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A Possible Reason About Origin of Singularity and Anomalous 
Dispersion in Peridynamics
Xinfeng Wang1 and Zaixing Huang1,∗

Abstract: In the benchmark problems of peridynamics, there are some eccentric results, 
for example, singularity of uniaxial tension and anomalous dispersion of wave. The reasons 
to give rise to these results are investigated. We calculated local tension and wave of an 
infinite rod after adding a divergence of local stress in the peridynamic motion equation. 
The acquired results verify that the singularity in the peridynamic solution of local tension 
problem and anomalous dispersion of peridynamic wave are all eliminated. Therefore, the 
anomalous features of some peridynamic solutions likely stem from the lack of local stress 
characterizing contact interactions.

Keywords: Peridynamics, singularity of displacement, anomalous dispersion, peridynamic 
wave.

1 Introduction
Peridynamics [Silling (2000); Silling and Lehoucq (2010)] is a new branch of continuum 
mechanics developed at recent two decades. Its motivation is to relax the requirement of 
continuity for the displacement field so as to conveniently analyze deformation companied 
with evolution of discontinuities caused by damage, fracture and impact breakage [Silling 
and Lehoucq (2010); Madenci and Oterkus (2014); Bobaru, Foster, Geubelle et al.
(2017)]. Based on this motivation, strain and stress are kicked out from peridynamics. 
They are replaced by relative displacement and internal long-range body force associated 
with the relative displacement, respectively. However, any profit always accompanies loss. 
Then, what is the cost of abandoning the strain and stress? This problem has been partially 
investigated by Weckner et al. [Weckner, Brunk, Epton et al. (2009)] and Wang et al. 
[Wang, Xu and Wang (2017)]. They solved the Green functions of peridynamics, and 
compared singularities in the Green functions of peridynamics and classical elasticity. In 
order to further clarify this question, we compare peridynamics with physically-based 
nonlocal elasticity [Di Paola, Failla and Zingales (2009); Di Paola, Pirrotta and Zingales 
(2010)] through two benchmark examples. Different from the classical elasticity and
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peridynamics, the physically-based nonlocal elasticity contains both local stresses and
long-range interactin forces, while the classical elasticity only involves the local stresses,
and peridynamics only concerns the long-range interactin forces.
In peridynamics, most of problems are solved based on numerical algorithm. So far,
only a few analytical solutions are acquired for some simple benchmark problems such
as uniaxial tension and longitudinal vibration of rod. Silling et al. [Silling, Zimmermann
and Abeyaratne (2003)] analyzed the deformation of an infinite rod subjected a simple-
point load and gave a divergent form solution. Weckner et al. [Weckner and Abeyaratne
(2005); Weckner, Brunk and Epton et al. (2009)] found the Green’s functions of 1-
and 3-dimensional peridynamics with help of the Laplace and Fourier transforms. By
these Green’s functions, they gave an integral representation of 3-dimensional peridynamic
solution. Using the similar approach, Mikata [Mikata (2012)] investigated the peristatic
and peridynamic analytical solutions of a 1-dimensional infinite rod. These solutions
are represented as the sum of the Dirac delta functions and a convergent integral.
Further, Wang et al. [Wang, Xu and Wang (2017)] proved that the Green’s functions
are uniformly expressed as conventional solutions plus Dirac functions, and convergent
nonlocal integrals. Huang [Huang (2017)] solved the local uniaxial tension based on non-
ordinary state-based peridynamics.
Recently, Bazant and his colleagues discussed improvable physical aspects of peridynamics
through analyzing the dispersion of wave [Bazant, Luo and Chau et al. (2016)]. As a
response, Butt, Timothy and Meschke proposed that the strong dispersion of peridynamic
wave can be minimized by choosing a combination of the size of the peridynamic horizon
and the shape of the influence function in a way that the peridynamic solution approaches
the solution of classical elasticity [Butt, Timothy and Meschke (2017)].
The peridynamic solutions mentioned above all contain a singular Dirac delta function or
anomalous dispersion. Where do these singularity or anomalous dispersion come from?
Are they caused by peridynamic motion/equilibrium equation or constitutive equation? To
answer these questions, peridynamic motion equation and relevant constitutive equations
were investigated once again. We found that some eccentric results in peridynamics may
be caused by the lack of local stress to a considerable degree.
The outline of the paper is as follows. In Section 2, we discuss internal interactions
in peridynamic medium. The 1-dimensional motion equations of peridynamic and the
physically-based nonlocal elasticity are compared in Section 3. Their difference and
correlation are discussed. In Section 4, we solve the local uniaxial tension of an infinite
rod based on peridynamics and the physically-based nonlocal elasticity, respectively. The
analytical solutions are acquired, and their characteristics are compered and analyzed. The
dispersions of two kind of waves are investigated in Section 4. The dispersion curves
corresponding to different micro-modulus and nonlocal kernel are discussed in detail.
Finally, we close this paper with summary and comment.
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2 Internal interactions in peridynamics
Let Ω denote spatial domain occupied by a body. Hx (Hx ⊂ Ω) is a peridynamic family at
point x (x ∈ Ω), as shown in Fig. 1. In peridynamics, the motion equation of the body is
written as [Silling (2000); Silling and Lehoucq (2010)]∫
Hx

f(x,x′, t)dv(x′) + b(x, t) = ρ(x)ü(x, t), (1)

where f(x,x′, t) is peridynamic force characterizing long-range interactions within body,
b(x, t) is external body force, ρ(x) is mass density and u(x, t) the displacement field. The
peridynamic force complies with the antisymmetric relation below

f(x,x′, t) = −f(x′,x, t). (2)

Integrating Eq. (1) on Hx, we have∫
Hx

∫
Hx

f(x,x′, t)dv(x′)dv(x) +

∫
Hx

b(x, t)dv(x) =

∫
Hx

ρ(x)ü(x, t)dv(x). (3)

It can be also rewritten as [Silling and Lehoucq (2010)]∫
Hx

∫
Ω\Hx

f(x,x′, t)dv(x′)dv(x) +

∫
Hx

b(x, t)dv(x) =

∫
Hx

ρ(x)ü(x, t)dv(x). (4)

Eq. (4) is valid for bond-based and state-based peridynamics. The first term of it represents
the long-range interactions between Hx and Ω\Hx. Clearly, there is no term describing the
contact interactions on the interface ∂Hx in Eq. (4).

Figure 1: Peridynamic family Hx (Hx ⊂ Ω) at point x (x ∈ Ω)

To clarify origin of this point, let us observe physically-based nonlocal elasticity (PNE),
whose master equation reads [Di Paola, Failla and Zingales (2009); Di Paola, Pirrotta and
Zingales (2010); Huang (2012)]

∇ · σ +

∫
Hx

f(x,x′, t)dv(x′) + b(x, t) = ρü(x, t), (5)

in which f(x,x′, t) is still subjected to the constraint of Eq. (2). Integrating Eq. (5) on Hx

leads to
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∫
∂Hx

p(x, t)da(x) +

∫
Hx

∫
Ω\Hx

f(x,x′, t)dv(x′)dv(x)

+

∫
Hx

b(x, t)dv(x) =

∫
Hx

ρ(x)ü(x, t)dv(x), (6)

where p(x, t) = σ · n, being traction on interface between Hx and Ω/Hx. This
traction characterizes the contact forces applied on Hx by Ω/Hx. Therefore, we see that
peridynamics lacks a local stress describing contact interactions. Is the lack of local stress
the cause of the singularity and anomalous dispersion of peridynamic solutions. Next we
turn to discussing this question.

3 Basic equations of physically-based nonlocal elasticity and peridynamics
In order to understand the origin of singularity and anomalous dispersion in the
peridynamic solutions, let us use, respectively, physically-based nonlocal elasticity and
peridynamics to calculate local tension and wave of an infinite rod. Consider an infinite 1-
dimensional homogeneous medium. The governing equation of physically-based nonlocal
elasticity can be written as [Di Paola, Failla and Zingales (2009); Di Paola, Pirrotta and
Zingales (2010); Huang (2012)]

βE
∂2u(x, t)

∂x2
+

∫ ∞
−∞

K(x′ − x, τ)[u(x′, t)− u(x, t)]dx′ + b(x, t) = ρ
∂2u(x, t)

∂t2
, (7)

where β is a normalized parameter, u(x, t) denotes the displacement, b(x, t) is the
prescribed load, ρ and E are the line mass density and elastic modulus, and K(x′−x, τ) is
referred to as the nonlocal kernel in which τ is a scale parameter. When τ → 0, the value
of β is required to ensure that Eq. (7) can degrade into the classical elastodynamic equation.

On the other hand, the governing equation of peridynamics has the form below [Silling
(2000); Silling and Lehoucq (2010)]∫ ∞
−∞

C(x′ − x, l)[u(x′, t)− u(x, t)]dx′ + b(x, t) = ρ
∂2u(x, t)

∂t2
, (8)

where C(x′ − x, l) is the so-called micro-modulus and l is also a scale parameter. In
general, K(x′ − x, τ) 6= C(x′ − x, l), but they are all of symmetry [Silling (2000); Silling
and Lehoucq (2010)], i.e., K(x′ − x, τ) = K(x− x′, τ) and C(x′ − x, l) = C(x− x′, l).

Eq. (7) is independent of Eq. (8). However, under some special conditions, they can be
also correlated to each other. For example, Eq. (7) can be transformed into Eq.(8) through
the equality below

K(ξ, τ) = C(ξ, l)− βE d2δ(ξ)

dξ2
, (9)
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where δ(ξ) is the Dirac delta function. In the same way, Eq. (8) can be also acquired by
Eq. (7).

When τ → 0 and l → 0, Eqs. (7) and (8) should return to the governing equation of
classical elastodynamics. As a result, it is necessary that the following equalities hold, i.e.,

lim
τ→0

K(ξ, τ) = γE
d2δ(ξ)

dξ2
, β + γ = 1, (10)

lim
l→0

C(ξ, l) = E
d2δ(ξ)

dξ2
. (11)

For simplicity, we set γ = β. This equality combining with β + γ = 1 leads to β = γ =
1/2. Comparing Eq. (10) with Eq. (11), we further have

K(ξ, τ) = βC(ξ, l) =
1

2
C(ξ, l). (12)

Using Eqs. (7) and (8), in the following we will firstly calculate the local tension of an
infinite rod.

4 Local uniaxial tension in an infinite rod
4.1 The formal solutions

The local uniaxial tension of infinite rod is defined as the tension of a finite segment
between two points in the infinite rod, as shown in Fig. 2.

-
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2

L
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2 )σδ(x+ L

2 )

Figure 2: Local uniaxial tension of an infinite rod

When we calculate the local uniaxial tension, the inertia effect can be ignored. By Eq. (12),
so Eqs. (7) and (8) are simplified into

1

2
[C0(x, τ)uN (x)−

∫ ∞
−∞

C(x− x′, τ)uN (x′)dx′ − E d2uN (x, t)

dx2
] = b(x), (13)

C0(x, l)uP (x)−
∫ ∞
−∞

C(x− x′, l)uP (x′)dx′ = b(x), (14)

where

C0(x, l) =

∫ ∞
−∞

C(x− x′, l)dx′. (15)
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For the convenience of distinction, we have used uN and uP to replace u in Eqs.
(13) and (14), respectively. Applying the Fourier transform (it is defined as f̂(k) =

1√
2π

∫∞
−∞ f(x)e−ikxdx) to Eqs. (13) and (14), we have (see Appendix A)

ûN (k) =
2b̂(k)

Ek2 +
√

2πM̂N (k)
, ûP (k) =

b̂(k)
√

2πM̂P (k)
. (16)

Here, M̂N (k) = M̂P (k) = Ĉ(0, l) − Ĉ(k, l). Clearly, M̂N (0) = MP (0) = 0. This
is an universal conclusion without relevance to the constitutive property of material. By
the inverse Fourier transform of Eq. (16), the general solutions of Eqs. (13) and (14) are
represented as

uN (x) =

√
2

π

∫ ∞
−∞

b̂(k)

Ek2 +
√

2πM̂N (k)
eikxdk, uP (x) =

1

2π

∫ ∞
−∞

b̂(k)

M̂P (k)
eikxdk.

(17)

As shown in Fig. 1, the total load applied on the rod can be written as

b(x) = σ[δ(x− L

2
)− δ(x+

L

2
)], (18)

whose Fourier transform reads

b̂(k) = −i
√

2

π
σ sin

Lk

2
. (19)

Clearly, b̂(k) is bounded on (−∞,∞). As thus, the existence of uN (x) and uP (x)

represented by Eq. (17) depends on the property of M̂N (k) and M̂P (k). To understand
the influences of M̂N (k) and M̂P (k) on uN (x) and uP (x), let us study the two examples
below.
Example 1:

C(ξ, l) =


3E

l3
, | ξ |≤ l.

0, | ξ |> l.
(20)

Example 2:

C(ξ, l) =
4E√
πl3

exp[−(
ξ

l
)2] (21)

It is easy to verify that Eqs. (20) and (21) satisfy the limitation given by Eq. (11). Taking
the Fourier transform of Eqs. (20) and (21), we have

M̂N1
(k) = M̂P1

(k) =

√
2

π

3E

l2
[1− sin(kl)

kl
] (22)

M̂N2
(k) = M̂P2

(k) =
4√
2πl2

[1− exp(−k
2l2

4
)] (23)

Substituting Eqs. (19), (22) and (23) into (17), we acquire the formal solutions below.
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PNE solutions:

uN1
(x) =

4σl2

πE

∫ ∞
0

sin(Lk2 ) sin(kx)

k2l2 + 6[1− sin(kl)
kl ]

dk,

uN2
(x) =

4σl2

πE

∫ ∞
0

sin(Lk2 ) sin(kx)

k2l2 + 4[1− exp(−k2l2

4 )]
dk. (24)

Peridynamic solutions Mikata (2012):

uP1
(x) =

2σl2

3πE

∫ ∞
0

sin(Lk2 ) sin(kx)

1− sin(kl)
kl

dk, uP2
(x) =

σl2

πE

∫ ∞
0

sin(Lk2 ) sin(kx)

1− exp(−k2l2

4 )
dk. (25)
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Figure 3: Distribution of displacement along the bar in Example 1 when σ/E = 1 and
L = 1 (l = 1.2: black doted line; l = 0.8: blue dot-dashed line; l = 0.2: green dashed line;
l = 0: red solid line)

4.2 Analysis and discussion

The formal solutions of peridynamics given by Eq. (25) were firstly treated by Silling et al.
[Silling, Zimmermann and Abeyaratne (2003)] and [Mikata Mikata (2012)], respectively.
Unfortunately, they are divergent. These divergent formal solutions can be transformed
into a singular function plus a convergent integral [Mikata (2012); Wang, Xu and Wang
(2017)]. With the decrease of l/L, the convergent integral will approach the elasto-static
solution of local uniaxial tension (see Appendix B)

ue(x) =
σ

2E
(|x+

L

2
| − |x− L

2
|). (26)
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Figure 4: Distribution of displacement along the bar in Example 2 when σ/E = 1 and
L = 1 (l = 0.8: black doted line; l = 0.5: blue dot-dashed line; l = 0.1: green dashed line;
l = 0: red solid line)

On the other hand, inspecting Eq. (24) carefully, we have

uN1
(x) =

4σl2

πE

∫ ∞
0

sin(Lk2 ) sin(kx)

k2l2 + 6[1− sin(kl)
kl ]

dk ≤ σ

E
(|x+

L

2
| − |x− L

2
|), (27)

uN2
(x) =

4σl2

πE

∫ ∞
0

sin(Lk2 ) sin(kx)

k2l2 + 4[1− exp(−k2l2

4 )]
dk ≤ σ

E
(|x+

L

2
| − |x− L

2
|). (28)

Therefore, the PNE solutions uN1
(x) and uN2

(x) are convergent. By Eq. (24), we have

lim
l→0

uN1
(x) =

2σ

πE

∫ ∞
0

sin(Lk2 ) sin(kx)

k2
dk =

σ

2E
(|x+

L

2
| − |x− L

2
|), (29)

lim
l→0

uN2
(x) =

2σ

πE

∫ ∞
0

sin(Lk2 ) sin(kx)

k2
dk =

σ

2E
(|x+

L

2
| − |x− L

2
|). (30)

Just as mentioned in Section 3, when l → 0, uN1
(x) and uN2

(x) degrade to the classical
elastostatic solution represented by Eq. (26).
Eq. (5) is acquired by taking a combination of the local stress divergence and Eq. (4).
So the difference between the solution (24) and (25) comes from this divergence of local
stress. Owing to introduction of this local stress, the singularity disappears in the solution
of local tension. Therefore, we judge that the singularities of peridynamic solutions are
likely caused by the lack of local stress, although this conclusion needs further verification.
Figs. 3 and 4 illustrate the similarity and difference between the nonlocal solutions and
the elasto-static solution for the local uniaxial tension of infinite rod. From them, we see
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that the displacement distribution given by nonlocal solutions approaches the displacement
field of the classical elasticity with the decrease of the scale parameter l.
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Β

Figure 5: Dispersion curves of waves in Example 1 (peridynamic: black doted line; PNE:
green dashed line; elastic: red solid line)

5 Dispersion of wave
In order to compare the dispersion relation of physically-based nonlocal elastic wave and
peridynamic wave, take the Laplace transform (i.e., f̄(s) =

∫∞
0 f(x)e−stdt, where s is a

complex number.) of Eqs. (7) and (8). As a result, we have

−E∂
2ū(x, s)

∂x2
+ [2ρs2 + C0(x, l)]ū(x, s)−

∫
Ω
C(x− x′, l)ū(x′, s)dx′ = 2P (x, s). (31)

[ρs2 + C0(x, l)]ū(x, s)−
∫

Ω
C(x− x′, l)ū(x′, s)dx′ = P (x, s). (32)

P (x, s) = ρ[su(x, 0) + u̇(x, 0)] + b̄(x, s). (33)

Not concerned with external stimuli and initial conditions, Eqs. (31) and (32) reduce to

−E∂
2ū(x, ω)

∂x2
+ [−2ρω2 +K0(x, τ)]ū(x, ω)−

∫
Ω
K(x− x′, τ)ū(x′, ω)dx′ = 0. (34)

[−ρω2 + C0(x, l)]ū(x, ω)−
∫

Ω
C(x− x′, l)ū(x′, ω)dx′ = 0. (35)

where we have set s = −iω. Applying the Fourier transform to Eqs. (34) and (35), we
have

[−2ρω2 + Ek2 +
√

2πM̂N (k)]ˆ̄u(k, ω) = 0, (36)
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[−ρω2 +
√

2πM̂P (k)]ˆ̄u(k, ω) = 0, (37)

where ω and k represent the angular frequency and wave number, respectively. In general,
ˆ̄u(k, ω) 6= 0. So Eqs. (36) and (37) hold if and only if

ρω2 =
1

2
[Ek2 +

√
2πM̂N (k)]. (38)

ρω2 =
√

2πM̂P (k). (39)

Eqs. (38) and (39) are the dispersion relation of PNE wave and peridynamic wave,
respectively. Substituting Eqs. (22) and (23) into (38) leads to the nonlocal dispersion
relations below

ωN1
= c

√
1

2
k2 +

3

l2
[1− sin(kl)

kl
]. (40)

ωN2
= c

√
1

2
k2 +

2

l2
[1− exp(−k

2l2

4
)]. (41)

Here, c =
√
E/ρ denotes the elastic wave speed. In the same way, the peridynamic

dispersion relations can be given as follows

ωP1
= c

√
3

l2
[1− sin(kl)

kl
]. (42)

ωP2
= c

√
2

l2
[1− exp(−k

2l2

4
)]. (43)

The dispersion curves determined by Eqs. (40) and (42) together with elastodynamics are
depicted in Fig. 5. We see that PNE wave and peridynamics wave always give rise to the
dispersion, while the wave propagation has no dispersion in the classical elastodynamics.
With the increase of angular frequency, the dispersion curve of PNE wave approaches the
result of elastodynamics. It shows that the dispersion caused by nonlocality decays with
the angular frequency increasing.
Fig. 5 shows that there exists a maximum of angular frequency in the dispersion curve of
the peridynamic wave. This is a result worth notice. It means that the propagation of wave is
prohibited when the angular frequency exceeds this maximum. Meanwhile, the occurrence
of negative slope in the dispersion curve shows that the group velocity of the peridynamic
wave is negative. To the best of my knowledge, this is an anomalous dispersion, which has
been pointed out by Bazant et al. [Bazant, Luo and Chau et al. (2016)], but not being
observed in elastic wave.
Fig. 6 shows that the peridynamic wave characterized by Eq. (21) is slightly different from
that described by (20) in dispersion. The former has no the negative group velocity, but its
angular frequency asymptotically approaches a constant 2c

√
β/l with k → ∞. It implies

that there is no wave that angular frequency is greater than 2c
√
β/l if Eq. (21) is used to

characterize the constitutive behaviors of materials. By comparison of Fig. 6 with Fig. 5,
it is easy to find that the dispersion of wave depends on the selection to the mathematical
form of micro-modulus.
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Compared peridynamics with physically-based nonlocal elasticity in dispersion curves, we
see that peridynamic wave has an anomalous dispersion. As same as the singularity of
peridynamic solution in the uniaxial tension, maybe this anomalous dispersion stems form
the the lack of local stress characterizing the contact interaction.
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Figure 6: Dispersion curves of waves in Example 2 (peridynamic: black doted line; PNE:
green dashed line; elastic: red solid line)

6 Conclusions
Peridynamics and physically-based nonlocal elasticity are two kinds of nonlocal
formulations with an inherent connection. Peridynamics abandons the local stress
characterizing the contact interaction, while the physically-based nonlocal elasticity retains
this stress. However, we find that some anomalous results will appear after the local stress is
kicked out from peridynamics. By analyzing the local uniaxial tension and the dispersion
of elastic wave, we compare peridynamics and the physically-based nonlocal elasticity.
Some conclusions are summarized as follows:

(1) In the framework of generalized function, the mutual transformation can be
accomplished between peridynamic and the physically-based nonlocal model of elasticity
if the micro-modulus differs from the nonlocal kernel by a second-order gradient term of
the Dirac delta function.

(2) Compared with the physically-based nonlocal model of elasticity, the peridynamic
solution of the local uniaxial tension always contains a singular Dirac function. This
singularity is likely due to the lack of local stress.
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(3) Peridynamic wave and PNE wave are all dispersive, but the dispersion of peridynamic 
wave is anomalous. The peridynamic wave will be cut off when the frequency exceeds the 
maximum at the dispersion curve. Meanwhile, the negative group velocity also occurs in 
the peridynamic wave. We think that this anomalous dispersion also stems from the lack of 
local stress.

In a word, the singularities of peridynamic solutions and anomalous dispersion may be 
caused by the lack of local stress to a considerable degree. However, if the local stress is 
introduced, just as same as Eq. (11), the advantage of peridynamics to handle problems 
with discontinuities will be lost. Consequently, a question is whether there is a model in 
which these anomalous results can be removed but the advantage of peridynamics is still 
retained. This question awaits further exploration.
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Appendix A
The key to the Fourier transform of Eq. (13) consists in determining C0(x)u(x). It can be
given by the multiplication theorem as follows

F [C0(x)u(x)](k) =
1√
2π

∫ ∞
−∞

Ĉ0(α)û(k − α)dα

=
1

2π

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

C(x− x′)dx′e−iαxdxû(k − α)dα

=
1

2π

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

C(x− x′)e−iαxdxdx′û(k − α)dα

=
1√
2π

∫ ∞
−∞

∫ ∞
−∞

Ĉ(α)e−iαx
′
dx′û(k − α)dα

=
1√
2π

∫ ∞
−∞

∫ ∞
−∞

e−iαx
′
dx′Ĉ(α)û(k − α)dα

=
√

2π

∫ ∞
−∞

δ(α)Ĉ(α)û(k − α)dα

=
√

2πĈ(0)û(k).

Appendix B
For the two-point tension, the governing equation of classical elasticity is written as

E
d2ue(x)

dx2
= σ[δ(x− L

2
)− δ(x+

L

2
)], B1

which can be derived from Eq. (14) by letting C(x) = Ed2δ(x)/dx2. This shows that the
classical elasticity is a limit case of peridynamics. The Fourier transform of Eq. (B1) leads
to

ûe(k) = −i
√

2

π

σ

E

sin kL
2

k2
. B2

Applying the inverse Fourier transform to Eq. (B2) yields Eq. (26).




