) 

 
            (c)         (d) 

 
           (e)        (f) 
Figure 6: Contrast in results of stochastic NSFD with stochastic explicit techniques (a) 
Spreader class with euler mayuyama and its average at h=0.1 (b) Spreader class with 
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euler mayuyama and its average at h=2 (c) Spreader class with stochastic euler and its 
average at h=0.1 (d) Spreader class with stochastic euler and its average at h=3 (e) 
Spreader class with stochastic runge kutta and its average at h=0.1 (f) Spreader class with 
stochastic runge kutta and its average at h=4 

4.5.6 Covariance of sub-populations 
The covariance of different sub-populations of computer virus model has been discussed 
in this section. The outcomes of covariance of sub populations are as follows in Tab. 3. 

Table 3: Correlation coefficient 

Sub-Populations Correlation Coefficient 
(𝜌𝜌) 

Relationship 

 (L, B)    0.8739 Direct 
 (S, L) −0.9197 Inverse 
 (S, B) −0.9944 Inverse 

An inverse relationship can be seen between the uninfected class and the other two sub-
populations. It shows that the increase in the uninfected class will occur with the decline 
in other sub-populations and ultimately the system attains virus-free equilibrium.  

5 Outcomes and analysis 
For discretisation parameter h = 0.1, we see that euler maruyama technique meets to 
equilibria of the model, this can be seen by Fig. 2(a) and Fig. 2(c). On the other hand, the 
euler maruyama technique fails to sustain nonnegativity and even divergent, this can be 
seen by Fig. 2(b) and Fig. 2(d). For parameter h = 0.1, we see that the stochastic euler 
technique meets to both equilibria, this can be seen by Fig. 3(a) and Fig. 3(c). On the 
other hand, for both equilibria the stochastic euler technique fails to maintain 
nonnegativity and consistency as shown in Fig. 3(b) and Fig. 3(d). For step size h = 0.1, 
we see that the stochastic runge kutta technique converges to both equilibria, this can be 
seen graphically by Fig. 4(a) and Fig. 4(c). 
The stochastic runge kutta technique fails to uphold stability and nonnegativity for both 
equilibrium points when we increase the step size this change happens in Fig. 4(b) and 
Fig. 4(d). Thus the aforementioned stochastic techniques do not sanctuary all the 
dynamical properties [Mickens (1994, 2005)]. On the other hand, for taking any 
discretisation parameter the stochastic NSFD technique converges for both equilibria, this 
can be seen by Fig. 5. In Fig. 6, we have presented the comparison of stochastic explicit 
and well-posed SNSFD techniques. 

6 Conclusion and future framework 
In comparison to deterministic computer virus model, the stochastic computer virus 
model is a more reliable strategy. The stochastic numerical techniques are detail-oriented 
and they work well for even minute time step size. They may lose the necessary 
properties of continuous dynamical system due to divergence on specific values of time 
step size. The SNSFD for computer virus model is capable of preserving important 
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properties like positivity, dynamical consistency and boundedness. It is also appropriate 
for any time step size [Mickens (1994, 2005)]. For our future work, we are aiming to 
execute SNSFD to sophisticated stochastic delay and Spatio-temporal systems. 
Additionally, we could utilize the current numerical work in the extension of networking 
flows and fractional networking flows systems [Singh, Kumar and Baleanu (2019)]. In 
future, we are going to work for the reaction diffusion and fractional-order stochastic 
computer virus models. 
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