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Abstract: Pipeline defect detection systems collect the videos from cameras of pipeline 
robots, however the systems always analyzed these videos by offline systems or humans 
to detect the defects of potential security threats. The existing systems tend to reach the 
limit in terms of data access anywhere, access security and video processing on cloud. 
There is in need of studying on a pipeline defect detection cloud system for automatic 
pipeline inspection. In this paper, we deploy the framework of a cloud based pipeline 
defect detection system, including the user management module, pipeline robot control 
module, system service module, and defect detection module. In the system, we use a role 
encryption scheme for video collection, data uploading, and access security, and propose 
a hybrid information method for defect detection. The experimental results show that our 
approach is a scalable and efficient defection detection cloud system. 
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1 Introduction 
Traffic pipes are like blood vessels in a city, and the reliability of pipeline is more and 
more important. Once the city’s pipeline system occurs fault, the normal life of citizens 
will be affected and the city will get plenty of losses. Thus, the pipeline defect detection 
and repair is an important problem of urban construction [Ng (2006)]. Most researchers 
get the pipeline video by pipeline robots with the closed circuit television (CCTV) 
hardware, and they always analyze the videos by off-line systems or humans to detect the 
defects of potential security threats. It takes a lot of time and costs a lot of money with 
low efficiency and low accuracy. The existing systems tend to reach the limit in terms of 
data access anywhere, access security and video processing on cloud. There is in need of 
studying on a pipeline defect detection cloud system for automatic pipeline inspection. 
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Some researchers have attempted defect detection by computer vision and cloud 
computing for pipeline inspection [Xie, He, Xie et al. (2018)], and some have argued that 
feature detection may not need a cloud approach [Shi, Zhang, Li et al. (2015); Anjum, 
Abdullah, Tariq et al. (2016); Boaretto and Centeno (2017)]. Nevertheless, with the 
development of cloud computing, multiple computers are parallelized through network, 
which increases the computing speed greatly for defect detection [Ali, Huda, Abawajy et 
al. (2017); Hawari, Alamin, Alkadour et al. (2018); Lin-Lin and Zhen (2009); Srivastava 
and Kumar (2015)]. In this paper, we propose a new method for pipeline defect detection 
and deploy a framework of cloud-based pipeline defect detection system. 
The major work for Pipeline video processing includes image preprocessing, defect 
location and defect feature recognition [Wang, Chen, Qiao et al. (2018); Wan, Wei, Jiao 
et al. (2018)]. In this paper, we preprocess the pipeline image using image grayscale 
conversion, grayscale stretching, smoothing filter and canny edge detection, then extract 
the defect feature using histograms of oriented gradients (HOG) and visual geometry 
group network (VGGNet) [Zhou, Liang, Li et al. (2018)], and finally locate and 
recognize the defect with support vector machine (SVM) [Zhang, Li, Lu et al. (2016); 
Wiatowski and Bolcskei (2018)].  
The rest of this paper is organized as following. Section 2 is a description about the 
related work, and Section 3 explains the framework of a cloud-based defect detection 
system of pipeline. Section 4 introduces the method for defect recognition in pipeline. In 
Section 5, the experimental result and analysis are given, and conclusion in Section 6. 

2 Related work 
Defect detection of pipeline over cloud is a new research area. Performance and high 
availability have become increasingly important drivers. Cloud computing is the core 
technology of the next generation of network computing platform [Al Tayeb (2013)]. 
Jamkhedkar et al. studied the security on demand in cloud computing [Jamkhedkar, 
Szefer, Perezbotero et al. (2013)]. Garg et al. [Garg, Versteeg, Buyya et al. (2013)] 
shown a framework where customers’ security requests can be expressed and enforced by 
leveraging the capabilities of servers with different security architectures. Valentini et al. 
[Valentini, Lassonde, Khan et al. (2013)] discussed the two major constraints for cloud 
computing: operational costs, and system reliability. These directions could be explored 
to improve the energy efficiency in cluster computing. 
Pipeline image processing and defect detection algorithm are important to pipeline defect 
recognition. Literature review shows that there are many research results. Cosham et al. 
[Cosham, Hopkins, Macdonald et al. (2007)] proposed the best techniques currently 
available for the assessment of pipeline defects, and gave guidance on their use. An 
automatic image-based crack detection is proposed as a replacement by Mohan et al. 
[Mohan and Poobal (2018)]. Jiang et al. [Jiang, Tian, Farrell et al. (2017)] explored a 
method that combines machine learning and image systems simulation that automates the 
pipeline defect detection. Gao et al. [Gao, Liu, Ma et al. (2018)] studied the DIF and 
proposed cross-correlation via the differentiation and filtering process. Guo et al. [Guo, 
Soibelman, Garrett et al. (2009)] discussed the challenges of automated defect detection 
and proposed a general detection and recognition model for pipeline defect detection. 
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Chang et al. [Chang and Lin (2011)] introduced a library for support vector machine to 
defect classification. Levin et al. [Levin, Nadler, Durand et al. (2012)] studied the image 
restoration. They presented a law of diminishing return, namely that with increasing 
patch size, rare patches not only require a much larger dataset, but also gain little from it. 
The result shows that novel adaptive variable-sized patch schemes for image restoration. 
A simple and scalable detection algorithm was proposed by Girshick et al. [Girshick, 
Donahue, Darrell et al. (2014)], which combines two key insights: one can apply high-
capacity CNNs to bottom-up region proposals to localize and segment objects and when 
labeled training data is lacking, supervised pre-training for an auxiliary task. And with 
fine-tuning, the performance will have a great progress. Wang et al. [Wang, Guo, Huang 
et al. (2015)] found that VGGNet is effective for object recognition in still images. The 
report describes the models trained by them achieved great performance on the dataset. 
Roy et al. [Roy and Chaudhuri (2016)] concentrated on the edge detection, which is a 
subset of segmentation to detect object of interest. The paper discussed the different 
performance measures of edge detection and proposed application on a hybrid filter using 
Bilateral and Canny. 

3 Framework for the cloud-based defect detection system 
To build a cloud-based defect detection system, there are some issues need to be considered. 
First of all, we need to figure out what the system require. Then we have to take the system 
architecture design into account. Besides, we should think about the core system modules. 
The framework for the cloud-based defect detection system is described as follows. 

3.1 System analysis 
Through analyzing the cloud-based defect detection system, there are some requirements. 
The main requirements are listed in Fig. 1. User management, pipeline robot control, 
system service and defect detection. Creating and deleting system users, log in and log 
out compose the user management. With the heterogeneous devices, users can access to 
the system from anywhere. The user manager is very convenient for the users. When the 
abnormal event happened, the heterogeneous video providers should inform the users. As 
a result, the providers, networks and devices are necessary for the system. Through 
pipeline robot control, users are able to control robot movement and steering. System 
service including collecting video, uploading video and accessing video. Users can 
collect the real and effective pipeline defect video with the help of system service. Defect 
detection manager module is the image processing, hybrid feature extraction and defect 
detection management of cloud-based operations, helping the users detect the defect in 
the pipeline and assess the pipeline condition. 
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Figure 1: The chart of system analysis 

3.2 System design 
The architecture of the designed cloud-based defect detection framework is showed in 
Fig. 2. We can deploy the system on a private cloud. There are two major modules in the 
cloud, cloud video manager and defect detection manager. Notification is an important 
part of the system framework in the cloud. If the defect detection system finds some 
events interest, users will be informed. The system has great scalability. Lots of video 
providers and detection users are able to connect the defect detection system. 
While the cloud system provides high efficiency and scalability, how to effectively 
prevent personal privacy disclosure, authorized access, cloud data security de-emphasis, 
and key update and privilege revocation issues also pose greater challenges for cloud 
service providers [Liu, Peng, Wang et al. (2018)]. 
More specifically, for storage, users encrypt the original data and upload the encrypted 
file from the collecting devices to the cloud [Xiong and Shi (2018)]. For access, users 
need to apply the cloud to obtain the encrypted file, then decrypt and download it. The 
encryption and decryption algorithms are six steps. First, the system creates a session key 
between a video owner and the cloud. Second, the video owner chooses a device and 
send the video along with a signing message. Third, the cloud verifies the authentication 
code via the signing message. Fourth, the cloud encrypts the identity and data after 
verification. Fifth, the owner uploads the encrypted files. Sixth, other users can have 
access to the data and decrypt it only under specific state. More details are given in the 
work [Yang, He and Lin et al. (2017)]. 
In Fig. 2, cloud video manager, defect detection manager, and data encryption are core 
system modules. In the cloud video manager module, the cloud providers connect 
different types of devices to collect, transmit, and store large amount of videos. In the 
module of defect detection manager, image preprocessing is employed to eliminate the 
effects of low resolution, different sizes and non-uniform illumination on each image of 
videos, which is implemented with grayscale conversion, grayscale stretching, spatial 
smooth filtering, and region segmentation. Inspired by the hybrid feature extraction as a 
kind of popular feature fusion method [Hao, Wang, Li et al. (2015)], we propose to 
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extract the hybrid information of defects using histogram of oriented gradient (HOG) and 
VGGNet descriptors. On the basis of hybrid feature, defect detection is finally 
implemented by SVM classifier. The data encryption module is adopted for security of 
data access and storage, in which the session key and digital signature are used for 
encryption and verification. 

 

Figure 2: The designed architecture for a pipeline defect detection cloud system 

3.3 System prototype development 
The prototype system is developed on a private cloud platform. The detection manager is 
deployed and CCTV system service is used to capture the image. Users can upload the 
pipeline image or pipeline video to the cloud. Then users are able to choose image 
processing method or defect recognize freely. In Fig. 3, there is an example of the user 
choose canny to process the image. 

 

Figure 3: User choose canny to process the image in the system 
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4 Proposed method for defect recognition in pipeline 
Image recognition is the processing and analysis of various forms of information (shapes, 
colors, and textures) that characterize an image, and the process of describing, identifying, 
classifying and interpreting images. It is an important part of artificial intelligence and 
information science. Therefore, an image recognition system usually consists of four 
parts: image collection, image preprocessing, feature extraction, and image recognition. 
As shown in Fig. 4.  

 
Figure 4: Image recognition system architecture 

4.1 Information collection system 
Image collection is to upload the collected pipeline information to the cloud through the 
CCTV (closed circuit television) device. The video acquisition system is generally 
carried by the pipeline robot. The system is generally composed of a CCD camera, a 
transmission module, a display and a control unit. The camera is installed on the platform 
of the pipeline robot. By using the platform, the camera can achieve 360-degree rotation 
and axial 220-degree rotation. The image effect of the camera is determined by its 
resolution. In order to obtain clear pipeline image, this system adopts high resolution 
camera. The camera transmits the collected information to the cloud through the network 
transmission module. The acquisition system is shown in Fig. 5. 

 

Figure 5: Acquisition system interface 

4.2 Image preprocessing 
Due to the extremely complex environment of the pipeline, the features of the pipeline 
defect also have large differences, such as low resolution, different sizes and non-uniform 
illumination. These factors increase the difficulty of image segmentation processing and 
defect feature recognition, which causes inconvenience. Therefore, it is necessary to 
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preprocess the image before defect location and defect feature recognition. By 
preprocessing the image, the effect of improving the defect location and recognition 
accuracy can be achieved. 

4.2.1 Image grayscale conversion 
The grayscale image is different from the RGB image, and the color information of each 
pixel is no longer three components, but only one. The gray level of grayscale image is 
quantization level, such as 64 level, 256 level, etc. The gray level indicates the degree of 
gray level subdivision. The RGB image is converted to a grayscale image for the image 
segmentation. The formula for converting a color image into a grayscale image is  

( , ) 0.299 ( , ) 0.587 ( , ) 0.114 ( , )f x y R x y G x y B x y= + +                                                (1) 
In Eq. (1), ( , )f x y denotes the gray value of the pixel ( , )x y . We calculate the brightness 
value of the pixel according to the RGB value of each pixel and the fixed weight. The 
weight of the formula, which is a generally accepted conversion formula, is determined 
by the sensitivity of the human eye to RGB three-color light. The used formula is the 
most consistent with true color. 

4.2.2 Image grayscale stretching 
In order to enhance the contrast between the interest area and the normal pipeline, the 
grayscale image needs to be grayscale stretched. Image grayscale stretching can make the 
brightness and darkness are more vivid, the features are more obvious. And the image 
will be more conducive to the next image segmentation. In this paper, a simple 
processing method is adopted, in which the gray value ( , )f x y of each pixel in the input 
image is the independent variable of the function, and the resulting dependent variable is 
the gray value ( , )g x y of the output image, that is  

( , ) [ ( , )]g x y T f x y=                                                                                          (2) 
According to different conditions and requirements, different mapping functions can be 
selected, such as proportional function, exponential function and so on. Such a method of 
inputting a point and obtaining a point of the output after a finite number of operations is 
called a point operation. In this paper, we use linear gradation transformation to enhance 
the contour recognition of suspected defect areas. 

4.2.3 Spatial smoothing filtering 
In any analog image, the image quality of the image is reduced during the process of 
being converted into digital image. That is the influence of noise during sampling, 
quantization and transmission. Due to various factors, such as uneven light caused by 
point light source, local highlight, metal reflection and so on. One value of the geometric 
feature is the perimeter of the suspected defect profile. Without the spatial smoothing 
filter enhancement, the contour we directly get will have a lot of serrated edges, which 
greatly increases the circumference and leads to experimental error. Fig. 6(a) and Fig. 6(b) 
show the binary image obtained by smoothing with a 3×3 template and the binary image 
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without smoothing. It can be clearly observed in Fig. 6 that the smoothed contour has no 
significant serrated edge. 

         
(a)                                                (b) 

Figure 6: Spatial smoothing filter enhancement 

4.2.4 Image segmentation 
Image segmentation is the technique and process of segmenting an image or scene into 
specific, unique parts or subsets and extracting the target of interest according to certain 
principles. In this experiment, our target of interest is the blocky area of suspected 
defection. In this paper, because the internal texture of the disease is also quite complex, 
and the target is only the outermost contour, the segmentation effect based on similarity 
is not satisfactory, so the segmentation based on discontinuity is used to find the edge of 
the disease. This paper mainly introduces Canny operator. The optimal edge contour is 
learned by Canny operator with four steps. 
In the first step, Gaussian filtering is used to remove image noise. Gaussian filtering 
process is actually the process of weighted average calculation of the entire image. We 
use the size 2 1N +  template (or convolution kernel, mask) to scan each pixel in the 
image and use the template to determine the neighborhood pixel weighted average 
grayscale to replace the template center pixel grayscale value. The one-dimensional 
Gaussian function is expressed as 

2 2
0( ) /21( )

2
x xG x e σ

σ π
− −=                                                                                                (3)                                                                            

The Gaussian convolution kernel parameters of a given size and Sigma are calculated 
according to one-dimensional Gaussian function, and the calculated Gaussian 
convolution kernel is convolved with the gray image. 
The second step is to calculate the gradient amplitude and direction. The horizontal and 
vertical templates are described as following. 

2 2

[ , ] ( [ 1, ] [ , ] [ 1, 1] [ , 1]) / 2
[ , ] ( [ , ] [ , 1] [ 1, ] [ 1, 1]) / 2

[ , ] [ , ] [ , ]
[ , ] arctan( [ , ] / [ , ])

P i j f i j f i j f i j f i j
Q i j f i j f i j f i j f i j

M i j P i j Q i j
i j Q i j P i jθ

= + − + + + − +
= − + + + − + +

= +

=

                                        (4) 
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In the Eq. (4), ( , )f x y  is the image gray value, P  is the gradient amplitude in the X   
direction, Q  is the gradient amplitude in the Y  direction, M  is the amplitude at this 
point, and θ  is the gradient Angle. After obtaining the gradient and gradient Angle in the 
X  and Y  directions, the gradient amplitude of the fusion of X  and Y  directions can be 
calculated. The calculation formula is 

2 2
x yG G G= +                                                                                                               (5) 

The third step, non-maximum suppression. Non-maximum suppression is applied for 
edge refinement. After gradient calculation, the edges extracted from the gradient values 
are still very blurry. We compare the edge intensity of the current pixel with the edge 
intensity of the pixel in the positive gradient direction and the negative gradient direction. 
This value will be preserved if the edge intensity of the current pixel is the largest 
compared to other pixels in the mask having the same direction. Otherwise, the value will 
be suppressed. 

     
(a) Sobel operator              (b) Laplace operator               (c) Canny operator 

Figure 7: Comparison of Sobel, Laplace, Canny edge detection operators 

The fourth step, double threshold and edge detection. After double threshold and edge 
detection, the canny image is obtained. We have compared the results of three operators 
for edge detection and connection as shown in Fig. 7. Note that the Canny operator is the 
empirically best choice in our experiment. 

4.3 Hybrid information 
In the recognition system, the description of defect features directly affects the 
classification effect of the entire system. In the process of feature selection, the main 
features of the expression and understanding of the image information of thousands of 
images should be selected [Targ, Almeida and Lyman (2016); Meng, Rice, Wang et al. 
(2018)]. The selected features should be able to describe the defect reliably and 
independently. After experiment and comparison, the HOG characteristics of the image 
can better describe the morphological characteristics of the pipeline defect picture. At the 
same time, the transfer learning strategy was used to train the VGGNet model on the 
small-scale defect dataset. VGGNET can express the shape and texture characteristics of 
the image better. HOG and VGGNET are combined as classification features of 
classifiers, and good classification results can be obtained under small-scale data sets. 
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4.3.1 Histogram of oriented gradient 
HOG (Histogram of Oriented Gradient) is a computer visual feature description for target 
detection. It forms features by counting and calculating histograms of gradient directions 
in local areas of the image. The HOG feature extraction algorithm is computed on the 
local grid element of the target image, so it can maintain better invariant characteristics 
than the geometric and optical changes of the target image, and the geometric and optical 
changes are only reflected in the larger space. 

4.3.2 VGGNet convolutional neural network 
The VGG convolutional neural network was developed from the Alex convolutional 
neural network. Compared to the Alex convolutional neural network, VGGNet has the 
following improvements: 
All convolution operations in the network use a 3×3 convolution kernel. The 
convolutional layer uses multiple small convolution kernels instead of one large 
convolution kernel to reduce the parameters of the entire network. On the other hand, it is 
equivalent to more nonlinear mapping, which increases the network’s ability to fit and 
express. The structure alternating between multiple convolutional layers and non-linear 
active layers can extract deeper features than the single convolutional layer structure. It is 
better to select a convolution layer combination with a small filter rather than a 
convolution layer with a large filter. The former can represent more powerful 
functionality in the input data and use fewer parameters. 
In the convolution structure of VGG network, the convolution kernel of 1×1 was 
introduced. This operation did not affect the output dimension, but introduced non-linear 
transformation, which increased the expression capacity of VGG network and reduced 
the computational amount of the model. 
In the model training stage, the A-level network of VGGNet with simple training level 
(with few layers) is adopted first, and then the weight of the network training is used to 
initialize the complex model, so as to accelerate the convergence speed of training 
The multi-scale method is adopted in both the training and prediction of the model, which 
can increase the amount of training data, prevent the model from overfitting and improve 
the accuracy of prediction. 
Fig. 8 shows the structure diagram of VGGNet-16 adopted in this paper. Although the 
convolutional network at each level from A to E gradually becomes deeper in the series 
of VGGNet, the overall number of parameters of the convolutional net-work does not 
increase significantly, because the number of thousands of parameters is mainly 
consumed in the last three full connection layers. 
Transfer learning strategy, the most common obstacle to solving problems using deep 
learning techniques is the large amount of data required for training models. The reason 
for the need for large amounts of data is that a large number of parameters in the model 
are encountered during machine learning. When faced with a particular scenario, the data 
required to build the model may not be available. However, the relationship to some type 
of data acquisition in the model training task can also be easily applied to different 
problems in the same domain, which is called transfer learning. Using the transfer 
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learning strategy, we can directly use models that others have pre-trained. This model has 
been pre-trained through a large and easily available data set. Then find the reusable layer 
of the output. We can use the output of these layers as input to train networks with fewer, 
smaller scale data sets. Another major benefit of transfer learning technology is the 
ability to improve the “universality” of the model. Large models tend to over-fitting data. 
Because the transfer learning strategy allows the model to know different types of data, 
the model can learn better basic rules. 
Feature extractor. The VGGNet network is very scalable, and the generalization ability to 
migrate to other image data is very good, so it can be used to extract image features. In 
this paper, the trained VGGNet feature extractor is used to extract features, then the HOG 
features are integrated, and the SVM classifier model is used for training and prediction. 

 

Figure 8: The structure of VGGNet-16 

4.4 Defect recognition 
After extracting the hybrid information of image, we introduce support vector machine 
(SVM) for defect recognition. Support vector machine is a new general learning method 
based on statistical theory and structural risk. 

 
Figure 9: The schematic diagram of the SVM 
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For the case of linearly separable, it can be assumed as 

1 i

2 i

: ( ) 1, 1
: ( ) 1, 1

T
i

T
i

H x b y
H x b y

ω

ω

 + ≥ =


+ ≤ − = −
                                                                                        (6) 

Normalized to 

i( ) 1, 1, ,T
iy x b i lω + ≥ =                                                                                              (7) 

ω  is the normal vector. b is the displacement term, which determines the distance between 
the hyperplane and the origin. ix is the characteristic of each sample point. iy is the category 
label of the sample point ix .The distance between 1H  and 2H to H is 1 / ω . Naturally, the 
classification interval is 2 / ω . The classification surface with the maximum and even 

minimum classification interval of 22 / ω  is called the optimal classification hyperplane, 
which is commonly referred to as the SVM classification decision plane. And the training 
sample points on 1H  and 2H are called support vectors. Therefore, seeking the optimal 
( , )bω  can be summarized as a quadratic programming problem: 

2

i i

1min
2

s. t .y ( ) 1, 1,2, ,T x b i n

ω

ω + ≥ = 

                                                                                (8)  

n  is the total number of sample points, the abbreviation s . t .  means “Subject to”. The 
dual problem of the programming problem, that is, the solution of the maximized 
objective function can be obtained by introducing the Lagrangian optimization function. 
The corresponding classification decision function is 

1
( )

n
T

i i i
i

h x y x x bα
=

= +∑                                                                                                     (9) 

In the above formula, b  is model parameter, and iα  is a Lagrangian multiplier. For 
nonlinear cases, the basic idea of SVM is to map the vector to a high-dimensional feature 
space through a predetermined nonlinear mapping, and then construct an optimal 
hyperplane in this high-dimensional space. 
The advantage of SVM is that it is easy to obtain the nonlinear relationship between data 
and features in the small and medium sample size, which is highly interpretable and can 
solve high dimensional problems. SVM algorithm is not only simple, but also has good 
robustness. In this paper, we adopt SVM to identify pipeline defects using LibSVM toolbox.  

5 Experimental result and analysis 
In order to verify the effectiveness of the algorithm, experiments were carried out on 
video in real scene. They are carried out on the client of the developed system proto-type. 
We run the experiments on Core 4790K@4.0 GHz CPU unit, 4 CPU core, 8 GB memory, 
drive with 64-bit windows file system in Microsoft server. We used three videos to 



 
 
 
Pipeline Defect Detection Cloud System                                                        1257 

validate the performance of pipeline defect recognition, which are collected from an 
actual pipeline with various corrosion in Zhengzhou province.  
In Fig. 10, the 7470th frame and the 3270th frame in the original video are shown in Fig. 
10(a1) and Fig. 10(b1), respectively. The smoothing filter enhanced images of the 7470th 
frame and the 3270th frame are displayed in Fig. 10(a2) and Fig. 10(b2). Two images 
detected by the canny operator are demonstrated in Fig. 10(a3) and Fig. 10(b3), and the 
results of our proposed defect identification are shown in Fig. 10(a4) and Fig. 10(b4). As 
shown in these subfigures, the noise in the images can be filtered out by gray processing 
and smoothing filter, and the images are segmented by the canny operator, then the 
defects features extracted using HOG and VGGNet are finally classified and identified by 
SVM. It is noted that the pipeline defects are different in the three videos and difficult to 
recognize considering of the lighting effects, texture characteristics, and the movement of 
pipeline robot. However, the system continues to perform well in this case, which verifies 
that the proposed cloud-based defect detection system can identify pipeline defects 
accurately. In short, the proposed method is efficient, convenient and highly accurate for 
cloud server to process pipeline videos and identify pipeline defects, which provides a 
new feasible way to replace the traditional manual maintenance method. 

 
                       （a1）                          (a2)                              (a3)                             (a4) 

 
                         (b1)                         (b2)                         (b3)                         (b4) 

Figure 10: Pipeline defect recognition effect under real scene 

6 Conclusion 
In order to improve the efficiency and accuracy of pipeline detection, this paper develops 
a pipeline defect detection cloud system for automatic pipeline inspection. In this paper, a 
cloud based pipeline defect detection system is deployed with user management module, 
pipeline robot control module, system service module, and defect detection module. In 
this system, we use a role encryption scheme for video data collection, uploading, and 
access security. For defect detection, we introduce the hybrid information integrating 
VGGNet and HOG features and use SVM to identify pipeline defects. A prototype 
system is developed on the cloud architecture designed to verify the proposed method. 
Experimental results show that the system has high efficiency and accuracy in the 
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identification of pipeline defects, and it is a feasible method to replace artificial 
recognition. However, the effectiveness of defect recognition in different environments 
still needs to be improved, and the cost problem is still the key of the cloud-based defect 
recognition system. This motivates us to study on these application problems for the 
defect detection in the future.  
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