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A Hybrid Local/Nonlocal Continuum Mechanics Modeling and
Simulation of Fracture in Brittle Materials

Yongwei Wang 1, Fei Han 2,∗ and Gilles Lubineau 1,∗

Abstract: Classical continuum mechanics which leads to a local continuum model,
encounters challenges when the discontinuity appears, while peridynamics that falls into
the category of nonlocal continuum mechanics suffers from a high computational cost. A
hybrid model coupling classical continuum mechanics with peridynamics can avoid both
disadvantages. This paper describes the hybrid model and its adaptive coupling approach
which dynamically updates the coupling domains according to crack propagations for
brittle materials. Then this hybrid local/nonlocal continuum model is applied to fracture
simulation. Some numerical examples like a plate with a hole, Brazilian disk, notched
plate and beam, are performed for verification and validation. In addition, a peridynamic
software is introduced, which was recently developed for the simulation of the hybrid
local/nonlocal continuum model.

Keywords: Peridynamics, hybrid model, adaptive coupling, fracture simulation, morphing
function, numerical discretization.

1 Introduction
The accurate simulation of discontinuities-induced failure is still a challenge. In order to
understand the mechanism of fracture, Griffith [Griffith (1921)] proposed classical fracture
mechanics in the 1920s for brittle materials. It is widely used to predict the mechanical
behavior of structures within the framework of local continuum mechanics. However,
classical fracture mechanics is performed based on the fact that the location of a preexisting
crack is known. Furthermore, it is difficult to predict the crack nucleation.

To overcome the mentioned shortcomings in classical fracture mechanics, Francfort et al.
[Francfort and Marigo (1998)] developed a phase-field model in 1998. Bourdin et al. and
Borden et al. [Bourdin, Francfort and Marigo (2000); Borden, Verhoosel, Scott et al.

1King Abdullah University of Science and Technology (KAUST), Physical Science and Engineering
Division, COHMAS Laboratory, Thuwal, 23955-6900, Saudi Arabia.

2State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering
Mechanics, International Research Center for Computational Mechanics, Dalian University of
Technology, Dalian, 116023, China.

∗Corresponding Authors: Fei Han. Emai: hanfei@dlut.edu.cn; 
Gilles Lubineau. Email: gilles.lubineau@kaust.edu.sa.

CMES. doi:10.32604/cmes.2019.07192 www.techscience.com/cmes



400 CMES, vol.121, no.2, pp.399-423, 2019

(2012)] applied the phase-field model to fracture simulation with various computational
methods. Zhou et al. [Zhou, Zhuang, Zhu et al. (2018); Zhou, Zhuang and Rabczuk (2018);
Zhou and Xia (2018); Zhou, Zhuang and Rabczuk (2019)] studied the crack propagation,
branching and coalescence with the phase-field model. However, the phase-field method
does not model the development of discontinuities, but the propagation of highly localized
damage, as it is still fundamentally a continuum-field based technique. By extending
the local continuum framework, the extended finite element method (XFEM) is able to
explicitly introduce discontinuities [Belytschko and Black (1999)]. Some researchers
applied XFEM to crack propagations. However, the limitation will appear when XFEM
encounters complex phenomena such as crack branching. Cundall et al. [Cundall and
Strack (1979)] proposed the discrete element method (DEM), which is a mesh-free method,
to analyze the crack propagation, branching and coalescence. However, fracture, obtained
by DEM, has the size effect and it closely related to the size of particles.

In 2000, Silling [Silling (2000)] proposed a novel model, named peridynamics, based on
integral equilibrium equations. Since integral equations are mathematically compatible
with discontinuities, peridynamics can handle the crack initiation and propagation without
introducing a complicated failure criterion [Kilic, Agwai and Madenci (2009)], and Ha
et al. [Ha and Bobaru (2010); Wang, Oterkus and Oterkus (2018); Shou, Zhou and
Berto (2019); Ren, Zhuang and Rabczuk (2016); Rabczuk, Ren and Zhuang (2019)] have
successfully applied it to fracture simulations. However, peridynamics suffers from a high
computational cost because a point in peridynamics is interacting with numerous points in
a finite neighborhood, which results in the expensive computation of the resultant of forces.

To overcome the disadvantage of the expensive computation, some improvements have
been developed. Ren et al. [Ren, Zhuang and Rabczuk (2017)] proposed a dual-horizon
peridynamic model in which the variable horizon is used instead of a constant horizon.
Macek et al. [Macek and Silling (2007); Kilic and Madenci (2009); Liu and Hong
(2012); Seleson, Beneddine and Prudhomme (2013); Lubineau, Azdoud, Han et al. (2012);
Han and Lubineau (2012); Shojaei, Mudric, Zaccariotto et al. (2016); Shojaei, Mossaiby,
Zaccariotto et al. (2018); Fang, Liu, Fu et al. (2019); Wang, Kulkarni and Tabarraei (2019)]
proposed to couple peridynamics with classical continuum mechanics for reducing the
computational cost. Macek et al. [Macek and Silling (2007)] and Kilic et al. [Kilic and
Madenci (2009)] coupled peridynamics with classical continuum mechanics by satisfying
kinematic compatibility over an overlap zone where both peridynamics and classical
continuum mechanics co-exist. Liu et al. [Liu and Hong (2012)] bridged peridynamics
and classical continuum mechanics by an interface element. In the interface element,
the static admissibility is satisfied. Seleson et al. [Seleson, Beneddine and Prudhomme
(2013)] proposed a force-based coupling scheme, which is also based on static admissibility.
Lubineau et al. [Lubineau, Azdoud, Han et al. (2012)] proposed the morphing approach
which linked the nonlocal and local continuum mechanics based on the constraint of energy
equivalence. Obviously, the equivalent material parameters between peridynamics and
classical continuum mechanics are critical factors for guaranteeing a successful coupling.
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Compared with other coupling methods, the morphing approach, proposed by Lubineau et
al., established a constraint equation of stiffness which naturally guaranteed the equivalence
of material parameters between peridynamics and classical continuum mechanics. The
morphing technique is also easy to implement from a technical point of view because it
fully relies on spatial modifications of the material parameters, which is easy to control.

Based on the morphing approach, a hybrid local/nonlocal continuum model was developed
to couple bond-based peridynamics with classical continuum mechanics [Lubineau,
Azdoud, Han et al. (2012)]. The hybrid model makes use of a priori function to indicate
the nonlocal subdomain for peridynamics. This nonlocal subdomain is in charge of crack
initiations and propagations. The hybrid model is compatible with the traditional boundary
conditions, for instance, surface tractions. This hybrid model is also used to couple ordinary
state-based peridynamics with classical continuum mechanics [Han, Lubineau, Azdoud
et al. (2016)]. Additionally, Han et al. [Han, Lubineau and Azdoud (2016)] also coupled
bond-based peridynamics with damage mechanics by this hybrid model.

In 2014, Azdoud et al. [Azdoud, Han and Lubineau (2014)] presented an approach to
adaptively update the peridynamic subdomain according to the evolution of a crack with a
three-dimensional (3D) benchmark example. Based on it, this paper further describes this
adaptive coupling algorithm for the hybrid model in detail. Then a validation example under
a non-homogeneous deformation is investigated for the effectiveness of the hybrid model.
After the validation, we simulate several two-dimensional (2D) numerical examples to
display its efficiency and performance for fracture simulations. In addition, a peridynamic
software was introduced. The software was recently developed to apply the hybrid model
with the adaptive coupling approach to fracture simulations.

The remainder of this paper is organized as follows: Section 2 reviews bond-based
peridynamics and the hybrid local/nonlocal continuum model; Section 3 describes a process
of applying the hybrid model to the adaptive simulation of crack propagations; Section 4
introduces a software which was developed to implement the hybrid model, and validates
the hybrid model with this software in a bi-dimensional example under non-homogeneous
deformation; and some benchmark numerical examples are displayed to predict crack
initiations and propagations in Section 5.

2 Model description

2.1 Bond-based peridynamics

In 2000, Silling [Silling (2000)] proposed peridynamics which is one kind of nonlocal
model. In peridynamics, the equilibrium equation at point x for a quasi-static problem
is expressed as∫
Hδ(x)

f(p→ x)dVp + b(x) = 0, (1)
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where Hδ(x) is the neighborhood of point x and δ is the horizon. b is the external body
force. f(p→ x) is the bond force such that

f(p→ x) = f̂ [x]〈p− x〉 − f̂ [p]〈x− p〉, (2)

where f̂ [x]〈p−x〉 (respectively f̂ [p]〈x− p〉) is the partial interaction due to the action of
point p over point x (with respect to point x over point p) [Lubineau, Azdoud, Han et al.
(2012)]. The bond force is considered as the superposition of two interactions (see Fig. 1).
For linear elasticity and small deformations, a possible constitutive model [Silling (2000);
Silling and Lehoucq (2010)] is

f̂ [x]〈p− x〉 =
1

2
C[x](ξ) · η(p,x), (3)

where the relative position vector ξ = p− x is called bond. η is the relative displacement
vector and C[x](ξ) is the micromodulus tensor, which are defined as follows [Silling
(2000)],

η(p,x) = u(p)− u(x), (4)

C[x](ξ) = c[x](ξ)ξ ⊗ ξ, (5)

where c[x](ξ) is the coefficient function, and u is the displacement.

Hδ(x)

x

p f[p] x-p

f(p  x)

δ
Ω

f[x] p-x

Figure 1: The nonlocal continuum Ω and the partition of the interaction, f(p → x), into
partial interactions

2.2 Bond failure

In peridynamics, when the bond stretch s is larger than a critical value, scrit, the bond
will break in an irreversible manner [Silling and Askari (2005)]. This failure law has been
widely used for fracture simulations [Ha and Bobaru (2010); Azdoud, Han and Lubineau
(2014); Hu, Ha and Bobaru (2012)].

s =
|ξ + u(x+ ξ)− u(x)| − |ξ|

|ξ|
. (6)
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The failure law is implemented by introducing a history-dependent scalar-valued function
µ(t, ξ) into the bond force [Silling and Askari (2005)]. µ(t, ξ) is defined as follows,

µ(t, ξ) =

{
1, if s < scrit ∀ 0 ≤ t′ ≤ t,
0, otherwise,

(7)

where t′ and t denote the computational steps. Note that the critical bond stretch, scrit, is
considered as an intrinsic material parameter.

2.3 A hybrid local/nonlocal continuum model

Ωm
 Ω1Ω2

b

b

TΓT

Γu

Ω

n

u

Figure 2: The subdomains Ω1, Ω2 and Ωm

One disadvantage of peridynamics is the high computational cost. In order to overcome
this issue, Lubineau et al. [Lubineau, Azdoud, Han et al. (2012)] developed a hybrid model
to couple peridynamics with classical continuum mechanics. In the hybrid model, let the
domain Ω be the overall domain. It can be divided into three subdomains: Ω1, Ω2 and Ωm

[Lubineau, Azdoud, Han et al. (2012)]. Ω = Ω1 ∪ Ω2 ∪ Ωm, Ω1 ∩ Ω2 = ∅, Ω1 ∩ Ωm =
∅ and Ω2 ∩ Ωm = ∅ (see Fig. 2). The idea of the hybrid model is that there is only
classical continuum mechanics in the subdomain Ω1 while there is only peridynamics in
the subdomain Ω2. However, both classical continuum mechanics and peridynamics are
defined in the morphing subdomain Ωm. The displacement u is applied on the boundary
Γu of ∂Ω, and the external surface traction T is imposed on the boundary ΓT of ∂Ω. n is
the outward direction that is normal to ΓT .

In this paper, we focus on homogeneous, isotropic and linearly elastic materials under small
deformation. The hybrid model based on the unified governing equations over Ω can be
built as follows:

� Kinematic admissibility and compatibility:

ε(x) =
1

2
(Ou(x) + Ou(x)T ), ∀x ∈ Ω, (8)

η(p,x) = u(p)− u(x), ∀x ∈ Ω, (9)

u(x) = u(x), ∀x ∈ Γu. (10)
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� Static admissibility:

divσ(x) +

∫
Hδ(x)

{f̂ [x]〈p− x〉 − f̂ [p]〈x− p〉}dVp + b(x) = 0, ∀x ∈ Ω, (11)

σ(x) · n(x) = T , ∀x ∈ ΓT (x). (12)

� Constitutive equations:

σ(x) = E(x) : ε(x), ∀x ∈ Ω, (13)

f̂ [x]〈p− x〉 =
1

2
C[x](ξ) · η(p,x), ∀x ∈ Ω, (14)

where ε is the infinitesimal strain tensor, σ is the Cauchy stress tensor. E(x) is the stiffness
tensor.

Using c0(ξ) as a reference, let us redefine C[x](|ξ|) by introducing a priori function, α
(0 ≤ α(x) ≤ 1) such that

C[x](ξ) = α(x)c0(ξ)ξ ⊗ ξ. (15)

α is also called morphing function. Comparing Eq. (5) with Eq. (15), we can obtain that
c[x](ξ) = α(x)c0(ξ).

According to the constraint of energy density conservation, with assumptions of a small
perturbation and a homogeneous deformation over the neighborhood, the stiffness tensor,
E(x), at any point x can be expressed with the morphing function as follows [Lubineau,
Azdoud, Han et al. (2012)],

E(x) = E0 − 1

2

∫
Hδ(x)

c0(ξ)
α(x) + α(p)

2
ξ ⊗ ξ ⊗ ξ ⊗ ξdVp. (16)

When one point x with its neighborhood is located in the peridynamic subdomain, one can
know that E(x) = 0 and α(p) = 1∀p ∈ Hδ(x). Thus the relation between E0 and c0(ξ)
can be obtained according to Eq. (16).

E0 =
1

2

∫
Hδ(x)

c0(ξ)ξ ⊗ ξ ⊗ ξ ⊗ ξdVp. (17)

Remark. Now the accurate definitions of Ω1, Ω2 and Ωm can be given by α as follows,


Ω1 = {x |α(p) = 0, ∀p ∈ Hδ(x)},
Ω2 = {x |α(p) = 1, ∀p ∈ Hδ(x)},
Ωm = {x | ∃p ∈ Hδ(x) such that 0 < α(p) < 1}.

(18)

3 The adaptive algorithm for simulation of crack propagations
In this section, we will describe the process of implementing the hybrid model for the
adaptive simulation of crack propagations.
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3.1 Initially introducing peridynamic subdomain

To study the crack initiations and propagations, it is necessary to introduce a peridynamic
subdomain, i.e., Ω2, before implementing the adaptive hybrid model. The peridynamic
subdomain, which is used for fracture, should cover the zone where cracks will firstly
initiate. One feasible approach for assigning the initial peridynamic subdomain is that one
can take the zone undergoing strong deformation gradients [Lubineau, Azdoud, Han et al.
(2012)] during the elastic stage as the potential zone for crack initiations. For complicated
structures, the zone under strong gradients can be obtained by calculating the deformation
gradient field in advance.

According to Eq. (18), we introduce the peridynamic subdomain by assigning a zone with
α = 1. This paper takes advantage of the circular zone with a radius r1, centered on x0

which is designated as a flag point. Over the circular zone, we assign the morphing function,
α(x) = αx0(x) = 1, ∀x ∈ {x| |x− x0| ≤ r1}. Meanwhile, adjacent to the circular zone,
we assign an annular zone with an inner radius r1 and an outer radius r2, centered on x0,
where 0 < αx0(x) < 1, ∀x ∈ {x| r1 < |x − x0| < r2}. The morphing function of the
remaining part of the structure is set as αx0(x) = 0, ∀x ∈ {x| |x − x0| ≥ r2}. Note that
r1 and r2 are scalars, and r2 > r1.

After assigning the distribution of the morphing function, according to Eq. (18), we can
obtain the initial distribution of peridynamic subdomain, Ω2. Meanwhile, Ω1 and Ωm are
also obtained.

3.2 Discretization of the hybrid model

After introducing the peridynamic subdomain, we now focus on numerically carrying
out the hybrid model by the finite element method (FEM). The principle of minimum
potential energy is used to solve the problem, and the potential energy of the overall domain
combining classical continuum mechanics and peridynamics can be written as follows
[Azdoud, Han and Lubineau (2014); Han, Lubineau, Azdoud et al. (2016)],

Π(u) =

∫
Ω
WcdΩ +

∫
Ω
WpdΩ−

∫
Ω
u(x) · b(x)dΩ−

∫
ΓT

u(x) · T (x)dS, (19)

where

Wc =
1

2
ε : E(x) : ε, (20)

Wp =
1

4

∫
Hδ(x)

c0(ξ)
α(x) + α(p)

2
{ξ · η(p,x)}2dVp. (21)

After we discretized and minimized the potential energy, a linear algebraic equation set can
be derived for finite element computations as follows,

[K]{d} = {F }, (22)
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where {d} is a vector of all the nodal displacements,

[K] =
n∑
i=1

∫
Vi

[HN i(x)Ri]
T [E(x)][HN i(x)Ri]dVx

+
1

2

n∑
i=1

h(x)∑
j=1

∫
Vi

∫
V jx

c0(ξ)
α(x) + α(p)

2
[N j(p)Rj −N i(x)Ri]

T

[ξ ⊗ ξ][N j(p)Rj −N i(x)Ri]dVpdVx and

{F } =
n∑
i=1

∫
Vi

[N i(x)Ri]
T {b(x)}dVx +

n∑
i=1

∫
Si

[N i(x)Ri]
T {T (x)}dSx,

where [·] and {·} denote a matrix and a vector. n is the number of the total elements, h(x)
is the number of the relative elements of point x, [N ] is the matrix of shape function, [H]
denotes a matrix of differential operators and [R] is a diagonal matrix in which the diagonal
entries may be 0 or 1, depending on the nodes of one element. Note that all these definitions
are the same to that of FEM.

At the discretization level, the subdomains Ω1 and Ωm are meshed by the finite element
(FE) while Ω2 is meshed by the discontinuous Galerkin finite element (DGFE) which
was successfully applied to peridynamics by Azdoud et al. [Azdoud, Han and Lubineau
(2014); Chen and Gunzburger (2011)]. In DGFE, each element does not share nodes with
other elements and the DGFEs are connected by bonds that are defined by the relative
position between quadrature points of elements. Consequently, the crack initiations and
propagations are driven by bond breaking through the boundaries of elements.

3.3 Adaptive expansion of the peridynamic subdomain

When bonds begin to break, the peridynamic subdomain adaptively expands by introducing
new peridynamic zones. The new peridynamic zones should cover these broken bonds
and ensure that crack tips always stay far away from the boundary of the peridynamic
subdomain. This paper introduces new peridynamic zones at the centroids of damaged
elements in which at least a bond breaks, by assigning zones with α = 1. Note that the
centroids of damaged elements are designated as flag points.

Fig. 3 is a diagrammatic sketch that helps illustrate the process of the adaptive expansion.
In the beginning, an initial peridynamic subdomain was assigned at some point x0. When
one bond in the peridynamic subdomain breaks, two new circular peridynamic zones are
introduced at the centroids of damaged elements, x1 and x2. The new peridynamic zone,
centered on the flag point x1, is introduced by assigning αx1(x) = 1, ∀x ∈ {x| |x−x1| ≤
ri}, and the morphing function at the adjacent zone is set as 0 < αx1(x) < 1, ∀x ∈
{x| ri < |x − x1| < ro}. Meanwhile, we can define the other peridynamic zone which is
centered on the flag point x2, by assigning αx2(x) = 1, ∀x ∈ {x| |x − x2| ≤ ri}, and
the morphing function at the adjacent zone is defined as 0 < αx2(x) < 1, ∀x ∈ {x| ri <
|x − x2| < ro}. Note that ri and ro are scalars, and ro > ri. Now considering all the flag
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Figure 3: Bond breaking induces adaptive expansion of the peridynamic subdomain. Note
that not all the bonds are shown

points in the structure, the morphing function, α, for any point p yields the following rule,

α(p) = max{αx0(p), αx1(p), αx2(p)}. (23)

With this adaptive approach, the peridynamic subdomain, Ω2, can be driven by broken
bonds automatically without identifying crack tips.

FE

Insert nodes

DGFE

Crack initiation

Bond

Broken Bond

Quadrature Point

DGFE

FE Node

DGFE Node

Figure 4: Transfer from FE to DGFE and crack initiation. Note that not all the bonds are
shown

At the discretization level, the update of the peridynamic subdomain results in an update
of mesh which leads to some elements transferring from FE to DGFE by inserting nodes
for the new transferred elements, and all DGFEs are available for crack initiations and
propagations (see Fig. 4). Note that the freedom of solution will increase after inserting
new nodes for DGFEs.

3.4 Flowchart of the adaptive algorithm

Fig. 5 defines the implicit algorithm for the adaptive simulation of crack propagations. In
the adaptive algorithm, the boundary conditions are specified as N progressive increments.
For one given increment, the structure is meshed by FE and DGFE to assign the peridynamic
subdomain firstly. Next, the linear equations are solved, and the displacement results are
used to calculate the stretch of bonds which is used for updating broken bonds. If a bond
is decided to fail, the stiffness matrix that this broken bond contributed previously needs
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to update. Then the linear equations will be solved iteratively until there is no new bond
failure.

After that, the adaptive algorithm will choose and store the new flag points that are the
centroids of new damage elements in which a bond was broken at the given increment, and
there was no bond breakage in previous increments. Then the same increment is carried out
again.

If no new damage element appears, the algorithm will go to the next increment until the last
loading increment is completed. Note that in this algorithm, the update of the peridynamic
subdomain is performed between increments rather than iterations in each increment.

Start
Input parameters; 

i=0
i<N

Import mesh data

   Assemble local and 
nonlocal stiffness matrix 

Apply boundary 
conditions at step i

Flag

Solve linear equations
 New broken 

bonds?

Flag=false

Update stiffness matrix;
Sum++

Sum>0

Choose new 
flag points

i++

Postprocess

End

Flag=true; Sum=0

Define FE and DGFE 
with flag points

No

Yes

Yes

Yes

No 

No

No

 New damaged 
elements?

Yes

Yes
No

Figure 5: A flowchart of the adaptive algorithm for the hybrid model, where N is the
number of total progressive increments

4 Validation study
Lubineau et al. [Lubineau, Azdoud, Han et al. (2012)] presented some examples under
homogeneous deformations to show the accuracy of the hybrid model in which the stiffness
constraint (see Eq. (16)) of the morphing subdomain is built based on an assumption of a
homogeneous deformation over the neighborhood. Thus, it is interesting and necessary
to validate the hybrid model for non-homogeneous deformations, even if the stiffness
constraints in the morphing subdomain are used far from strong gradients [Lubineau,
Azdoud, Han et al. (2012)]. In this section, a 2D numerical example for which we assume
plane stress, under non-homogeneous deformations, is carried out by a platform that is
based on the hybrid model, and ANSYS that is based on classical continuum mechanics,
respectively.
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Figure 6: The structure and its initial distribution of the morphing function

4.1 A brief introduction of PeriFem for implementing the hybrid model

To make the hybrid model with an adaptive algorithm available for implementation, a
software with a friendly user interface, named PeriFem, including solving, pre- and
post-processing modules is developed. In the pre-processing module, we can make use of
the software to generate a geometric model, mesh the model, input material parameters, and
apply boundary conditions. In addition, the software can also take advantage of mesh data
from other software, such as ANSYS and GMSH. In the solving module, the algorithm
is developed by the C++ language, and it can implement 2D and 3D simulations. In the
post-processing module, the software can display the synchronous calculation results for
every increment. It is convenient for the users to use the mouse and keyboard to check the
contour results. Also, it is very simple to display the contour results of the inner parts of a
3D model by a slicing technique. Additionally, the users can also output all the calculation
data and store them in files.

4.2 Case description

A homogeneous sample is studied to validate the hybrid model. The geometric parameters
and boundary conditions of the structure are shown in Fig. 6(a). The left boundary of the
plate is fixed in x direction, and the middle point of the left boundary is also fixed in y
direction. The displacement condition is applied to the right boundary in x direction with
ux = 2 mm. Both the top and bottom of the plate are free. This numerical example
implements bilinear quadrilateral elements in a finite element framework. The grid size ∆x
of elements is 1.5 mm.

The stiffness parameters for classical continuum mechanics including Poisson’s ratio and
Young’s modulus are ν = 1/3 and E = 30 GPa, respectively. The horizon, δ, of the
neighborhood in peridynamics is 4.5 mm. The coefficient of micromodulus, c0(ξ), is
assumed to be an exponential function,

c0(ξ) = τ0e−|ξ|/l, (24)

where τ0 is a constant, which is calculated according to the Poisson’s ratio and Young’s
modulus. l is a characteristic length which is determined to guarantee e−δ/l approaching 0.
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Here, l is set to be 0.5 mm in this example.

To implement the hybrid model in the simulation, an initial seed of peridynamic subdomain
is necessary. The initial peridynamic subdomain is seeded in the center of the hole with
r1 = 25 mm and r2 = 45 mm see Fig. 6(b). In the orange zone, α = 1 while in the blue
zone, α = 0. α decreases from 1 to 0 in the rainbow zone.

Note that the span of the rainbow zone influences the error (i.e., ghost forces for the
energy-based coupling). Actually, the error is driven by δ/Lc [Lubineau, Azdoud, Han
et al. (2012)], where Lc is the span of the rainbow zone (i.e., Lc = r2− r1 in this paper). If
δ is given, the error reduces as Lc becomes larger.

4.3 Results analysis

1

(a) x direction by PeriFem

2

(b) y direction by PeriFem

1

(c) x direction by ANSYS

1

(d) y direction by ANSYS

Figure 7: Contour of the displacements by PeriFem and ANSYS (unit of displacement:
m). Note that the legend sort of (a) and (b) is different from that of (c) and (d)

The displacement fields calculated by PeriFem and ANSYS are shown in Fig. 7. The
displacement fields in x direction are in good agreement by comparing Fig. 7(a) and
Fig. 7(c), while Fig. 7(b) and Fig. 7(d) display a high similarity of displacements in y
direction.

To exactly illustrate the accuracy of the hybrid model, the displacements by PeriFem and
ANSYS on three cutting lines are depicted and compared in Fig. 8 and Fig. 9 which also
exhibit a good agreement. After calculating the relative error of displacements in the
three cutting lines, we can find that the maximum relative error of the displacement in x
direction is 1.43% for cutting line 1, and the maximum relative error of the displacement
in y direction is 3.96% for cutting line 2. The maximum relative error of cutting line
3 in x and y directions are 0.5% and 1.5%, respectively. Note that the relative error is
defined by |up−uaua |, where up is the displacement calculated by the PeriFem while ua is the
displacement calculated by ANSYS.
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The results from two different approaches are in good agreement, and the comparison
illustrates the accuracy of the hybrid model for non-homogeneous deformations.

5 Application of the hybrid model to fracture simulations

This section makes use of the hybrid model to predict crack initiations and propagations.
The following 2D numerical examples aim at illustrating the performance of the hybrid
model on fracture simulations.

All the samples are assumed to be linear and elastic, and the 2D samples under plane stress
are meshed by bilinear quadrilateral elements. Poisson’s ratios for 2D analysis is ν = 1/3.
The coefficient of micromodulus, c0(ξ), is defined in Eq. (24). The horizon, δ, of the
neighborhood in peridynamics is chosen as 3∆x.
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Figure 10: The structure and its initial distribution of the morphing function

5.1 Brazilian disk

The Brazilian disk containing a single crack was experimentally tested by Haeri et al.
[Haeri, Shahriar, Marji et al. (2014)] to study the breakage process of the disk. In this
example, we apply the hybrid model to studying the properties of Brazilian disk under
compression. The boundary conditions and dimensions of the sample are illustrated in
Fig. 10(a). The grid size of elements is ∆x = 0.5 mm. The Young’s modulus E is 3.1 GPa
and l = 0.1 mm. In the simulation, two seeds of the initial peridynamic subdomain are
centered around the crack tips with r1 = 4 mm and r2 = 8 mm see Fig. 10(b). The critical
stretch, scrit, is set to be 0.055. This simulation is performed in 100 progressive increments
(steps) so that the increment of displacement yields ∆uy = 0.012 mm in each step.

From simulation results (see Fig. 11), it is validated that the hybrid model can simulate
the whole process of the elastic deformation, crack initiations and propagations, and the
structure failure. Fig. 11 including six loading steps, exhibits the failure process and the
contour of damage which is defined by Silling et al. [Silling and Askari (2005)]. There is
no crack at Step 83 (Fig. 11(a)) while crack suddenly appears at step 84 (Fig. 11(b)). Then
the crack grows slowly until Step 89 at which the crack propagates further. A disastrous
fracture suddenly appears at Step 92. From the figures, we can find that the fractures initiate
from the pre-crack tips and propagate toward the direction of loading points. The failure
path of the disk by the hybrid model is very similar to the experimental result (Fig. 6(c)) in
Haeri et al. [Haeri, Shahriar, Marji et al. (2014)].

Note that the grids shown in Figs. 11, 14, 15, 18 and 21 are DGFEs where peridynamics is
performed. As the crack propagates, the DGFEs adaptively update. From the simulation,
we can find that peridynamics is always restricted to a relatively small zone, compared to
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(f) Step 92

Figure 11: Simulation of the crack initiation and propagation. Note that the magnification
of subfigure in Figs. (a) (b) and (c) is 35 while that of Figs. (d) (e) and (f) is 15

the whole structure, which can highly reduce the computational cost.

Fig. 12(a) displays the load-displacement curve of the resultant force on the upper loading
boundary. Fig. 12(b) is an enlargement of the curve in the red box of Fig. 12(a). The
load-displacement curve is approximately linear before Step 83. Zooming in on the peak
region shows that the resultant of the forces encounters some drops. With the help of
Fig. 11, we can pinpoint that the force experiences a small drop when the crack appears
at Step 84, and another small drop is encountered at Step 89 when the crack propagates
further. The drastic drop of the force at Step 92 keeps in step with the disastrous fracture.
From Fig. 11(f), we find that there are still connections in the disk, which accounts for the
residual bearing capacity after Step 92.

5.2 A notched plate with an off-center circular hole

We apply the hybrid model to simulating a notched plate with an off-center circular hole
under unilateral tension. This test has been simulated by various investigators [Dipasquale,
Zaccariotto and Galvanetto (2014); Tabiei and Wu (2003); Ni, Zhu, Zhao et al. (2018)] for
predicting the crack initiations and propagations. The boundary conditions and dimensions
of the sample are illustrated in Fig. 13(a). The grid size of elements is ∆x = 0.25 mm. The
Young’s modulus is 71.4 GPa and l = 0.05 mm. In the simulation, one seed of the initial
peridynamic subdomain, centered around the notch tip with r1 = 4 mm and r2 = 8 mm,
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Figure 13: The structure and its initial distribution of the morphing function

is introduced (see Fig. 13(b)) to cover the strong deformation gradient zone. The critical
stretch, scrit, is set to be 0.1. This simulation is performed in 200 progressive increments
(steps) so that the increment of displacement yields ∆uy = 0.0075 mm. Two examples with
h = 10 mm and h = 15 mm are performed to predict the paths of the crack propagations.

The simulation results are presented in Figs. 14 and 15. Three diagrams related to different
loading steps for each distance h are presented to display the process of crack initiations
and propagations which are similar to the results reported by Dipasquale et al. [Dipasquale,
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Figure 14: Simulation of the crack initiation and propagation for h = 10 mm

Zaccariotto and Galvanetto (2014)], Tabiei et al. [Tabiei and Wu (2003)] and Ni et al. [Ni,
Zhu, Zhao et al. (2018)]. By comparing Fig. 14 and Fig. 15, we can conclude that different
distances between the notch and the hole can induce different paths of crack propagations.
Additionally, the simulation results also display the adaptive expansion of the peridynamic
subdomain.
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Figure 15: Simulation of the crack initiation and propagation for h = 15 mm

Fig. 16 displays the curves of resultant forces on the top of the plate versus the displacement,
which reflect the fracture process in the test. For the specimen with h = 10 mm, the
load-displacement curve is approximately linear before the displacement reaches 0.88 mm.
Then the force drops, which corresponds to the crack appearance (see Fig. 14(a)). After that,
the force encounters a drastic drop, which corresponds to the crack splitting the structure
(see Fig. 14(c)). For the specimen with h = 15 mm, the force experiences a drop, which
corresponds to the crack appearance (see Fig. 15(a)). Then the force grows up. The force
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encounters another drop, which corresponds to the crack reaching the hole (see Fig. 15(c)).
Since the structure is not destroyed in this simulation, it still has a relatively large residual
bearing capacity.
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Figure 16: Load-displacement curves of the notched plate with an off-center circular hole

5.3 A notched beam under four-point bending

This numerical example is a four-point bending test of a single-edge notched beam. The
boundary conditions and dimensions of the sample are illustrated in Fig. 17(a). The grid
size of elements is ∆x = 0.5 mm. The Young’s modulus is 30 GPa and l = 0.1 mm. In the
simulation, one seed of the initial peridynamic subdomain, centered around the notch tip
with r1 = 4 mm and r2 = 6 mm, is introduced (see Fig. 17(b)). The critical stretch, scrit,
is set to be 0.05. This simulation is performed in 100 progressive increments (steps) so that
the increment of displacement yields ∆uy = 0.02 mm in each step.

Fig. 18 exhibits the crack propagation associated with the damage evolution. The crack
initiates at Step 81, and after several steps, the crack grows rapidly to about 21 mm. The
crack under four-point bending is almost straight. The small curve in the fracturing path is
induced by the unstructured mesh. In Fig. 18, the adaptive expansion of the peridynamic
subdomain always covers the crack tip and is consistent with the crack propagation.

Fig. 19 displays the curves of the forces on the loading points of the beam versus the
displacement, which reflect the brittle fracture in the test. The curves approximate linear
before a drastic drop. The drastic drop corresponds to the sudden appearance of the long
crack (see Fig. 18(b)). The stairs of the load-displacement curves are induced by crack
propagations. The two load-displacement curves are consistent until the displacement
reaches 1.88 mm. The branching of the two curves appears due to the asymmetry of the
structure which is induced by the crack propagation (see Fig. 18(d)).
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(d) Step 100

Figure 18: Simulation of the crack initiation and propagation (unit: m). Note that the
magnification of subfigure in Fig. (a) is 10

5.4 A double-edge-notched plate

Here, we simulate a plate which is notched in the middle of both left and right sides
[Nooru-Mohamed, Schlangen and van Mier (1993); Liu and Hong (2012); Han, Lubineau
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and Azdoud (2016); Zhou, Rabczuk and Zhuang (2018)]. Its boundary conditions and
dimensions are illustrated in Fig. 20(a). The grid size of elements is ∆x = 1 mm. The
Young’s modulus is 30 GPa and l = 0.2 mm. In the simulation, two seeds of the initial
peridynamic subdomain are centered around the notch tips with r1 = 8 mm and r2 = 16
mm (see Fig. 20(b)). The critical stretch, scrit, is set to be 0.1. This simulation is performed
in 50 progressive increments (steps). In each step, ∆uy = 0.08 mm and ∆ux = 0.02 mm.

Fig. 21 is the simulation results that display the evolution of the damage and fracture. The
damage and fracture initiate from each notch tip and propagate towards the opposite notch.
In the beginning, the crack which is initiated from the left notch tends to the bottom of
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the plate while another crack tends to the upper. This kind of fracture path is induced by
the asymmetric boundary conditions. Later the crack tips form a neck-zone where shear
deformations deflected the evolution of the cracks. The proceeding evolution finally brings
the upper crack tip into contact with the lower crack, which eventually leads to the failure
of the plate. In addition, the adaptive expansion of the peridynamic subdomain is always
restricted to a relatively small zone as the cracks propagate, which can make the simulation
much more efficient.
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Figure 21: Simulation of the crack initiation and propagation. Note that the magnification
of subfigure in Fig. (a) is 20
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Figure 22: Load-displacement curves of the double-edge-notched plate

Fig. 22 displays the curves of resultant forces on the upper and left loading boundaries
versus the displacement. From the figure, we can find that the drastic drops of the forces
at Step 20 lead to a small residual bearing capacity of the structure. We can conclude that
the sudden appearance of the crack at Step 20 (see Fig. 21) is a deadly fracture for this
structure.

6 Conclusion
In this paper, the hybrid local/nonlocal continuum model is introduced, and the adaptive
coupling approach is described in detail. Firstly, for the purpose of validation, a plate with
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a circular hole is simulated by the hybrid model and the classical continuum mechanics. The 
simulation shows that the results from both models are in good agreement, and the relative 
errors of the cutting lines are less than 3.96%. This validation illustrates the accuracy 
of the hybrid model under non-homogeneous deformations. Secondly, this paper applies 
this hybrid model to fracture simulations. Various numerical examples such as a Brazilian 
disk, a notched plate with a hole, a notched beam and a double-edge-notched plate are 
simulated to predict complicated crack initiations and propagations. The simulation results 
exhibit that (i) the hybrid model can simulate the whole process of the elastic deformation, 
crack initiations and propagations, and the structure failure, (ii) the process of the adaptive 
expansion of the peridynamic subdomain which is always restricted to a relatively small 
zone displays the efficiency of the hybrid model. Thirdly, the peridynamic software, 
PeriFem, also displays its performance through the numerical example.
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