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Abstract: With the rapid development of artificial intelligence, face recognition systems 
are widely used in daily lives. Face recognition applications often need to process large 
amounts of image data. Maintaining the accuracy and low latency is critical to face 
recognition systems. After analyzing the two-tier architecture “client-cloud” face 
recognition systems, it is found that these systems have high latency and network 
congestion when massive recognition requirements are needed to be responded, and it is 
very inconvenient and inefficient to deploy and manage relevant applications on the edge 
of the network. This paper proposes a flexible and efficient edge computing accelerated 
architecture. By offloading part of the computing tasks to the edge server closer to the 
data source, edge computing resources are used for image preprocessing to reduce the 
number of images to be transmitted, thus reducing the network transmission overhead. 
Moreover, the application code does not need to be rewritten and can be easily migrated 
to the edge server. We evaluate our schemes based on the open source Azure IoT Edge, 
and the experimental results show that the three-tier architecture “Client-Edge-Cloud” 
face recognition system outperforms the state-of-art face recognition systems in reducing 
the average response time. 
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1 Introduction 
Face recognition has greatly attracted people’s attention because of its application in 
artificial intelligence for the improvement of people’s life. It can be used in many 
application scenarios, such as public security services, city tracing, photo classification. 
But the recognition accuracy of the face recognition system has certain requirements for 
computing resources such as GPU [Dixon, Powers, Song et al. (2015)]. With the 
limitation of the battery capacity and the computing resources, the mobile devices cannot 
perform face recognition well [Shi and Dustdar (2016)]. The increasing number of 
applications on the network has called for a more complex network structure to handle 
large amounts of data [Cai, Wang, Zheng et al. (2013); Tan, Liu, Wang et al. (2019); Tan, 
Liu, Xie et al. (2019)]. It requires a more secure network and system architecture for data 
dissemination and analysis [Liu, Kui and Wang (2004); Liu, Cai, Xu et al. (2015); Teng, 
Liu, Liu et al. (2019); Liu, Liu, Liu et al. (2019)]. Therefore, most of the face recognition 
systems are based on the clients-cloud model. With the widespread use of the face 
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recognition system in our daily life, more and more photos need to be sent to the cloud for 
processing, but part of those photos contain no human face and they are not necessary to be 
sent to the cloud server. If all the photos are sent to the cloud server, massive data transfer 
between the clients and the cloud will bring high latency and cause network congestion, 
which will lead to poor user experience. In addition, the security and privacy are also 
necessary to be concerned in the condition of transmitting large amounts of photos between 
the client and the cloud [Shi, Cao, Zhang et al. (2016); Shi and Dustdar (2016)]. 
To decrease the response time of the system, a client-edge-cloud architecture can be used 
for optimization, and the “edge” is a resource-rich edge device located nearby the client. 
An edge device is any computing and network resource between the data sources and 
cloud-based datacenters [Shi and Dustdar (2016)]. However, under the environment of 
IoT with miscellaneous edge devices, it is very difficult for users to deploy and update 
the applications on large amounts of edge devices, and the management of these devices 
is very inconvenient. Moreover, the difference of operating system between the edge 
devices requires users to develop different versions of the applications which will waste a 
lot of time. In order to increase the flexibility of the optimization of the face recognition 
system, a scheme that uses an edge device deployed with Azure IoT Edge as an edge 
server for optimization will be introduced in this paper. Azure IoT Edge is an open-
sourced edge computing system that can be deployed in various edge devices with 
different operating systems by using the container technology, and it provides an efficient 
and convenient way for users to deploy and manage their applications on the edge 
devices. Photos can be sent to the Azure IoT Edge for face detection first when the clients 
and the edge server are in the same local area network (LAN) with low latency. By 
filtering out those photos which do not contain human face in Azure IoT Edge, the size of 
the data needed to be sent to the cloud will be greatly reduced. 
The remaining parts of this paper are organized as follows. Section 2 introduces the 
background of edge computing and several edge computing systems. In Section 3 we will 
give an introduction of the Azure IoT Edge. Section 4 is the introduction of our 
optimization scheme for face recognition system based on Azure IoT Edge. And the 
evaluation will be performed in Section 5. At last, the conclusion is in Section 6. 

2 Related work 
With the face recognition system gradually being widely used and the rapid emerging of 
the edge computing, the related work on the optimization of the face recognition system 
is also ongoing. In Powers et al. [Powers, Alling, Osolinsky et al. (2015)], a mobile-
cloudlet-cloud architecture was proposed to perform real-time face recognition by using 
cloudlet to pre-process data and reduce communication time at the expense of 
computation. Wang et al. [Wang, Xiong, Pei et al. (2018)] introduces a method to protect 
the visual privacy by hiding the identity information of the face images. MOCHA [Soyata, 
Muraleedharan, Funai et al. (2012)] is a mobile-cloudlet-cloud architecture for real-time 
face recognition that performs task migration from mobile devices to the cloud and 
dynamically distributes computational load between the cloud and cloud servers. By 
utilizing the fog nodes to extract the features from raw images, Hu’s scheme in Hu et al. 
[Hu, Ning, Qiu et al. (2017)] reduces the amount of data sent to the cloud servers for face 
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detection and face recognition. And in Hu et al. [Hu, Ning, Qiu et al. (2017)], Hu also 
proposes a face identification framework based on the fog computing for saving the 
bandwidth and preserving the security and privacy at the same time.  
On the other hand, with the development of the edge computing technology [Shi, Cao, 
Zhang et al. (2016); Zhao, Liu and Cai et al. (2018)], more and more companies and open 
source communities have proposed their system and platform for edge computing to 
extend today’s cloud computing infrastructure. The MIST Lab at Wayne State University 
proposed a programming model for edge computing, Firework [Zhang, Zhang, Zhang et 
al. (2016)]. Apache Edgent, which was known as Apache Quarks previously, is an 
Apache Incubator project at present. It is an open source programming model and 
lightweight embedded streaming analytics runtime that can be used in some small devices 
on the edge. In 2017, Linux Foundation published EdgeX Foundry which is a 
standardized interoperability framework developed for industrial IOT edge computing, 
whose sweet spots are edge nodes such as gateways, hubs, routers, etc. Azure IoT Edge 
[Gremban (2018)] is edge computing framework published by Microsoft and aims to give 
a more intelligent solution at the edge of the network. All these systems provide solutions 
to the various problems that arise with IoT applications. In order to deal with the problem 
in the face recognition system, Azure IoT Edge will be selected for the optimization. In 
Section 3, an introduction about Azure IoT Edge and the reason for using it to optimize 
the face recognition system will be introduced. 

3 Open-source azure iot edge 
3.1 Introduction of azure iot edge 
Developing or migrating an application to amounts of edge devices will meet many 
challenges. Due to the variety of hardware devices, it is very difficult for users to develop 
a general version of the application. Moreover, in the complicated environment of the 
network edge, the applications deployed on the edge devices often require frequent 
modifications according to the actual needs on business. It is quite inconvenient for users 
to update the applications deployed in a large number of edge devices. When an error 
appears at the edge of the network, it is hard to find out in which edge device. 
To solve the problems in developing applications at the edge of network, Microsoft 
proposed Azure IoT Edge. Azure IoT Edge is an open-source system for users to deploy 
applications more efficient on the edge device. Users can rewrite the source code of 
Azure IoT Edge according to specific needs in various hardware facilities. And Azure 
IoT Edge use the container technology to run application on edge device which solves the 
difficulty of developing applications on various hardware devices. The deployment and 
management on massive edge devices in large scale can also be achieved by using the 
Azure IoT Hub which is a cloud service for IoT devices management provided by 
Microsoft Azure. In Azure IoT Hub, users also can monitor the running situation of the 
edge devices and accurately locate the device with the runtime error. By utilizing Azure 
IoT Edge on the edge devices, users can easily extend or migrate our application which is 
originally deployed on the cloud to the edge of network. For dealing with the problem 
that it is too difficult to manage a large amount of IoT devices, IoT Edge provides a 
convenient way for users to manage and deploy the multiple devices in Azure portal 
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which is a control interface for users to manage their IoT devices. 

3.2 Architecture of azure iot edge 
Azure IoT Edge has two main components: Edge Module, Edge Runtime [Gremban 
(2018)]. Its architecture is shown in Fig. 1. 

 

Figure 1: The architecture of Azure IoT Edge 

3.2.1 IoT edge module 
A service on the edge device usually consists of several edge modules, and each module 
is responsible for different functions. In order to easily manage the modules on the edge 
device, Azure IoT Edge use Moby which is an open framework created by Docker as its 
management system for containers. Every edge module (we can call it a module instance) 
running on the edge device can be seen as a container created by an edge module image. 
A module instance is equivalent to a docker container, and a module image is equivalent 
to a docker image. 
Each module instance is related to a module twin which is a JSON document that records 
the module’s metadata, configuration, and the status. When a module was deployed on 
the device, a module twin will be built on the IoT Hub, and it is used for synchronizing 
the state and configuration of the module from the IoT Hub. 
Azure IoT Edge allows users to deploy some complicated computation modules by using 
Azure services, and users also can create their own modules. If users want to create their 
own modules, firstly, they can use VSCode to create a new edge module, write their own 
code on it and create it as an image file, then push it to the Docker Hub or Azure 
Container Registry. Secondly, users can deploy their modules on one or several edge 
devices by using VSCode or IoT Cloud Interface, and the Edge Runtime will 
automatically start the modules as module instances in the edge device. 
The features of the edge modules are as follows: 1) Migrating the application which was 
originally running on the Cloud to the edge device can be easily achieved by building an 
edge module with the original code of the application. 2) Deploying the service on 
multiple devices becomes more efficient because an edge module can be quickly 
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deployed in different edge devices. 3) Each module runs as a single container, which 
effectively reduces the dependencies between modules. A module's running error does 
not affect the other modules. 

3.2.2 IoT edge runtime 
The IoT Edge Runtime is mainly responsible for installing and updating the workloads, 
keeping the security of Azure IoT Edge and reporting the situation of the module to the 
cloud. Moreover, it also monitors the communication inside Azure IoT Edge. 
Edge Runtime is mainly divided into two system modules, Edge Hub and Edge Agent. 
The Edge Hub manages the communication inside the IoT Edge. The Edge Agent 
manages the working situation of modules. They both run as an Edge Module on the edge 
device like the others. About Edge Runtime we can see Fig. 1. 
Edge Hub: The Edge Hub runs as a local proxy for IoT Hub on the edge and manages 
the connection between devices and the Cloud Center. Each device who wants to connect 
need Edge hub to forward authentication requests to IoT Hub on the cloud. Meanwhile, 
Edge Hub is responsible for the communication between IoT devices and Edge Modules, 
and the communication between Edge Modules within the device. The data from a 
module or an IoT device will be output to the Edge Hub as a message queue with a 
unique name defined by developers. And the other modules who want to get data can 
register an input with a unique name too. And then the developers need to declare the 
routes about the data from which output queue to which input queue by using their 
unique name. By using the routes declared in the deployment manifest, the data from a 
module or an IoT device can also be output to the IoT Hub on the cloud. Edge Hub will 
control the transmission of messages according to the routes. We can learn from Fig. 1 
how the Edge Hub monitors the communication inside IoT Edge. 
Edge Agent: The Edge Agent is mainly responsible for the management of the modules 
in the device. It needs to instantiate the other modules, keep them running, and feed back 
the status of the modules to the IoT Hub. After the edge device is started, Edge Agent 
will also be started by the Edge security manager and get its module twin from IoT Hub 
and inspect the deployment manifest. Deployment manifest is a JSON document, it tells 
the Edge Agent which modules need to be started, which image to use to instantiate the 
module instance, and some advanced operations required for instantiation. After starting 
all the modules, Edge Agent also need to keep them running, monitor the runtime status 
about each module and report the status to the IoT Hub. When the modules have the 
runtime error, Edge Agent need to restart the module according to the restart policy 
declared in the deployment manifest. 

4 Design and implementation 
4.1 Architecture overview 
As for the face recognition system, we use ageitgey/face_recognition which is a powerful, 
simple and easy-to-use face recognition open source project. It is based on the dlib and the 
model has an accuracy of 99.38% tested on the Labeled Faces in the Wild [King (2009); 
Learned-Miller, Huang, Roychowdhury et al. (2016)]. It provides APIs for face detection 
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and face recognition. The process of the face recognition in ageitgey/face_recognition is 
composed of Face Detection (FD) and Face Recognition (FR). FD will detect the human 
face in an image and return the information of the face locations if the image contains the 
human face. Then FR will extract the face features according to the face locations from the 
image and compare with the face features already known whom it belongs to. 
Baseline scheme: The baseline scheme is based on the client-cloud model. The 
ageitgey/face_recognition is used as a face recognition system running on the cloud 
server. When a client sends images to the cloud server for face recognition, firstly the 
images will be processed with the FD. If the image does not contain the human face, it 
will be dropped out and the cloud server will return the result to the device. The rest of 
the images containing human face will be sent to the FR. The face features extracted from 
the images will be compared with the face features stored in the cloud server, and the 
cloud server will feed back the name of the people recognized from the images. In the 
baseline scheme, FD and FR are all processed on the cloud server. 
Optimization scheme: In order to greatly reduce the data transmitted in the long network 
link between the client and the cloud server, the FD can be migrated from the cloud 
server to the edge server for filtering out those images which don’t contain the human 
face. Clients need to send all the images to the edge server first, and FD will be 
performed on all photos. Those images without human face will be dropped out by edge 
server, and the others will be sent to the cloud for further face recognition. Because the 
clients and the edge servers are mostly in the same LAN, the distance between the clients 
to the edge server is much shorter than that from the clients to the cloud, sending all the 
images to the edge server is much faster. By filtering out those useless images, the size of 
the images needed to be sent to the cloud will be greatly reduced, and the response time 
of the face recognition will also be significantly decreased. 

4.2 Design detail 
The introduction of the design detail and implementation of the optimization scheme are 
as shown in Fig. 2. 
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Figure 2: The architecture of the Optimization Scheme 

Clients: In this experiment, two scenarios using face recognition system are simulated. 
For the first one, in the smart-phone, the photo album usually needs to identify the people 
in the photos for photo classification. And in the second one, the photos collected by the 
city surveillance cameras will be analyzed by the face recognition system for finding the 
fugitives. In these two scenarios, the clients all need to send the photos to the face 
recognition system for recognizing the target people in the photos. Four Android-phone 
are used as clients to post the photos to the face recognition system, and the system will 
feed back the names of the target people found in the images to the clients. 
Edge server: An edge module is created with FD, and the Azure IoT Hub is used to 
deploy the module on an edge server which contains Azure IoT Edge already. The FD 
module will keep running and waiting for the images sent by the clients. FD module is 
composed of three parts which are Face Detector, Result Sender and Images Sender. 
Detector will detect the images receiving from the clients and drop out the useless images, 
and the detection result of the useless images will be delivered to the Result Sender. The 
rest of the images and the information of the face locations extracted from them will be 
delivered to the Images Sender, and Images Sender sends these images and their face 
locations information to the cloud server for further processing. All result received by the 
Result Sender will be sent back to the client. 
Cloud server: Cloud server stores a set of data of face features which are extracted from 
multiple people. In the baseline scheme, the images receiving from the clients will be 
processed with FD and FR, and the extracted face features will be compared with the 
already known face features. And the result of the FD and FR will be fed back to the 
clients directly. In optimization scheme, because the useless images have been filtered 
out and the face locations are delivered with the images together, it is only necessary to 
process these images with FR, and the result of FR will be returned to the Result sender 
in edge server. 

5 Performance evaluation 
5.1 Experiment platform and dataset 
To evaluate the performance of the optimization face recognition system, the 
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implementation of the Baseline Scheme and optimization Scheme will be performed in 
the experiment. The experiment platforms are as shown in Tab. 1. Four Android-based 
smartphones are used as the clients to send images for simulating multi-user usage 
scenarios. In the reality, the edge server is close to the data source, and mostly the clients 
and the edge server are on the same LAN which means that distance between the clients 
and the edge server is very short. The clients and the edge server used in the experiments 
are in the same LAN of our laboratory, therefore the transmission delay between the 
clients and the edge server is so small that can be out of consideration. 

Table 1: Platforms 
 Number Type 

Clients 4 
Android-based smartphones 
8x Qualcomm Kryo 260 CPU 
2.2 GHz 8 GB RAM 

Edge server 1 
Ubuntu 16.04 
Intel Core i5-8400, 2.80 GHz, 8 GB RAM 
(Azure IoT Edge) 

Cloud server 1 
Alibaba Cloud, Ubuntu 16.04 
Intel Xeon (Skylake) Platinum 8163, 4 vCPU, 16 
GB RAM, 2.50 GHz 

As for the experimental data set, two kinds of the images are collected, one kind of them 
is the images containing buildings and the streets except for the human face, another is 
the images contain a clear human face. We call these two kinds of images as NCF (do 
Not Contain human Face) and CF (Contain human Face). All of the images are collected 
from the Baidu Image, and the average size of each image is 120 KB. We divide these 
images into four types of image sets with 1400 images including the NCF and CF. For 
evaluating the performance of the two schemes when the image set has different ratio of 
NCF, each type of image set has the different ratio of the NCF and the total size of each 
type of image set is about 144 MB. The ratio of NCF in each type of image set is 20%, 
40%, 60%, and 80% respectively as we can learn in Tab. 2. In the experiments, 
considering the situation in reality that the number of images sent by the different clients 
is different, each type of the image set will be divided into four clients with the different 
number of images as shown in Tab. 2. We will proceed with four experiments for the 
baseline Scheme and optimization Scheme respectively under different ratio of NCF. 

Table 2: Image dataset 
The ratio of 

NCF 
Number of images 

in client1 
Number of images 

in client2 
Number of images 

in client3 
Number of images 

in client4 
20% 200 500 400 300 
40% 300 200 500 400 
60% 400 300 200 500 
80% 500 400 300 200 
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In order to evaluate the performance of two different scheme of the face recognize system 
in the different network environment, we will proceed the experiments mentioned above 
under three different network bandwidth which is 200 KB/s, 400 KB/s and 600 KB/s 
respectively. 

5.2 Result of the experiments 
The experiments are proceeded under the environment of 600 KB/s network bandwidth 
first, and the result is shown in Fig. 3. 

 

Figure 3: The time consumption of face recognition in each client of two scheme 

In Fig. 3, the y-axis is the time consumption of face recognition to all images in each 
client under different ratio of NCF. And we can see in Fig. 3, the time consumption of the 
optimization Scheme has a significant reduction which is about 25% compared to the 
baseline Scheme, which means the optimization Scheme has faster processing speed. 
With the increasement of the ratio of NCF, the number of CF gradually decreases which 
means less images need to be processed with PR. Therefore, the total time consumption 
of processing all images in each client also decreases as we can see in Fig. 3. 
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Figure 4: Average response time 

The most obvious and straightforward performance metric is the average response time of 
each image that refers to the average delay in the clients sending images to the edge 
server or cloud server and receiving the recognition result. From the Fig. 4 we can see the 
average response time of two schemes in the different conditions of the ratio of NCF and 
network bandwidth. It is quite obvious that the average response time of the optimization 
scheme is much shorter than the baseline scheme. When the network bandwidth is 200 
KB/s, it means that the network has congestion, and the baseline scheme has longer 
average response time than the optimization scheme. But on the contrary, the 
optimization scheme can still perform the low latency as usual, and this will offer a better 
user experience even though the network condition is terrible. 

Table 3: The time consumption of FD and FR 

 
Total time consumption (s) (600 

KB/s) Time consumption of FD (s) Time consumption of FR (s) 

20% 40% 60% 80% 20% 40% 60% 80% 20% 40% 60% 80% 
Baseline scheme 2021 1792 1506 1302 1177 1087 997 913 582 433 274 122 

Optimization 
scheme 1531 1283 1034 817 710 662 613 564 528 391 249 108 

 
In addition, the time consumption of FD and FR is also detected. As shown in Tab. 3, we 
can find that the time consumption of the FD and FR takes a huge part in the total 
response time, which means accelerating the processing speed of FD and FR plays a vital 
role in the optimization of the face recognition system. In Tab. 3, the time consumption 
of FD in optimization scheme is less than the baseline scheme. In the optimization 
scheme, the processing of FD has been migrated from the cloud server to the edge server. 
Due to the differences in hardware resources between the edge server and cloud server, 
the FD processing in the edge server is faster than it processing in the cloud server. 
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Mostly, the cloud server needs to provide various hardware resources to support 
miscellaneous services, and the resources that each service can get are limited. Different 
from the cloud server, the services on the edge server are more specific which means 
each service can get more specific resources for accelerating the processing speed. 

 

Figure 5: The time consumption of network transmission 

According to the two solid lines on the bottom of Fig. 5, and comparing with the two 
schemes in the case of 600 KB/s network bandwidth, we can find that the time consumption 
of network transmission can get a better reduction when the ratio of NCF is bigger than 20%. 
In the case of the other two kinds of network situation, the optimization scheme’s time 
consumption of network transmission is less than that of baseline scheme. It is worth to note 
that, when the network bandwidth is 200 KB/s, the baseline scheme takes a lot of time for 
network transmission because of the network congestion. On the contrary, the time 
consumption of optimization scheme is much smaller than that of baseline scheme. In 
conclusion, the optimization scheme is better than the baseline scheme. 

6 Conclusions 
This paper introduces the wide application of face recognition system (FRS) and its 
bottleneck. Nowadays, most of the FRS is based on the client-cloud model, and the 
massive data transmitted between the client and the cloud will bring a lot of problems, 
such as high latency, network congestion, security and privacy. The development of edge 
computing provides an opportunity to solve these problems in client-cloud FRS. This 
paper proposes an optimization design of a face recognition system based on edge 
computing, and a prototype of the system based on Azure IoT Edge, an open source 
platform, is implemented. Based on the actual data set, the experimental results show that 
our design is superior to the state-of-art client-cloud face recognition system under 
different network conditions. In face recognition processing, the time consumption of the 
proposed scheme is about 25% less than that of baseline scheme. The utilization of edge 
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resources makes a great contribution to improve the processing speed of face recognition 
and greatly reduces the cost of network transmission. 
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