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Abstract: The observation vectors in traditional coarse alignment contain random noise 
caused by the errors of inertial instruments, which will slow down the convergence rate. 
To solve the above problem, a real-time noise reduction method, sliding fixed-interval 
least squares (SFI-LS), is devised to depress the noise in the observation vectors. In this 
paper, the least square method, improved by a sliding fixed-interval approach, is applied 
for the real-time noise reduction. In order to achieve a better-performed coarse alignment, 
the proposed method is utilized to de-noise the random noise in observation vectors. First, 
the principles of proposed SFI-LS algorithm and coarse alignment are devised. A 
simulation test and turntable experiment were executed to demonstrate the availability of 
the designed method. It is indicated that, from the results of the simulation and turntable 
tests, the designed algorithm can effectively reduce the random noise in observation 
vectors. Therefore, the proposed method can enhance the performance of coarse 
alignment availably. 
 
Keywords: Coarse alignment, observation vectors, real-time noise reduction, sliding 
fixed-interval least squares. 

1 Introduction 
The Strap-down Inertial Navigation System (SINS) solves the motion parameters, 
including the velocity and the position of vehicle, relative to known positions by integral 
operation [Titterton, Weston and Weston (2004); Chang, Li and Xue (2017)]. Because of 
the sensor error, the position error of SINS will accumulate slowly with the integration 
operation [Chang, Li and Xue (2017); Huang, Zhang and Wang (2017)]. Therefore, the 
initial motion parameters of the carrier are critical to the SINS. The position and velocity 
information of the carrier at the initial moment can be given by external sensors. Thus, 
the initial attitude of the carrier, achieved by the process of the initial alignment, is a 
significant parameter for the performance of SINS [Huang, Zhang and Wang (2017); 
Chang, Li and Chen (2015); Li, Song, Yang et al. (2016)]. It is an urgent problem for the 
initial alignment algorithm that how to quickly converge to a high precision range in a 
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short time [Gao, Lu and Yu (2015); Xu, Xu, Zhang et al. (2017); Chang and Hu (2018)]. 
The initial alignment generally consists of two phases: the coarse alignment and the fine 
alignment [Qin, Yan, Gu et al. (2005); Wu, Wu, Hu et al. (2011); Xu, He, Qin et al. 
(2017)]. The coarse alignment performed first can quickly resolve a rough initial attitude. 
The output of coarse alignment is utilized as the initial value of fine alignment [Wu, Wu, 
Hu et al. (2011)]. The fine alignment can further improve the accuracy of the initial 
attitude [Xu, He, Qin et al. (2017)]. Traditional coarse alignment algorithms usually use 
the outputs of gyroscopes, accelerometers and other sensors to construct observation 
vector models, and then solve the rough initial attitude matrix. 
Qin et al. [Qin, Yan, Gu et al. (2005)] designed a method to complete the coarse 
alignment, which divides the initial attitude matrix into several sub-matrices by 
introducing the idea of inertial frame. However, the attitude determination method used 
in Qin et al. [Qin, Yan, Gu et al. (2005)] only utilizes the vectors at two point in the 
alignment process, which makes the convergence rate of the method slow. Wu et al. [Wu, 
Wu, Hu et al. (2011)] proposed a method named OBA to achieve a better-performed 
coarse alignment. The attitude determination method in the OBA algorithm constructs K 
matrix using the observation vectors, which chooses the eigenvector of the K matrix 
belong to the smallest eigenvalue as the optimal attitude quaternion. However, the OBA 
method does not dispose the random noise in the observation vectors caused by the 
measurement errors of the inertial sensors, which slows down the convergence speed of 
the alignment method. In summary, to achieve a better-performed coarse alignment on 
the swing base, attention needs to be paid on dealing with the random noise in the 
observation vectors. Least squares method has an important application in noise 
processing [Dong, Haynes and Atluri (2015); Yu, Zhao, de Lamare et al. (2019)]. But it 
needs to be improved if it is to be used in real-time processing of observation vectors. In 
this paper, a real-time noise reduction method, sliding fixed-interval least squares (SFI-
LS) method, is proposed for the random noise in the observation vectors. 
The framework of this paper is designed as below: the theory of coarse alignment with 
inertial frame is stated in the part 2. Section 3 is devoted to introducing the noise 
reduction method and the attitude determination algorithm. Section 4 gives the simulation 
test and turntable experiment. Finally, conclusions are drawn in part 5. 

2 The principle of coarse alignment 
2.1 Definition of the coordinate frame 
Some frames utilized in this paper are defined as follows: 
① i-frame: inertial frame; 
② n-frame: navigation frame, this paper chooses local level geographic frame (East-
North-Up, ENU); 
③ n0-frame: the n-frame at the initial moment, remains static with the i-frame; 
④ b-frame: the body frame for SINS (Right-Forth-Up, RFU); 
⑤ b0-frame: the b-frame at the initial moment, remains static with the i-frame; 
The diagram of coordinate frames introduced above is shown in the Fig. 1. 
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Figure 1: The diagram of the coordinate frames 

2.2 Coarse alignment based on the inertial frame 
The attitude quaternion 𝒒𝒒𝑏𝑏𝑛𝑛 at any time, corresponding to the attitude matrix 𝑪𝑪𝑏𝑏𝑛𝑛, can be 
resolved into several sub-quaternions as 

𝒒𝒒𝑏𝑏𝑛𝑛(𝑡𝑡) = 𝒒𝒒𝑏𝑏(𝑡𝑡)
𝑛𝑛(𝑡𝑡) = 𝒒𝒒𝑛𝑛0

𝑛𝑛(𝑡𝑡)𝒒𝒒𝑏𝑏0𝑛𝑛0𝒒𝒒𝑏𝑏(𝑡𝑡)
𝑏𝑏0              (1) 

where, the vector 𝒒𝒒𝑏𝑏𝑛𝑛(𝑡𝑡) represents the attitude quaternion at time t. The vector 𝒒𝒒𝑏𝑏0𝑛𝑛0 is the 
initial attitude quaternion, which is a constant attitude quaternion. The vector 𝒒𝒒𝑛𝑛0

𝑛𝑛(𝑡𝑡)  is the 
mutative attitude quaternion in the n-frame. The vector 𝒒𝒒𝑏𝑏(𝑡𝑡)

𝑏𝑏0  is the mutative attitude 
quaternion in the b-frame. The two time-varying quaternions can be solved by the 
following formula. 

�
�̇�𝒒𝑛𝑛(𝑡𝑡)
𝑛𝑛0 = 1

2
𝒒𝒒𝑛𝑛(𝑡𝑡)
𝑛𝑛0 ⨂𝝎𝝎𝑖𝑖𝑛𝑛

𝑛𝑛

�̇�𝒒𝑏𝑏(𝑡𝑡)
𝑏𝑏0 = 1

2
𝒒𝒒𝑏𝑏(𝑡𝑡)
𝑏𝑏0 ⨂𝝎𝝎𝑖𝑖𝑏𝑏

𝑏𝑏
             (2) 

where, the quaternions 𝒒𝒒𝑛𝑛(𝑡𝑡)
𝑛𝑛0  and 𝒒𝒒𝑏𝑏(𝑡𝑡)

𝑏𝑏0  are all unit vector [1 0 0 0 ]𝑇𝑇  at the initial 
time. 𝝎𝝎𝑖𝑖𝑏𝑏

𝑏𝑏 ∈ ℝ3×1 is the carrier rotation angular velocity measured directly by gyroscopes. 
𝝎𝝎𝑖𝑖𝑛𝑛
𝑛𝑛 ∈ ℝ3×1 is the rotation angular speed of the n-frame relative to the i-frame. 

Through the above analysis, once the constant attitude quaternion 𝒒𝒒𝑏𝑏0𝑛𝑛0  is solved, the 
attitude quaternion 𝒒𝒒𝑏𝑏𝑛𝑛(𝑡𝑡) could be calculated according to Eq. (1). It is noticed that the 
quaternion 𝒒𝒒𝑏𝑏0𝑛𝑛0 is always a constant attitude quaternion throughout the process of the 
coarse alignment, which is significant for the improvement of the alignment accuracy. 
Therefore, the problem of coarse alignment is converted to the attitude determination by 
introducing the idea of inertial frame. Next, the vector information needed for attitude 
determination will be constructed. 
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The force equation of SINS in the n-frame is as follow: 
�̇�𝒗𝑛𝑛 = 𝒇𝒇𝑛𝑛 − (2𝝎𝝎𝑖𝑖𝑖𝑖

𝑛𝑛 +𝝎𝝎𝑖𝑖𝑛𝑛
𝑛𝑛 ) × 𝒗𝒗𝑛𝑛 + 𝒈𝒈𝑛𝑛             (3) 

where, 𝒗𝒗𝑛𝑛 = [𝑣𝑣𝐸𝐸 𝑣𝑣𝑁𝑁 𝑣𝑣𝑈𝑈]𝑇𝑇 . 𝒈𝒈𝑛𝑛 = [0 0 −𝑔𝑔]𝑇𝑇  denotes the local gravity. 𝒇𝒇𝑛𝑛 =
[𝑓𝑓𝐸𝐸 𝑓𝑓𝑁𝑁 𝑓𝑓𝑈𝑈]𝑇𝑇 is the force vector in the n-frame.  
When the carrier is swing, the velocity of the carrier is zero. Then the Eq. (3) can be 
expressed as 
𝒇𝒇𝑛𝑛 + 𝒂𝒂𝑛𝑛 = −𝒈𝒈𝑛𝑛             (4) 
where, 𝒂𝒂𝑛𝑛 indicates interference acceleration. 
The force vector described in n-frame can be converted into the b-frame by the next 
equation: 
𝒇𝒇𝑛𝑛 = 𝒒𝒒𝑏𝑏𝑛𝑛⨂𝒇𝒇𝑏𝑏⨂𝒒𝒒𝑏𝑏𝑛𝑛

∗
             (5) 

where, 𝒇𝒇𝑏𝑏 is the force vector described in b-frame, measured directly by accelerometers. 
Substituting Eq. (1) and Eq. (5) into Eq. (4), then 
𝒒𝒒𝑛𝑛0𝑛𝑛𝑡𝑡⨂𝒒𝒒𝑏𝑏0𝑛𝑛0⨂𝒒𝒒𝑏𝑏𝑡𝑡𝑏𝑏0�𝒇𝒇𝑏𝑏 + 𝒂𝒂𝑛𝑛�⨂𝒒𝒒𝑏𝑏𝑡𝑡𝑏𝑏0

∗⨂𝒒𝒒𝑏𝑏0𝑛𝑛0
∗⨂𝒒𝒒𝑛𝑛0𝑛𝑛𝑡𝑡

∗ = −𝒈𝒈𝑛𝑛            (6) 
Reorganizing the above equation 
𝒒𝒒𝑏𝑏0𝑛𝑛0⨂𝒒𝒒𝑏𝑏𝑡𝑡𝑏𝑏0⨂�𝒇𝒇𝑏𝑏 + 𝒂𝒂𝑛𝑛�⨂𝒒𝒒𝑏𝑏𝑡𝑡𝑏𝑏0

∗⨂𝒒𝒒𝑏𝑏0𝑛𝑛0
∗ = −𝒒𝒒𝑛𝑛𝑡𝑡𝑛𝑛0⨂𝒈𝒈𝑛𝑛⨂𝒒𝒒𝑛𝑛0𝑛𝑛𝑡𝑡

∗            (7) 
Then, the observation vectors and the reference vectors are defined respectively as 
follows: 

�
𝜶𝜶 = 𝒒𝒒𝑏𝑏𝑡𝑡𝑏𝑏0⨂�𝒇𝒇𝑏𝑏 + 𝒂𝒂𝑛𝑛�⨂𝒒𝒒𝑏𝑏𝑡𝑡𝑏𝑏0

∗

𝜷𝜷 = −𝒒𝒒𝑛𝑛𝑡𝑡𝑛𝑛0⨂𝒈𝒈𝑛𝑛⨂𝒒𝒒𝑛𝑛0𝑛𝑛𝑡𝑡
∗              (8) 

Eq. (7) can be transformed into the observation vectors–based measurement model for 
𝒒𝒒𝑏𝑏0𝑛𝑛0 as 
𝒒𝒒𝑏𝑏0𝑛𝑛0⨂𝜶𝜶⨂𝒒𝒒𝑏𝑏0𝑛𝑛0

∗ = 𝜷𝜷             (9) 

3 Noise reduction of vectors and attitude determination method 
3.1 Noise reduction of vectors 
It can be seen from the formula that the reference vector 𝜷𝜷 is only related to the angular 
speed of the earth’s rotation and the gravity vector of the earth 𝒈𝒈𝑛𝑛. Therefore, it can be 
considered that there is no error in the reference vectors. The observation vector 𝜶𝜶 is 
computed by the outputs of the accelerometers and the gyroscopes on the swing base. 
Because both the output of the accelerometers and the gyroscopes contains constant error 
and random error, the observation vector also contains error. If the observation vectors 
with errors are directly used, the attitude determination method will converge slowly.  
The traditional least squares method is a mathematical optimization technique, which is 
proved having better optimization effect than other methods. This method has widely 
applied in curve fitting. The specific principle of the least squares is introduced as follows. 
Firstly, the mathematical model of observation vector is established as follows. 
𝛼𝛼𝑖𝑖𝑖𝑖 = 𝑏𝑏0 + 𝑏𝑏1𝑡𝑡 + 𝑏𝑏2𝑡𝑡2 +⋯+ 𝑏𝑏𝑚𝑚𝑡𝑡𝑚𝑚                        (10) 
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where, i = 1,2,3, j = 1,2,⋯ , n 
The vectorization of the Eq. (10) is expressed as: 
𝐓𝐓𝐓𝐓 = 𝜶𝜶𝑖𝑖                              (11) 
where, 

𝐓𝐓 = �

1 𝑡𝑡 ⋯ 𝑡𝑡𝑚𝑚
1 𝑡𝑡 ⋯ 𝑡𝑡𝑚𝑚
⋮ ⋮ ⋮ ⋮
1 𝑡𝑡 ⋯ 𝑡𝑡𝑚𝑚

�, 𝐓𝐓 = �

𝑏𝑏0
𝑏𝑏1
⋮
𝑏𝑏𝑚𝑚

�, 𝜶𝜶𝑖𝑖 = �

𝛼𝛼𝑖𝑖1
𝛼𝛼𝑖𝑖2
⋮
𝛼𝛼𝑖𝑖𝑛𝑛

� 

Normally, the system of equations has no exact solution. In order to get the approximate 
solution of the equation, the residual sum function S(b) is introduced. 
S(𝑏𝑏) = ‖𝐓𝐓𝐓𝐓 − 𝜶𝜶𝑖𝑖‖2                        (12) 
The aim of the least square method is to find an optimal vector �̂�𝐓 to minimize the value 
of S(b). 
�̂�𝐓 = 𝑎𝑎𝑎𝑎𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎�𝑆𝑆(𝑏𝑏)�                         (13) 
Multiplying the transposition of matrix 𝐓𝐓 on both sides of Eq. (11): 
𝐓𝐓𝑇𝑇𝐓𝐓𝐓𝐓 = 𝐓𝐓𝑇𝑇𝜶𝜶𝑖𝑖            (14) 
If the matrix 𝐓𝐓𝑇𝑇𝐓𝐓 is nonsingular, then vector 𝐓𝐓 has a unique solution. 
𝐓𝐓 = (𝐓𝐓𝑇𝑇𝐓𝐓)−1𝐓𝐓𝑇𝑇𝜶𝜶𝑖𝑖            (15) 
The traditional least square method treats all the measurement data as a whole, gives 
parameter estimation by batch processing. But this method also has obvious shortcomings. 
On the one hand, when the measuring data is large, lager storage space is needed. On the 
other hand, this method is mostly used for post-processing, which is not suitable for real-
time processing system. Therefore, in some practical projects, this method is not 
applicable. In view of the slow convergence rate of coarse alignment due to random noise 
in observation vectors, a real-time noise reduction method, sliding fixed-interval least 
squares (SFI-LS) method, is designed to reduce the noise in observation vectors.  
The specific ideas of the proposed algorithm are as follows. First, the fixed-interval of the 
proposed method is set as N. After calculating the observation vector 𝜶𝜶𝑀𝑀 at 𝑡𝑡𝑀𝑀, the least 
square curve fitting is performed by using all the observation vectors from 𝑡𝑡𝑀𝑀−𝑁𝑁 to 𝑡𝑡𝑀𝑀 
(M>N). Then, the observation vector at 𝑡𝑡𝑀𝑀  after noise reduction is computed by the 
solved coefficients. Finally, attitude determination is carried out using the observation 
vector after noise reduction. The schematic diagram of the real-time noise reduction 
method designed in this paper is shown in the following figure. 
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Figure 2: The schematic diagram of noise reduction methods 

It should be noted that the length of the sliding fixed-interval and the order of least 
squares fitting have great influence on the performance of the algorithm, which are two 
important parameters. 

3.2 Attitude determination method 
After constructing observation vectors, reference vectors and denoising the observation 
vectors, the constant attitude matrix can be solved by attitude determination algorithm. 
The specific process of the attitude determination method is as follows: 
The following two matrices are constructed using Eq. (9): 

𝑀𝑀(𝜷𝜷) = �0 −𝜷𝜷𝑇𝑇
𝜷𝜷 (𝜷𝜷 ×)�            (16) 

𝑀𝑀(𝜶𝜶) = �0 −𝜶𝜶𝑇𝑇
𝜶𝜶 −(𝜶𝜶 ×)�            (17) 

The Eq. (9) is converted to 
[𝑀𝑀(𝜷𝜷) −𝑀𝑀(𝜶𝜶)]𝒒𝒒𝑏𝑏0𝑛𝑛0 = 𝟎𝟎            (18) 
According to the optimal attitude determination method, the above attitude determination 
problem can be transformed into the following optimal solution problem. 

min
𝑞𝑞
∫ �[𝑀𝑀(𝜷𝜷) −𝑀𝑀(𝜶𝜶)]𝒒𝒒𝑏𝑏0𝑛𝑛0�𝑑𝑑𝑡𝑡
𝑡𝑡
𝑡𝑡0 = min

𝑞𝑞
�𝒒𝒒𝑏𝑏0𝑛𝑛0�

𝑇𝑇 𝑲𝑲�𝒒𝒒𝑏𝑏0𝑛𝑛0�           (19) 

where, 𝑲𝑲 = ∫ ([𝑀𝑀(𝜷𝜷) −𝑀𝑀(𝜶𝜶)]𝑇𝑇[𝑀𝑀(𝜷𝜷) −𝑀𝑀(𝜶𝜶)])𝑑𝑑𝑡𝑡𝑡𝑡
𝑡𝑡0 . The constraint condition is 

�𝒒𝒒𝑏𝑏0𝑛𝑛0�
𝑇𝑇�𝒒𝒒𝑏𝑏0𝑛𝑛0� = 1 . The eigenvector of the matrix K corresponding to its minimum 

eigenvalue is the sought attitude quaternion 𝒒𝒒𝑏𝑏0𝑛𝑛0. 
For more clarity, the structure of inertial alignment coarse alignment method based on 
vector noise reduction is listed as follows. 
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Table 1: The structure of the proposed method 

Initialization: Set t=0, Ts=0.005, n=500 
Step 1: t=t+1; 

Step 2: Update 𝒒𝒒𝑛𝑛(𝑡𝑡)
𝑛𝑛0  using 𝝎𝝎𝑖𝑖𝑛𝑛

𝑛𝑛  by �̇�𝒒𝑛𝑛(𝑡𝑡)
𝑛𝑛0 = 1

2
𝒒𝒒𝑛𝑛(𝑡𝑡)
𝑛𝑛0 ⨂𝝎𝝎𝑖𝑖𝑛𝑛

𝑛𝑛 ; 

Step 3: Update 𝒒𝒒𝑏𝑏(𝑡𝑡)
𝑏𝑏0  using 𝝎𝝎𝑖𝑖𝑏𝑏

𝑏𝑏  by �̇�𝒒𝑏𝑏(𝑡𝑡)
𝑏𝑏0 = 1

2
𝒒𝒒𝑏𝑏(𝑡𝑡)
𝑏𝑏0 ⨂𝝎𝝎𝑖𝑖𝑏𝑏

𝑏𝑏 ; 

Step 4: Compute 𝜷𝜷 using 𝒈𝒈𝑛𝑛 by 𝜷𝜷 = −𝒒𝒒𝑛𝑛𝑡𝑡𝑛𝑛0⨂𝒈𝒈𝑛𝑛⨂𝒒𝒒𝑛𝑛0𝑛𝑛𝑡𝑡
∗; 

Step 5: Compute 𝜶𝜶 using 𝒇𝒇𝑏𝑏 by 𝜶𝜶 = 𝒒𝒒𝑏𝑏𝑡𝑡𝑏𝑏0⨂�𝒇𝒇𝑏𝑏 + 𝒂𝒂𝑛𝑛�⨂𝒒𝒒𝑏𝑏𝑡𝑡𝑏𝑏0
∗
; 

Step 6: De-noise the vector by the proposed least squares denoising method 
of Sliding window; 

Step 7: Compute 𝑲𝑲𝑡𝑡 = 𝑲𝑲𝑡𝑡−1 + [𝑀𝑀(𝜷𝜷𝒕𝒕) −𝑀𝑀(𝜶𝜶𝒕𝒕)]𝑇𝑇[𝑀𝑀(𝜷𝜷𝒕𝒕) −𝑀𝑀(𝜶𝜶𝒕𝒕)] × 𝑇𝑇𝑇𝑇; 

Step 8: Determine the initial attitude quaternion 𝒒𝒒 by Calculate the 
normalized eigenvector of 𝑲𝑲𝑡𝑡 belong to the smallest eigenvalue; 

Step 9: Obtain the attitude matrix at current time 
Step 10: Go back to Step 1 until the end. 

4 Simulation test and turntable test 
A simulation experiment and turntable test are executed, using the sinusoidal motion model, 
to demonstrate the availability of the proposed algorithm on the swing base. The model of 
the simulation test is set as Eq. (20). The quantity A is the amplitude, the parameter f 
represents the frequency, the parameter φ represents the initial phase of the swing motion, 
the quantity θ is the swing center of the swing motion. The traditional coarse alignment 
method using the original observation vectors is utilized to compare with the proposed 
method in the paper. The performance of the two methods are compared and analyzed from 
the two aspects of convergence speed and convergence accuracy. 

�
𝜃𝜃 = 𝐴𝐴𝜃𝜃 sin(2𝜋𝜋𝑓𝑓𝜃𝜃 + 𝜑𝜑𝜃𝜃) + 𝜃𝜃0
𝛾𝛾 = 𝐴𝐴𝛾𝛾 sin�2𝜋𝜋𝑓𝑓𝛾𝛾 + 𝜑𝜑𝛾𝛾� + 𝛾𝛾0
𝜓𝜓 = 𝐴𝐴𝜓𝜓 sin�2𝜋𝜋𝑓𝑓𝜓𝜓 + 𝜑𝜑𝜓𝜓� + 𝜓𝜓0

            (20) 

4.1 Simulation test 
In the simulation test, the setting of the swing parameters are listed in Tab. 2. The 
simulation time is 200 s. 

Table 2: The setting of the swing parameters 

Angles Amplitude (°) Frequency (Hz) Swaying center (°) 
Pitch(θ) 8 0.15 0 
Roll(γ) 10 0.125 0 
Yaw(ψ) 6 0.2 0 
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The errors setting of the inertial measurement units in the simulation test are set as follows. 

Table 3: The setting of the sensor errors 

Parameters 
Gyroscope Accelerometer 

Constant bias 
(° ℎ⁄ ) 

Random bias 
(° √ℎ⁄ ) 

Constant bias 
(μg) 

Random bias 
(μg √ℎ⁄ ) 

x-Axis 0.01 0.005 50 500 
y-Axis 0.01 0.005 50 500 
z-Axis 0.01 0.005 50 500 

As described before, the length of the sliding fixed-interval and the order of least squares 
fitting have great influence on the results of the algorithm. Next, two experiments were 
conducted to verify the effect of parameters on the performance of the designed method. 
First, the coarse alignment with different intervals of the SFI-LS algorithm are carried out 
to verify the influence of the length of the sliding fixed-interval on the performance of the 
algorithm. Specifically, the following five coarse alignment methods are listed as Tab. 4. 
The alignment results of the three attitudes for the above several methods are showed in 
Figs. 3-5. 

Table 4: The coarse alignment methods with different intervals of the SFI-LS algorithm 

Methods Interval Order 
Method 1 No No 
Method 2 500 2 
Method 3 1000 2 
Method 4 2000 2 
Method 5 5000 2 
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Figure 3: The pitch angle errors of the designed method with different denoising intervals 

 

Figure 4: The roll angle errors of the designed method with different denoising intervals 
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Figure 5: The yaw angle errors of the designed method with different denoising intervals 

In the above coarse alignment methods, the method1 is the traditional coarse alignment 
method without denoising the observation vectors. Method 2 to Method 5 adopted the 
proposed SFI-LS algorithm with different intervals of the SFI-LS algorithm, but they all 
adopt second-order model to process the noise in observation vectors. Fig. 3 and Fig. 4 
show that there is no difference in horizontal angle attitude errors between these methods. 
All these methods can achieve good horizontal angle accuracy. Emphasis should be 
placed on the accuracy of the yaw angle. As can be seen from Fig. 5, when the order of 
SFI-LS method is fixed, the alignment performance of the SFI-LS method with interval 
of 5000 (Method 5) is the best. The convergence rate of Method 5 has been obviously 
improved compared with that of the traditional method (Method 1). 
Second, the coarse alignment with different order models of the SFI-LS algorithm are 
executed to demonstrate the influence of the order model of the least square method on 
the performance of the algorithm. Specifically, the following three coarse alignment 
methods are listed as Tab. 5. The alignment results of the three attitudes for the above 
several methods are showed in Figs. 6-8. 

Table 5: The coarse alignment methods with different orders of the SFI-LS algorithm 

Methods Interval Order 
Method 1 No No 
Method 6 5000 3 
Method 5 5000 2 
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Figure 6: The pitch angle errors of the designed method with different denoising order 

 

Figure 7: The roll angle errors of the designed method with different denoising order 
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Figure 8: The yaw angle errors of the designed method with different denoising order 

In the above coarse alignment methods, the Method 1 is the traditional coarse alignment 
method without denoising the observation vectors. Method 5 and Method 6 adopted the 
proposed SFI-LS algorithm with different order models of the SFI-LS algorithm, but the 
interval of the SFI-LS algorithm used in the above two methods are all set as 5000. Fig. 6 
and Fig. 7 show that all these methods have a good performance on the horizontal angle. 
The difference between these methods is mainly reflected in the heading angle error. As 
can be seen from Fig. 8, when the interval of the SFI-LS method is fixed, the alignment 
performance of the SFI-LS method with the second-order model (Method 5) is the best. 
After the above analysis, on the one hand, compared with traditional method, the design 
coarse alignment method has better performance. On the other hand, after comparing the 
several methods, the SFI-LS method (Method 5) with the interval length of 5000 and the 
second-order model has achieved the best performance of the coarse alignment. 

4.2 Turntable test 
The turntable experiment is carried out to verify the validity of this method in real 
environment. The physical diagram of the turntable experiment is shown in Fig. 9. The 
IMU is roughly installed in the center of the three-axis turntable. The performance indexes 
of the IMU are listed as Tab. 6. The swing motion of the IMU is simulated by controlling 
the rotation of the turntable. In the turntable test, the setting of the swing parameters is set 
as Tab. 7. The attitude of the turntable is taken as the reference value of the experiment. As 
shown in Fig. 9, the IMU is not accurately installed in the center of the three-axis turntable. 
There is an installation error and arm error between the IMU and the turntable. These two 
errors have been calibrated and compensated before the turntable experiment is executed. 
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IMU

 

Figure 9: The physical diagram of the turntable experiment 

Table 6: The setting of inertial sensors in the turntable test 

Parameters Gyroscope Accelerometer 
Measurement range ±300 ° 𝑇𝑇⁄  ±20 g 

Repetitiveness-of-scale factor 50 ppm (1𝜎𝜎) 3.5 × 10−5 (1𝜎𝜎) 
Constant bias 0.02 ° ℎ⁄ (1𝜎𝜎) 5 × 10−3 𝑔𝑔 (1𝜎𝜎) 
Random bias 0.005 ° √ℎ⁄  5 × 10−3 𝑔𝑔 (1𝜎𝜎) 

Table 7: The setting of the swing parameters in the turntable test 

Angles Amplitude (°) Frequency (Hz) Swaying center (°) 
Pitch (𝛉𝛉) 3 0.15 2 
Roll (𝛄𝛄) 3 0.2 -2 
Yaw (𝛙𝛙)  2 0.125 135 

Through the analysis and the results of the simulation experiments, it is found that the 
Method 5 has the best performance than other methods. Therefore, in the turntable 
experiment, the Method 5 is utilized to compare with the traditional coarse alignment 
method. Figs. 10-12 show the attitude error results of the two coarse aliment methods in 
the turntable experiment. Fig. 13 shows the comparison of observation vectors in 
turntable experiment before and after noise reduction. 
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Figure 10: The pitch angle errors of the Method 1 and Method 5 in the turntable test 

 

Figure 11: The roll angle errors of the Method 1 and Method 5 in the turntable test 
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Figure 12: The yaw angle errors of the Method 1 and Method 5 in the turntable test 

As described in Tab. 5, Method 1 represents the traditional coarse alignment method, 
while Method5 represents the proposed coarse alignment method based on noise 
reduction. Consistent with the simulation results, the horizontal angle errors of Method 5 
and method1 are basically the same. However, the yaw angle errors of the two algorithms 
are quite different. Because the observation vectors in the Method 5 are de-noised, the 
convergence rate of Method 5 is faster and the oscillation amplitude is smaller. 
Fig. 13 shows the curves of the observation vectors, which have been normalized in the 
turntable experiment. The blue curve in Fig. 13 is the curves of the observation vectors 
without processing. As the observation vectors in the Method1 contain the random errors 
of the inertial sensors, the noise distribution of the blue curve is obvious. After real-time 
denoising, the noise of the observation vectors is much smaller, as shown in the red curve. 
Obviously, the performance of coarse alignment has been greatly improved after reducing 
the random errors in the observation vectors, which is embodied in the improvement of 
convergence rate and the decrease of oscillation amplitude. 
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Figure 13: The observation vectors in the turntable test before and after denoising 

5 Conclusion 
In view of the slow convergence rate of coarse alignment due to random noise in 
observation vectors, a real-time noise reduction method, sliding fixed-interval least 
squares (SFI-LS) method, is devised to depress the noise in the observation vectors. In 
order to introduce the designed method in this paper clearly, the principle of real-time 
noise reduction method is deduced. The simulation and turntable experiments are 
executed to demonstrate the availability of the designed method. It is indicated that the 
designed algorithm can effectively improve the convergence rate of the coarse alignment, 
from the results of the simulation test and the turntable test. Most importantly, this 
method can be used for real-time noise reduction of observation vectors. Therefore, this 
method has important value in engineering application of rough alignment. 
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