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Abstract: To cope with the arbitrariness of the network delays, a novel method, referred 
to as the composite particle filter approach based on variational Bayesian (VB-CPF), is 
proposed herein to estimate the clock skew and clock offset in wireless sensor networks. 
VB-CPF is an improvement of the Gaussian mixture kalman particle filter (GMKPF) 
algorithm. In GMKPF, Expectation-Maximization (EM) algorithm needs to determine the 
number of mixture components in advance, and it is easy to generate overfitting and 
underfitting. Variational Bayesian EM (VB-EM) algorithm is introduced in this paper to 
determine the number of mixture components adaptively according to the observations. 
Moreover, to solve the problem of data packet loss caused by unreliable links, we 
propose a robust time synchronization (RTS) method in this paper. RTS establishes an 
autoregressive model for clock skew, and calculates the clock parameters based on the 
established autoregressive model in case of packet loss. The final simulation results 
illustrate that VB-CPF yields much more accurate results relative to GMKPF when the 
network delays are modeled in terms of an asymmetric Gaussian distribution. Moreover, 
RTS shows good robustness to the continuous and random dropout of time messages.  
 
Keywords: Time synchronization, particle filter, expectation maximization, wireless 
sensor networks (WSNs). 

1 Introduction 
Wireless sensor networks (WSNs) consist of many low-cost sensor nodes capable of 
onboard sensing, computing and communications. WSNs are gaining importance since its 
wide applications, such as environment monitoring, object tracking and industrial machines 
controlling, etc. Most of these applications require the time of nodes to be synchronized to 
each other. Furthermore, some fundamental operations, such as power management, data 
fusion and transmission scheduling, etc. Require all the nodes running on a common 
timescale. However, in WSNs, every individual sensor works independently and maintains 
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a local time measured by its own clock. This makes time synchronization between different 
nodes a critical piece of infrastructure [Wang, Jiang, Zhou et al. (2017); Qiu, Zhang, Qiao 
et al. (2018); Liu (2018); Chen, Liu and Han (2018)]. 
Usually, time synchronization between any two nodes is accomplished through the 
exchange of time messages. Since deterministic and nondeterministic delay exists in the 
process of message transmission, the time messages may be arbitrarily delayed. At present, 
the common solution is to build a distribution model for the nondeterministic network delay, 
such as, Gaussian, Exponent, Gamma and Weber etc. [Wu, Chaudhari and Serpedin (2011); 
Wang, Jeske and Serpedin (2015); Noh, Chaudhari and Serpedin (2007)]. However, for 
sensor networks with complex real environment, various reasons will affect the distribution 
of network delay in varying degrees. It is difficult to find a network delay distribution 
model that is in line with the actual environment. Although the rationality and applicability 
of Gaussian network delay distribution model and Exponential network delay distribution 
model are verified in reference [Etzlinger, Wymeersch and Springer (2013); Abdel-Ghaffar 
(2002)], the simulation results in Noh et al. [Noh, Chaudhari and Serpedin (2007)] show 
that the estimation accuracy of clock parameters is very sensitive to the network delay 
distribution model. Therefore, it is necessary to research the clock parameter estimation 
method under arbitrary delay [Kim, Lee, Serpedin et al. (2009); Kim, Lee, Serpedin et al. 
(2011); Guo, Shen, Sun et al. (2015)]. 
Since Gaussian Mixture Model (GMM) can approximate arbitrary probability density 
[Anderson and Moore (1979)], Kim et al. [Kim, Lee, Serpedin et al. (2009)] estimated 
nondeterministic delay distribution using GMM, and proposed two estimation algorithms 
of clock offset, Gaussian Mixture Kalman Particle Filter (GMKPF), and Iterative 
Gaussian Mixture Kalman Particle Filter (IGMKPF), respectively. GMKPF combines 
measurement update steps based on Important Sampling (IS) with Gaussian Sum Filter 
(GSF) based on Kalman Filter (KF) for time update and proposed distribution generation. 
Then, Expectation Maximization (EM) algorithm is used to approximate the posterior 
distribution function of clock parameters by GMM. The introduction of EM algorithm not 
only alleviates the particle degradation problem caused by the particle filer algorithm, but 
also avoids the phenomenon that the number of GMM components increases exponentially 
with the iterations number increases. The simulation results of GMKPF show that when the 
network delay follows a single non-Gaussian (non-Exponential) distribution or a mixture of 
arbitrary distributions, it can maintain high synchronization accuracy with fewer message 
exchanges. However, GMKPF only tracks the clock offset and dose not estimate the clock 
skew, which will greatly reduce the synchronization period and increase communication 
overhead. Moreover, when GMKPF uses EM algorithm to approximate posterior 
distribution function with GMM, it needs to determine the components number of GMM 
beforehand, which is prone to under-fitting or over-fitting, and the estimation accuracy of 
parameters depends on the initial values setting. If set improperly, it is likely to converge to 
the local maximum. On the other hand, the unreliability of sensor network links may lead to 
the loss of time messages during transmission, while GMKPF does not discuss the 
algorithm performance in this case. 
Therefore, we propose a Composite Particle Filter Approach based on Variational 
Bayesian (VB-CPF) to realize the joint estimation of clock offset and skew in this paper. 
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VB-CPF replaces the EM algorithm with Variational Bayesian EM (VB-EM) algorithm, 
which is used to estimate the GMM parameters of posterior distribution function. VB-EM 
algorithm is a deterministic approximate reasoning algorithm. It can determine the 
number of mixture components while determining the estimated values of mixture model 
parameters. Moreover, in order to solve the problem of time message loss caused by 
unreliable links, a robust time synchronization method (RTS) is proposed. RTS 
establishes an autoregressive model for clock skew, and utilizes the estimated clock skew 
obtained from each iteration of VB-CPF to estimate the autoregressive model parameters 
by recursive least squares method. If the time message is not received, the node can 
estimate the current clock parameters through the established clock skew autoregressive 
model, thus improving the robustness of the time synchronization method. 

2 System model 
2.1 Discrete clock model 
The clock model of sensor node A is shown in Formula (1). 

( ) ( )A A Ac t t tβ θ= +                                                               (1) 

where Aβ  and Aθ  represents the clock rate and initial clock phase, respectively. Since 

Aβ  is time-varying, the above model can be expressed as an integral form, as shown in 
formula (2). 

0

( ) ( )
t

A A Ac t dβ τ τ θ= +∫                  (2) 

Time synchronization between nodes is usually achieved by the exchange of time stamps, 
which can be regarded as discrete samples of continuous time. Assuming that the 
sampling period is τ

0
, the discrete clock model of node A is 
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where ( )Av n  denotes the cumulative clock offset, ( )A kβ  denotes the instantaneous clock 
skew at the k-th sampling. According to the analysis of Luo [Luo (2014)], the time-
varying clock skew ( )A nβ  can be described by the Gauss-Markov model, that is 

( ) ( 1) ( )A A An n u nβ β= − +                 (4) 

where 2( ) (0, )
AA uu n σ  . 

On the other hand, according to the definition of cumulative clock offset in formula (3), 
the recursive form of ( )Av n  can be written as 
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0( ) ( 1) ( ( ) 1)A A Av n v n nβ τ= − + −                                              (5) 

Substituting formula (4) into formula (5), and obtain 

0 0 0( ) ( 1) ( 1) ( )A A A Av n v n n u nτ β τ τ= − + ⋅ − + ⋅ −                                (6) 

Let ( ) [ ( ) ( )]T
A A An n v nβ=x , according to formulas (4) and (6), the clock parameter 

evolution model of node A can be written in the following matrix form. 



0 0 0

1 0 ( ) 0
( ) ( 1)

1 ( )
A

A A
A

u n
n n

u nτ τ τ
     

= − + +     −     
n YF w

x x
 

                   (7) 

2.2 Local timestamp measurement model 
In order to establish the clock relationship between two neighbor nodes, a two-way time-
stamps exchange mechanism is adopted in this paper. As shown in Fig. 1, in the thi  round 
of message exchange, R sends a synchronization message to A at 1

it , embedding its clock 
reading 1( )R ic t . Upon reception of this message at 2

it , A records its time 2( )A ic t , and 
replies R at 3

it . The replied message contains both time-stamps 2( )A ic t  and 3( )A ic t . Then 
R records the reception time of A’s replay as 4( )R ic t . Note that 1( )R ic t  and 4( )R ic t  are 
clock readings recorded by R, while 2( )A ic t  and 3( )A ic t  are recorded by A. After N 
rounds of message exchange, the node R obtains a set of time stamps 

1 2 3 4
1{ ( ), ( ), ( ), ( )}N

R i A i A i R i ic t c t c t c t = . The above procedure can be modeled as 
2 1( ) ( ( ) )A i A R i i Ac t c t d Xβ θ= + + +                                                       (8) 
3 4( ) ( ( ) )A i A R i i Ac t c t d Yβ θ= − − +                                                      (9) 

where d  represents the deterministic delay in message transmission between two nodes, 
iX  and iY  represent the nondeterministic delays. 
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Figure 1: Two-way time-stamps exchange between two nodes R and A 

For the time to complete a round of message exchange is very short, we assume that the 
clock parameters remain unchanged during a round of message exchange. Firstly, the 
clock model (2) is represented by reference clock and accumulative clock, as follows: 
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To simplify symbolic representation ， let 1
1, ( )t R iT c t , 2

2, ( )t A iT c t , 
3

3, ( )t A iT c t , 4
4, ( )t R iT c t , then formulas (8) and (9) can be simplified as 

2, 1,( )t A t tT v t T d X− = + +                                                 (11) 

3, 4,( )t A t tT v t T d Y− = − −                                                    (12) 

Add formula (11) and formula (12), and let 2, 3, 1, 4,( )A t t t tz t T T T T+ − − , t t tV X Y− , then, 
a discrete local time measurement model is obtained by sampling, as shown in formula (13). 

( ) ( )T
A A nz n n V= +H x                                                         (13) 

where ( )Az n  is the observed value, [0 2]T=H  is the observation vector, nV  is the 
observation noise. It is easy to observe that formulas (7) and (13) transform the 
estimation of clock parameters into Gauss-Markov estimation with unknown states. 

3 VB-CPF 
3.1 KF based time update and proposed distribution generation 
Firstly, it should be noted that all probability density function can be approximated by the 
GMM shown in formula (14) [Anderson and Moore (1979)]. 

( ) ( ) ( )

1
( ) ( ; , )

G
g g g

g
p x xϕ µ

=

≈ Σ∑                                              (14) 

where G  is the number of mixture components in GMM, ( )gϕ  represents the mixture 

weights and satisfies ( ) ( )

1
0, 1

G
g g

g
ϕ ϕ

=

≥ =∑ , ( ) ( )( ; , )g gx µ Σ  denotes a normal distribution 

with ( )gµ  mean and variance ( )gΣ . 

To simplify symbolic representation，let ( )A nnx x , ( )A nz n z , ( )A nu n u . Suppose 
that at time 1n − , the posterior probability density function 1 1: 1( | )n np z− −x  and the density 
function of observed noise 1nV −  are approximated by the following GMMs. 
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It can be known from formula (4), nu  is a Gaussian noise with zero mean and variance 

2
uσ , so the state noise in formula (7) obey 

0

( , )n
n n

n

u
uτ

 
=  
 

w 0 Q  , then 

( ) ( ; , )n n np =w w 0 Q                                                        (17) 

At time n , the distribution of the current state can be predicted based on previous 
observations and state information, that is 

1: 1

1 1 1: 1 1
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                (18) 

Theorem 1 [Anderson and Moore (1979)] If the state equation of the system is the form 
of 1 1 1( ) ( )n n n n n nx f x g x w− − −= + , and 1 1: 1( | )n np z− −x  can be expressed in form of Gauss sum 
as shown in formula (15), then the one-step predictive density function is uniformly close 
to Gauss sum 

( ) ( ) ( )

1
( ; , )

G
g g g

n n n n
g
ϕ µ

=

Σ∑ x 

   

According to Theorem 1, 1: 1ˆ ( | )n np z −x  in formula (18) can be written as follows: 

( ) ( ) ( )
1: 1

1

ˆ ( | ) ( ; , )
G

g g g
n n n n n n

g
p z ϕ µ−

=

= Σ∑x x 

                                         (19) 

The mixture model parameters can be obtained from a set of parallel KF. 
( ) ( )

1
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1
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g g
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=
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                                                    (20) 

Then, according to the latest observation value nz  obtained from the system observation 
Eq. (13), combined with the density functions 1 1: 1( | )n np z− −x  and ( )np V , the 
measurement update of the posterior density function 1:ˆ ( | )n np zx  is completed by KF. 
The measurement update process of 1:ˆ ( | )n np zx  is shown in formula (21). 
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1:
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where 1
1: 1ˆ( ( | ) ( | ) )n n n n n nB p z p z d −

−= ∫ x x x . 

Theorem 2 [Anderson and Moore (1979)] If the observation equation of the system is the 
form of ( )n n n nz h x V= + , and 1: 1( | )n np z −x  can be expressed in form of Gauss sum as 
shown in formula (19), then the updated posterior density function 1:ˆ ( | )n np zx  is 

uniformly close to Gauss sum 
'
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where 

'

'

'

( ) ( ) ( ) 1

( ) ( ) ( )

( ) ( ) ( )

( )

( )

g T g T j
n n n n

g g g
n n n n n

g g g
n n n n

G GJ
K H H H R

K z H

K H

µ µ µ

−

=

= Σ Σ +

= + −

Σ = Σ − Σ

 

 

 

                                   (23) 

Then update its weight 
'
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1 1
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n n n
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ϕ γ λ
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
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where ( ) ( ) ( ) ( )( , )j g g T j
n n n n nz H H H Rλ µ− Σ +


  , ' ( 1)g g j G= + − . The posterior 

probability density 1:ˆ ( | )n np zx  will be used as the proposed distribution function of the 
measurement update step, which is based on Importance Sampling (IS). 
It is easy to find that the number of mixture components in GMM of posterior probability 
density 1:ˆ ( | )n np zx  increases from G  to 'G , and with the increase of iterations, the 
number of mixture components increases exponentially, which will greatly increase the 
computational complexity. So, the number of mixture components must be reduced by 
adopting corresponding schemes. 
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3.2 Measurement update based on VB-EM algorithm 
IS is a Monte Carlo method, which represents distribution ( )p x  by empirical 
approximation based on weighted particle (sample) set, that is, 

( ) ( )
1

ˆ( ) ( ) ( )N l l
l

p x p x xζ δ χ
=

≈ = −∑ , where δ ( )  is a Dirac delta function and the weighted 

particle set ( ) ( ){ , ; 1, , }l l l Mζ χ =   is obtained from the proposed distribution ( )q x . The 
first step in implementing IS is to sample particles from the proposed distribution 
function 1:ˆ( ) ( | )n n nq p z=x x  (formula (22)), and then calculate their corresponding 
importance weights. 

( ) ( )
( ) 1: 1

( )
1:

ˆ( | ) ( | )
ˆ ( | )

l l
l n n n n

n l
n n

p z p z
p z
χ χ

ζ
χ

−=                                            (25) 

Normalized importance weights 
( )

( )

( )

1

l
l n

n M
m

n
m

ζ
ζ

ζ
=

=

∑





                                                     (26) 

Then the posterior probability density 1:( | )n np zx  can be approximated as 

( ) ( )
1:

1
( | ) ( )

M
l l

n n n n n
l

p z ζ δ χ
=

≈ −∑x x                                       (27) 

However, after many iterations, the weights of most particles are negligible, and only a 
few particles have large weights, thus resulting in the phenomenon of particle weight 
degradation. Although the introduction of resampling step alleviates the problem of 
particle degradation to a certain extent [Gordon, Salmond and Smith (1993)], excessive 
resampling will lead to particle depletion. Therefore, VB-EM algorithm is used to replace 
the resampling step to avoid particle depletion. Here, the GMM expression for posterior 
probability density 1:( | )n np zx  is 

( ) ( ) ( )
1:

1
( | ) ( ; , )

G
g g g

n n n n n n
g

p z ϕ µ
=

= Σ∑x x                                       (28) 

where G  denotes the number of mixture components in GMMs, ( )g
nϕ  denotes the weight 

of each mixture component, ( ) ( )( ; , )g g
n n nµ Σx  is a normal distribution with ( )g

nµ  mean 
and covariance matrix ( )g

nΣ . The Gaussian mixture is specified by the parameter set 
(1) ( 1) (1) ( ) (1) ( ){ , , , , , , , , }G G G
n n n n n nϕ ϕ µ µ−Φ = Σ Σ   . In order to facilitate the calculation of VB-

EM algorithm, the precision matrix ( )g
nΛ  is used to replace the covariance matrix ( )g

nΣ , in 
which the precision matrix is the inverse of the covariance matrix. 
According to the above description, particle set (1) (2) ( ){ , , , }M

n n n nχ χ χ=   are sampled 
from the proposed distribution. Hidden variables (1) (2) ( ){ , , , }M

n n n n=     are introduced, 
where ( )l

n  indicates which Gaussian distribution is the particle ( )l
nχ  coming from and 
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satisfies ( ) {0,1}l
n ∈ , ( ) 1l

nl
=∑  . Under given mixture weight (1) (2) ( ){ , , , }G

n n n nϕ ϕ ϕ ϕ=  , 
the conditional probability density of the hidden variables is [Ishikawa, Takeuchi and 
Nakano (2010)] 

( )

1 1

( | ) ( )
lg
n

M G
g

n n n
l g

p ϕ ϕ
= =

=∏∏                                                  (29) 

Under the condition of given hidden variables and model parameters, the conditional 
probability density of particle set n  is [Bishop (2016)] 

( ) ( ) 1

1 1

( | , , ) ( ; , ( ) )
lg
n

M G
g g

n n n n n n n
l g

p µ µ −

= =

Λ = Λ∏∏ x                                  (30) 

where (1) (2) ( ){ , , , }G
n n n nµ µ µ µ=  , (1) (2) ( ){ , , , }G

n n n nΛ = Λ Λ Λ .  lg
n  indicates which of the 

G  Gaussian distributions the particle ( )l
nχ  is from, and 

1
1, 1,2, ,

G
lg
n

g
l M

=

= =∑  . 

Since the Bayesian estimation is used to solve the GMM parameters, all parameters in the 
model are considered as random variables. Assume that the prior distribution of the 
mixture weight nϕ  obeys the Dirichlet distribution [Gorur and Rasmussen (2010)]. 

0 1( )
0 0

1

( ) ( | ) ( ) ( )
G

g
n n n

g

p Dir C ϑϕ ϕ ϑ ϑ ϕ −

=

= = ∏                                     (31) 

The prior distribution of mean nµ  and precision matrix nΛ  obeys the joint Gaussian-
Wishart distribution [Bishop (2016)]. 

( ) ( ) 1 ( )
0 0 0 0

1

( , ) ( | ) ( ) ( ; ,( ) ) ( ; , )
G

g g g
n n n n n n n n

g

p p p m Wµ µ µ −

=

Λ = Λ Λ = Λ Λ ℜ ℘∏                   (32) 

where 0ϑ , 0m , 0 , 0ℜ , 0℘  are all parameters to be sought, and subscript 0 indicates the 
initialization value. The goal of solving the GMM parameters using the Bayesian method is 
to calculate the posterior distribution ( , , , | )n n n n np ϕ µ Λ   based on the a priori 
information described above, but it is difficult to directly calculate the posterior distribution 
with high dimension. Therefore, VB-EM introduces approximate distribution 

( , , , )n n n nq ϕ µ Λ , and gradually approximates to the real posterior distribution through 
continuous iterative updating. First, the marginal likelihood function ln ( )np   is analyzed. 
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p p d d d d

pq d d d d
q

pq d d d d
q

pq

ϕ µ ϕ µ

ϕ µ
ϕ µ ϕ µ

ϕ µ
ϕ µ

ϕ µ ϕ µ
ϕ µ

ϕ µ
ϕ µ

= Λ Λ

Λ
= Λ Λ

Λ
Λ

= Λ Λ
Λ

+ − Λ

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫

   

  

  

 , | ) ]
( , , , )

( ) ( || ) ( )

n n
n n n n

n n n n

d d d d
q

L q KL q p L q

ϕ µ
ϕ µ

Λ
Λ

Λ
= + ≥

∫ ∫ ∫ ∫
 



           (33) 

where 
( , , , , ) ( | , , ) ( | ) ( ) ( | ) ( )n n n n n n n n n n n n n n np p p p p pϕ µ µ ϕ ϕ µΛ = Λ Λ Λ                         (34) 

( , , , , )( ) ( , , , ) ln
( , , , )

n n n n n
n n n n n n n n

n n n n

pL q q d d d d
q

ϕ µ
ϕ µ ϕ µ

ϕ µ
Λ

= Λ Λ
Λ∫ ∫ ∫ ∫

  


                            (35) 

( , , , | )( || ) ( , , , ) ln
( , , , )
n n n n n

n n n n n n n n
n n n n

pKL q p q d d d d
q

ϕ µ
ϕ µ ϕ µ

ϕ µ
Λ

= − Λ Λ
Λ∫ ∫ ∫ ∫

  


             (36) 

( || )KL q p  is the KL (Kullback-Leibler) divergence of the approximate distribution and 
the true posterior distribution, and ( || ) 0KL q p ≥ , so ( )L q  is a lower bound of ln ( )np  , 
also called the lower bound of variation. When the approximate distribution 

( , , , )n n n nq ϕ µ Λ  reaches to the real posterior distribution ( , , , | )n n n n np ϕ µ Λ  , that is 
( , , , ) ( , , , | )n n n n n n n n nq pϕ µ ϕ µΛ = Λ   , then ( || ) 0KL q p = . Since ln ( )np   is fixed by 

the distribution ( , , , )n n n nq ϕ µ Λ , if you want to minimize ( || )KL q p , you only need to 
maximize ( )L q . 

The distribution ( , , , )n n n nq ϕ µ Λ  can be decomposed into the following form [Bishop 
(2016)] 

( , , , ) ( ) ( , , )n n n n n n n nq q qϕ µ ϕ µΛ = Λ                                                                                (37) 
VB-EM algorithm is a generalized EM algorithm, which is also an iterative algorithm. 
There are also two iterative steps, namely VB-E step and VB-M step. 
VB-E: Bring the decomposition form of formula (37) into formula (35), and obtain 

( , , , | )( ) ( ) ( , , ) ln
( ) ( , , )

n n n n n
n n n n n n n n

n n n n

pL q q q d d d d
q q

µ ϕ
ϕ µ ϕ µ

ϕ µ
Λ

= Λ Λ
Λ∫ ∫ ∫

  


                          (38) 

Then find the partial derivative of ( )L p  in respect to ( )nq  , and let it equal to 0, after 
calculation 

1 ,

1 1
ln ( ) ln

M G
t lg lg t

n n n
l g

q constϕ+

= =

= +∑∑                                                                                  (39) 

where const  is a constant independent of variables, 
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, ( ), ( ) ( ), ( ), ( ) ( ),
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( ), ( ),

1

( ) ( ), ( ), ( ) ( ),
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( ), ( ),

1 1E(ln | |) ln 2 E ( ) ( )
2 2 2

1E(ln | |) ( ) ln 2 ln | |
2

E ( ) ( )

(

g g
n n

g g
n n

lg t g t l g t T g t l g t
n n n n n n n

g tD
g t g t

n
i

l g t T g t l g t
n n n n n

g t g t

D

i D

D

µ

µ

ϕ π µ µ

ψ

µ µ

Λ

=

Λ

= Λ − − − Λ −

℘ + −
Λ = + + ℜ

− Λ −

= +℘

∑



 

 

 ( ) ( ), ( ), ( ) ( ),) ( )l g t T g t l g t
n nm m− ℜ −

             (40) 

D  denotes the dimension of the unknown state, ( )ψ   is the digamma function. Take 
exponent on both sides of formula (39), then normalized 

1 ,

1 1

( ) ( )
lg
n

M G
t lg t

n n
l g

q r+

= =

=∏∏                                                                                                    (41) 

where 
,

,
,

lg t
lg t n

n lg t
ng

r ϕ
ϕ

=
∑

. Observing formulas (29) and (41), we find that they have similar 

structures, the only difference is that the parameters are different. Therefore, if ( )g
nϕ  is a 

prior mixing coefficient, then ,lg t
nr  is a posterior mixing coefficient. Then define three 

statistics separately. 

( ), 1 ( ) ,

1

M
g t l lg t

n n n
l

N rζ+

=

=∑                                                                                                           (42) 

( ), 1 ( ) , ( )
( ), 1

1

1 M
g t l lg t l

n n n ng t
ln

r
N

ζ+
+

=

= ∑                                                                                        (43) 

( ), 1 ( ) , ( ) ( ), 1 ( ) ( ), 1
( ), 1

1

1 ( )( )
M

g t l lg t l g t l g t T
n n n n n n ng t

ln

S r
N

ζ+ + +
+

=

= − −∑                                              (44) 

VB-M: Calculate ( )
( , , )n n n

L q
q ϕ µ

∂
∂ Λ  according to formula (38), and let it equal to 0, 

after calculation 

1 ( ) ( )

1

( ) ( ) 1

1 1

ln ( , , ) ln ( ) ln ( , ) [ln ( | )]

[ ]ln ( | , ( ) )

G
t g g

n n n n n n n n
g

G M
lg g g
n n n n

g l

q p p E p

E const

ϕ µ ϕ µ ϕ

µ

+

=

−

= =

Λ = + Λ +

+ Λ +

∑

∑∑ x



 
                                  (45) 

where [ ]lg lg
n nE r= . It is easy to find that in formula (45), items related to nϕ  and items 

related to nµ  and nΛ  are independent. First, deal with items related to nϕ . 

1 ( ), , ( ),
0

1 1 1
ln ( ) ( 1) ln ln

G G M
t g t lg t g t

n n n n
g g l

q rϕ ϑ ϕ ϕ+

= = =

= − +∑ ∑∑                                                            (46) 
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Similarly, take exponent on both sides of formula (46), and obtain 
1 1( ) ( | )t t

n nq Dirϕ ϕ ϑ+ +=                                                                                                      (47) 

where 1 (1), 1 (2), 1 ( ), 1{ , , , }t t t G tϑ ϑ ϑ ϑ+ + + +=   are posterior parameters, and have 
( ), 1 ( ), 1

0
g t g t

nNϑ ϑ+ += +                                                                                                           (48) 

For 1( , )t
n nq µ+ Λ , we know that it obeys the Gaussian-Wishart distribution, that is 

1 ( ) ( ), 1 ( ), 1 ( ) 1 ( ) ( ), 1 ( ), 1

1

( , ) ( ; ,( ) ) ( ; , )
G

t g g t g t g g g t g t
n n n n n

g

q m Wµ µ+ + + − + +

=

Λ = Λ Λ ℜ ℘∏                        (49) 

where 
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( ), 1 ( ), 1
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n n n ng t
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N

NN S m m
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+ +

+ + +
+

+ +

+
+ − − + + + +

+

= +

= +

℘ =℘ +

ℜ = ℜ + + − −
+

 











 

           (50) 

Therefore, the weight, mean and variances of the thg  Gaussian mixture component are 
( ), 1g t
nN + , ( ), 1g tm +  and ( ), 1( )g t

nE +Λ  respectively, where ( ), 1( )g t
nE +Λ  can be obtained from the 

properties of Wishart distribution. 
VB-E and VB-M are executed alternately and iteratively. As the number of iterations 
increases, ( )L q  gradually increases. The iteration is performed until 1| ( ) ( ) |t tL q L q ε+ − < , 
where ε  is the predetermined error limit. 
Finally, the conditional mean 1:[ | ]n n nE z=x x  and the corresponding error covariance 

[( )( ) ]T
n n n n nE∑ = − −x x x x


   can be obtained in two ways. The first one is obtained 
directly from the weighted sum of the particle set of formula (27) before the VB-EM 
algorithm is executed. 

( ) ( )

1

( ) ( ) ( )

1
( )( )

M
l l

n n n
l

M
l l l T

n n n n n n
l

ζ χ

ζ χ χ

=

=

=

∑ = − −

∑

∑

x

x x





 

                                                                                   (51) 

The second is calculated according to the formula (28) by using the weighted particle set 
fitted by GMM. 
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( ) ( )

1

( ) ( ) ( ) ( )

1
[ ( )( ) ]

G
g g

n n n
g

G
g g g g T

n n n n n n n
g

ϕ µ

ϕ µ µ

=

=

=

∑ = ∑ + − −

∑

∑

x

x x





 

                                                                     (52) 

The estimation performance of formula (51) is better than that of formula (52). However, 
because of M G , the first kind of computation complexity is higher than the second one. 
The pseudo code of VB-CPF is as follows. 

Composite Particle Filter Approach based on Variational Bayesian (VB-CPF) 
Initialization 
1) The probability density function expression of the initial state 0x  is  

( ) ( ) ( )
0 0 0 0 0

1
( ) ( ; , )

G
g g g

g
p ϕ µ

=

= Σ∑x x  

2) Assume that at 1 ( 1)n n− > , the forms of the posterior density function, process noise 
and observed noise density function are as follows 
 posterior density function 

( ) ( ) ( )
1 1: 1 1 1 1 1

1
( | ) ( ; , )

G
g g g

n n n n n n
g

p z ϕ µ− − − − − −
=

= Σ∑x x  

 process noise density function 
( ) ( ; , )n n np =w w 0 Q  

 observed noise density function 
( ) ( ) ( )

1
( ) ( ; , )

n

J
j j j

n n n V n
j

p V V Rγ µ
=

=∑   

Prediction process 
1) time update 
A set of parallel KF is used to calculate the one-step predictive density function 

1: 1ˆ ( | )n np z −x , and the update formula of the parameter is shown in (20). 
2) measurement update (the generation of proposed distribution) 
A set of parallel KF is used to calculate the posterior density function 1:ˆ ( | )n np zx , and the 
update formulas of the parameter are shown in (23) and (24). 
Measurement update process 
1) Sampling M  particles ( ){ ; 1, , }l

n l Mχ =   from the proposed distribution function 

1:ˆ( ) ( | )n n nq p z=x x  

2) Initialization, assign initial values to 0ϑ , 0m , 0 , 0ℜ , 0℘  and error limits ε  
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3) Calculate ,lg t
nr  according to formula (40), then calculate the formulas (42)-(44) 

4) Update the parameters in formula (50) with the calculation result in step 3), and then 
calculate 1( )tL q+  

5) If 1| ( ) ( ) |t tL q L q ε+ − ≥ ,  go back to step 3). Otherwise, stop iterating and get the 

optimal parameter estimation ( ), 1 ( ), 1 ( ), 1 ( ), 1 ( ), 1, , , ,g t g t g t g t g tmϑ + + + + +℘ ℜ , where 
1,2, ,g G=   

State estimation 
Estimate system state and variance using formulas (51) and (52). 

4 Robust time synchronization method (RTS) 
In practical sensor networks, the links between nodes are unreliable and susceptible to 
external interference, so the packets containing timestamps may be lost or collided during 
transmission. In order to solve the problem of data packet loss, the traditional wireless 
network can solve it by simply retransmitting. However, data packet retransmitting is 
infeasible for WSNs, because the energy cost of data retransmitting is too large, and the 
uncertainty delay in the process of data packet retransmitting will also affect the accuracy 
of time synchronization. So how to ensure the estimation accuracy of clock parameters in 
the case of data packet loss is the problem to be solved in this section. 
According to Section 2.1, ( )A nβ  varies with time in the actual environment, and for each 
sampling, it is not completely independent [Kim (2014); Kim, Ma and Hamilton (2012)]. 
Moreover, due to the insufficient energy of nodes and the change of temperature, it may 
change greatly. In this section, the time-varying clock skew is modeled as an Auto-
Regressive (AR) process [Tibshirani (2011)], and then the parameters of AR model are 
estimated by recursive least square method based on the estimated clock skew obtained 
by VB-CPF. When encountering data packet loss, the clock parameters of the next time 
can be estimated according to the AR model, which ensures the robustness of VB-CPF 
method in unreliable link environment. The AR model of clock skew is as follows. 

1
( ) ( ) ( )

P

A l A
l

n n l nβ π β η
=

= − +∑                                                                                           (53) 

where P  is the order of AR model, ( 1,2,..., )l l Pπ =  is AR coefficient, ( )nη  is Gauss noise 
with zero mean and variance 2

ησ . This section chooses 4P = , i.e., 
4

1
( ) ( ) ( )A l A

l
n n l nβ π β η

=

= − +∑ , because the fourth-order autoregressive model can simulate 

the time-varying characteristics of clock skew very well, and its computational complexity 
is not very high [Kim (2014)]. Next, the process of solving AR coefficients is described. 
Assuming that the first five transmitted time messages are received correctly, according 
to the above estimation method, we can obtain five estimation values of clock skew, i.e., 

1 2 3 4 5( , , , , )β β β β β , where [1]n nβ = x , [1]nx  represents the first element of column vector 
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nx . Then  

[ ]



1

1

1

2
5 1 4 2 3 3 2 4 1 4 3 2 1

3

4

(5) , , , (5)

π

π
π

β π β π β π β π β η β β β β η
π
π

 
 
 = + + + + = +
 
 
 

F


                               (54) 

According to the recursive least squares estimation method, the mean square error matrix 
of 1π  is calculated first.  

T 1
1 1 12

1 ( )
ησ

−=M F F                                                                                                               (55) 

Then we can obtain the estimated value of 1π  
2 T

1 5 1 1ˆ ηπ β σ= M F                                                                                                                 (56) 

When 6β  is obtained, the AR coefficients are updated in the following recursive form 
according to the 1M  and 1π̂  calculated for the first time. 

Step 1: calculate the mean square error matrix of 2π , 1 2 T 1
2 1 2 2( )ησ

− −= +M M F F . 

Step 2: update AR coefficient, 2 1 2 6 2 1ˆ ˆ ˆ( )π π β π= + −K F , where 2 T
2 2 2ησ=K M F . 

Each time a new clock skew estimated value is obtained, AR coefficients are updated 
according to the above process. With the number of updates increase, AR model fits the 
estimated value of clock skew better. When the time message is lost or destroyed during 
transmission, the node can estimate the current clock skew according to the AR model. 
The overall method block diagram of RTS is shown in Fig. 2. 

VB-CPF

AR model of
 clock skew

Recursive Least 
Squares Estimation

Timestamp information

Estimated values of 
clock parameters

Time message 
is lost

RTS

 
Figure 2: The overall method block diagram of RTS 
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5 Simulation experiment 
To validate the performances of the proposed algorithm, simulation results are presented 
and compared to GMKPF. Since the VB-CPF method proposed in this paper is an 
improvement to GMKPF, in order to simplify the description of the simulation results, 
this section only evaluates the performance of the VB-CPF method under the asymmetric 
Gaussian delay model, in which the variance of the uplink nondeterministic Gaussian 
delay is 1 0.5σ = , and the downlink is 2 1σ = . And the other parameters used in 
simulations are as follows. Initial clock offsets, clock offsets and deterministic delays are 
uniformly drawn from ranges 0 0[ 5 5 ]τ τ− , [0.9 1.1]  and 0 0[0.01 0.02 ]τ τ , respectively, 
where 0 0.1sτ = . The variance of Au  in formula (4) is 2 410

Auσ
−= . The number of the 

mixture components in GMM is 3. The performance of the algorithm is evaluated using 
the mean square error of the clock parameter estimated value. 

2
, ,

1

1MSE( ) ( )
S

n n s n s
sS =

= −∑x x x                                                                                           (57) 

where S  is the number of times the simulation experiment is executed, let 100S = . The 
smaller the value of MSE, the higher the estimation accuracy of the clock parameters. 
Firstly, the effects of time message exchange times N  (number of observations) and 
particle number M  on the performance of VB-CPF are analyzed. As shown in Fig. 3 and 
Fig. 4, as the number of time message exchanges increases, the MSE of the clock 
parameter estimate gradually decreases, and when 20N > , the magnitude of the MSE 
decrease become smaller. It can also be seen that when the number of particles is large 
( 400M ≥ ), the value of MSE is smaller. Obviously, through 5 times message exchanges, 
the estimated value of clock parameters obtained by sampling 500 particles per time is 
less than that obtained by 25 times message exchanges and sampling 100 particles per 
time. Therefore, the number of message exchanges can be reduced by increasing the 
number of particles sampled, thus reducing the communication overhead. 
As shown in Fig. 5 and Fig. 6, when the number of time message exchanges is fixed, the 
MSE of the estimated clock parameters decreases with the increase of the number of 
particles. When the number of particles is greater than 600, the MSE of the cumulative 
clock offset estimates decreases slightly. When the number of particles is greater than 
500, the MSE of the clock skew estimates tends to be stable. Therefore, considering the 
synchronization accuracy and computational complexity, in the following comparative 
analysis of the performance of VB-CPF and GMKPF, we select the number of particles 

= 500M . 
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Figure 3: The relationship the MSE of the cumulative clock offset estimated value and 
the number of time message exchanged 

 

Figure 4: The relationship the MSE of the clock skew estimated value and the number of 
time message exchanged 
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Figure 5: The relationship the MSE of the cumulative clock offset estimated value and 
the number of particles 

 

Figure 6: The relationship the MSE of the clock skew estimated value and the number of 
particles 

 

Figure 7: The MSE of the cumulative clock offset estimated value 
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Figure 8: The MSE of the clock skew estimated value 

The time synchronization method proposed in Serpedin et al. [Serpedin, Kim and Lee 
(2009); Kim, Lee, Serpedin et al.  (2011)] uses GMKPF algorithm to estimate the clock 
offset, while the simulation results shown in Fig. 7 and Fig. 8 are the joint estimated 
value of cumulative clock offset and clock skew, which is obtained using the GMKPF 
algorithm. As can be seen from the figure, the MSE of the clock parameters estimated 
value decreases gradually with the increase of the number of time message exchanges. 
Comparing the two hybrid filtering methods: VB-CPF and GMKPF, the performance of 
VB-CPF is better than that of GMKPF. This is because VB-CPF uses VB-EM algorithm 
for Gaussian mixture fitting of sampled particles. VB-EM algorithm can adaptively 
determine the number of mixture components, avoiding the problem of over-fitting and 
under-fitting caused by the EM algorithm to determine the number of mixture 
components in advance. 
Next, we evaluate the performance of VB-CPF and RTS in the case of time message lost. 
The simulation experiments consider two types of time message dropout: (1) continuous 
dropout, (2) random dropout. Fig. 9 shows the performance comparison of VB-CPF and 
RTS when time messages (observations) are lost five times in a row. Obviously, the 
performance of RTS is only 610−  difference from the estimation result without message 
dropout, which is better than that of VB-CPF. This is because, in each time of message 
loss, RTS estimates the cumulative clock offset and clock skew based on the pre-
established clock skew model, while VB-CPF cannot update the estimated clock 
parameters. However, as the number of message loss increases, the MSE of the clock 
parameter estimate by RTS gradually increases. This is because the autoregressive model 
established for the clock skew is a statistical prediction model that predicts future values 
based on past estimated clock skew values. Therefore, when the time message is lost for a 
long time, the performance of the RTS will not be guaranteed. 
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(a) (b) 

Figure 9: When time messages are lost continuously, the MSE of (a) the cumulative 
clock offset estimated value and (b) the clock skew estimated value 

When time messages are lost randomly, Fig. 10 shows the performance comparison of 
VB-CPF and RTS. When encountering message loss, the estimation performance of 
cumulative clock offset that used VB-CPF decrease 45.26 10−×  on average when 
compared with the case of no messages loss, while the estimation performance of RTS 
decrease 42.54 10−×  on average. Similarly, the estimation performance of clock skew that 
used VB-CPF decrease 61.62 10−×  on average when compared with the case of no 
messages loss, while the estimation performance of RTS only decrease 76.39 10−×  on 
average. Obviously, the MSE of the clock parameter estimation obtained by RTS is 
smaller than that of VB-CPF, so the robustness of RTS in dealing with time message loss 
is better than that of VB-CPF. According to the analysis of Fig. 9 and Fig. 10, RTS can 
show better performance regardless of whether the time messages are continuous dropout 
or random dropout. This shows that RTS can well solve the problem of synchronization 
accuracy decline caused by the time message dropout. 

  
(a) (b) 

Figure 10: When time messages are lost randomly, the MSE of (a) the cumulative clock 
offset estimated value and (b) the clock skew estimated value 
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6 Conclusions 
A composite particle filter approach based on variational Bayesian (VB-CPF) is proposed 
in this paper. VB-CPF replaces the EM algorithm used by GMKPF in estimating the 
parameters of Gaussian mixture model of the posterior distribution function of clock 
parameters with VB-EM algorithm, which makes it possible to determine the number of 
mixture components adaptively, thereby improving the estimation accuracy of clock 
parameters. At the same time, in order to solve the problem of time message dropout 
caused by unreliable link, a robust time synchronization method (RTS) is designed. RTS 
improves the robustness of VB-CPF in unstable network environment by establishing an 
autoregressive model for clock skew. The simulation results show that the estimation 
accuracy of clock parameters obtained by VB-CPF is better than that obtained by 
GMKPF, and RTS is robust to the continuous and random dropout of time messages. 
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