
Computer Modeling in Engineering & Sciences CMES, vol.121, no.2, pp.425-444, 2019

Coupled Digital Image Correlation and Peridynamics for
Full-Field Deformation Measurement and Local Damage

Prediction
Tianyi Li1, Xin Gu1 , Qing Zhang1,∗ and Dong Lei1

Abstract: Digital image correlation (DIC) measurement technique and peridynamics (PD)
method have been applied in specific fields extensively owing to their respective advantages
in obtaining full-field deformation and local failure of loaded materials and structures. This
study provides a simple way to couple DIC measurements with PD simulations, which can
circumvent the difficulties of DIC in dealing with discontinuous deformations. Taking the
failure analysis of a compact tension specimen of aluminum alloy and a static three-point
bending concrete beam as examples, the DIC experimental system firstly measures the
full-field displacements, and then the PD simulation is applied on potential damage regions
determined according to the correlation coefficients, to track the micro-crack evolution and
macro-crack propagation. As results, the coupled DIC and PD approach can effectively
measure the full-field displacement and the localized damage accumulation and crack
propagation.
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1 Introduction
The Digital Image Correction (DIC) is a non-contact technique for measuring the full-field
displacement of loaded materials and structures [Sutton, Wolters, Peters et al. (1983)].
Specifically, the digital cameras are used to track and record a series of speckle images of
the specimen surface during deformation, then the image correlation matching algorithms
[Lei, Hou and Gong (2012); Chu, Ranson and Sutton (1985); Caggegi, Chevalier, Pensée
et al. (2016)] applied to pixel points in the digital images are adopted to determine the
full-field displacement. As a full-field and non-contact measurement technique, DIC
has gained great popularities in applications of various materials, such as metals [Cai,
Zhang, Yang et al. (2016); Tung, Shih and Kuo (2010); Pan, Yu and Wu (2015)], concrete
[Jiang, Jin, Zhao et al. (2017); Lei, Yang, Xu et al. (2017)], polymers [Grytten, Daiyan,
Polanco-Loria et al. (2009); Jerabek, Major and Lang (2010)] and biomaterials [Murienne,
Chen, Quigley et al. (2016)]. As it is known, most DIC methods are based on the
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optical flow theory, whose accuracy is depended on the smoothness of displacement.
Specifically, the DIC can accurately and effectively measure the continuous deformation,
while its measured displacement is inaccurate or even problematic for the regions with
non-smooth, discontinuous displacement or with severe noise. To improve the accuracy of
DIC results with non-smooth or discontinuous deformation, many scholars have proposed
some advanced strategies. Such as applying the extended finite element method in DIC
simulation [Réthoré, Hild and Roux (2008); Lall, Kulkarni, Angral et al. (2010)], coupling
the wavelet packet transform and DIC [Lei, Yang, Xu et al. (2017)] or directly extending
standard DIC method [Réthoré, Roux and Hild (2007); Poissant and Barthelat (2010)].
However, obtaining accurate deformation measurements involving discontinuities still
remains challenging. As an alternative improvement, Conradie et al. [Conradi, Turner
and Becker (2014)] first characterized damage evolution in a graphite double torsion tests
by using the bond-based peridynamics (BB PD) based on the DIC measured displacement.
Later, in order to obtain the global displacement and local damage information of a graphite
material, Turner [Turner (2014)] combined the traditional DIC measured continuous
deformation results with the deformation and damage results of discontinuous regions
predicted by the ordinary state-based peridynamics (OSB PD). This method take advantage
of peridynamics in simulating the simultaneous of multiple cracks propagation without
the requirements for external crack nucleation and propagation criteria, also prior crack
locations and crack paths.

Peridynamic theory, proposed by Silling, is a nonlocal reformulation of classical continuum
mechanics [Silling (2000)]. PD motion equations of a material point of interest are based
on the integration of pairwise force of bonds between material points within a surrounding
region, not involving any spatial derivatives of the displacement components. There are
three types of PD models, respectively as the BB PD [Silling and Askari (2005); Silling,
Epton, Weckner et al. (2007)], the OSB PD [Silling, Epton, Weckner et al. (2007); Le, Chan
and Schwartz (2014)] and the non-ordinary state-based peridynamics (NOSB PD) [Silling,
Epton, Weckner et al. (2007); Warren, Silling, Askari et al. (2009); Gu, Madenci and Zhang
(2018)]. The BB PD, a special case of the OSB PD, is widely used for cracking and fracture
simulations; however, it only takes the dilatation deformation state into consideration,
leading to a fixed Poisson’s ratio limitation [Silling, Epton, Weckner et al. (2007); Le, Chan
and Schwartz (2014); Warren, Silling, Askari et al. (2009); Gu, Madenci and Zhang (2018);
Gu, Zhang and Xia (2017)]. Fortunately, the OSB PD and NOSB PD models can break
through these limitations and describe complex material responses. The core concept of
state-based (SB) PD is the state operator, which can be nonlinear and discontinuous. The
distinct difference between the OSB PD and the NOSB PD is whether the force vector
state between two material points acts along the deformation vector state or not. Recently,
the OSB PD has attracted increasing interest because it can break the aforementioned
limitations and do not encounter numerical oscillation problem in NOSB PD simulations.
The crack propagation and fracture of various materials and structures were simulated, such
as an epoxy plate with non-uniform holes [Gu, Zhang and Xia (2017)], plexiglass plate
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[Dipasquale, Sarego, Zaccariotto et al. (2017)], rock-like material [Zhou, Shou and Berto
(2018), single-layer graphene sheets [Liu, He, Wang et al. (2018)], Kalthoff-Winkler impact
test of steel [Imachi, Tanaka, Bui et al. (2019)], concrete beam, laminated composites [Gao
and Oterkus (2019)], biomaterial beams [Zhang and Qiao (2018)] and etc. In addition, Han
et al. [Han, Lubineau, Azdoud et al. (2016)] developed a morphing method for coupling
the classical continuum mechanics model and OSB PD model, and Bie et al. [Bie, Cui and
Li (2018)] coupled OSB PD with node-based smoothed finite element method (NS-FEM)
to investigate crack propagation. These investigations demonstrated that the OSB PD is
reliable for dynamic crack propagation prediction involving micro- and macro- cracks.

The invisibility of micro-cracks makes it challenging for DIC algorithm to recognize and
display them, and the discontinuity of micro-cracks and macro-cracks results in that DIC
cannot accurately capture the discontinuous displacement as well. Therefore, taking the
advantages of OSB PD for crack initiation and propagation modeling regardless of material
continuity, an integrated approach of DIC and PD to obtain full-field displacement and local
damage of loaded materials is possible. For this end, this paper is organized as follows:
Section 2 describes the equations for OSB PD modeling, Section 3 introduces the basic
principles of DIC; then an integrated DIC and OSB PD approach is proposed to obtain the
full-field displacement and local damage in Section 4. Section 5 validates this approach
through two representative tests, i.e., a compact tension specimen of aluminum alloy and a
static three-point bending concrete beam. Conclusions are drawn in Section 6.

2 Ordinary state-based peridynamics
2.1 Governing equation and constitutive model

Peridynamics regards materials as a composition of massive material points with finite
volume and mass. There are nonlocal interactions spanning a certain length scale among
material points, therefore, the integral form of motion equations of a material point of
interest, x (call source point), can be derived as [Silling, Epton, Weckner et al. (2007)]

ρ (x) ü (x, t) =

∫
Hx

{
T [x, t]

〈
x′ − x

〉
−T

[
x′, t

] 〈
x− x′

〉}
dVx′ + b(x, t), (1)

where ρ is the mass density, ü is the acceleration, b is specified body force density, dVx′

is the infinitesimal volume of material point x′, which can be called the family member
of point x, as shown in Fig. 1. Denote

∫
Hx

{T [x, t] 〈x′ − x〉 −T [x′, t] 〈x− x′〉} dVx′

as L (x, t), representing the total force density of point x. Hx = H(x, δ) =
{x′ ∈ R : {‖x′ − x‖ ≤ δ}} represents the nonlocal integration domain of the source point
with its horizon radius of δ, T [x, t] and T [x′, t] are the force vector states at the point x
and x′, and the angle bracket 〈〉 indicates the vector the force state operates on.
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Figure 1: Schematic of interaction between peridynamic material points

The constitutive relationship denoted with force vector state as T=T (Y), can be simplified
into the corresponding scalar state as t = t (e) = t

(
θ, ed

)
= t

(
ei, ed

)
, and specifically as

t (e) =

 t(θ, ed) =
[
γk
m −

(3−γ)α
9

]
ωθx + αωed

t(ei, ed) =
[

3γk
m −

(3−γ)α
3

]
ωei + αωed

, (2)

where t is a force scalar state, which can be decomposed into the isotropic component
ti and the deviatoric component td, ei and ed are the isotropic component and deviatoric
component of the extension scalar state e, which is defined as e = |y′ − y| − |x′ − x|.
The reference relative position vector ξ between point x and x′ is ξ=x′ − x, and the
deformed positions are specified by y = x + u and y′ = x′ + u′ with u and u′ denoting
their displacements. x = |x′ − x| = |ξ| is the initial deformation scalar state, ω is an
influence function which only depends on the bond length |ξ| [Silling, Epton, Weckner et al.
(2007)]. For plane stress problem, the parameter γ equals 2(2µ−1)

µ−1 , where µ is the Poisson’s

ratio. k and α are related to the bulk modulusK and shear modulusG as k = K+ G(µ+1)2

9(2µ−1)2

and α = 8G
m , where m is a weighted volume defined as m = ωx • x =

∫
Hx

ω(|ξ|)|ξ|2dVx′ .

Furthermore, the dilatation scalar state can be defined as θ(e) = γ (ωx)•e
m , and the isotropic

component of the extension scalar state is expressed as ei = θx
3 .

In order to analyze the strain state, the peridynamic differential operator (PDDO) [Gu,
Madenci and Zhang (2018); Madenci, Barut and Futch (2016); Madenci, Dorduncu,
Barut et al. (2017); Gu, Zhang and Madenci (2019)] is introduced to define the nonlocal
deformation gradient tensor,
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F(x)=

∫
Hx

(y′ − y)⊗ g (ξ;N) dVx′ , (3)

where the symbol ⊗ denotes the dyadic product of two vectors, N is the order of Taylor
series expansion (TSE), the vector g is composed of PD functions described by Madenci et
al. [Madenci, Barut and Futch (2016); Madenci, Dorduncu, Barut et al. (2017); Gu, Zhang
and Madenci (2019)] as g (ξ;N) =

{
g100
N (ξ) g010

N (ξ) g001
N (ξ)

}T .

Furthermore, approximating the nonlocal deformation gradient tensor as a corresponding
local one, the Green strain tensor is given by

E =
1

2

(
FTF− I

)
. (4)

2.2 Numerical implementation

Explicit time integrations are suitable for solving PD motion equations to model large
deformation with evolving discontinuities. In the reference configuration, a body is
uniformly discretized into particles with a certain volume [Silling and Askari (2005); Parks,
Seleson, Plimpton et al. (2011); Huang, Lu and Qiao (2015)], the integral-differential
equation of motion can be formulated as

ρüni =
∑
p

{
T [xni , t]

〈
xnp − xni

〉
−T

[
xnp , t

] 〈
xni − xnp

〉}
Vp + b(xni ), (5)

where n denotes the number of time step. Vp is the involved volume of material point
xp.

∑
is the summation notation. üni and ün+1

i is the acceleration of point xi at time tn
and tn+1, respectively. The displacement of point xi at time tn+1 can be obtained with an
explicit Verlet-Velocity difference formula [Parks, Seleson, Plimpton et al. (2011)].

u̇n+1
i = u̇ni + ∆t

2ρ

[
(Lu + b)n+(Lu + b)n+1

]
un+1
i = uni + u̇ni ∆t+ (∆t)2

2ρ (Lu + b)n
. (6)

2.3 Damage evolution with bond breakage criterion

The crack initiation, propagation and coalescence represented by damage evolution is
modeled via the permanent rupture of bonds. In order to specify whether a bond is broken
or not, a history-dependent scalar-valued function, µ, that takes on values of either 1 or 0 is
introduced [Silling and Askari (2005)]

µ(ξ, t)=

{
1 if s<s0

0 if s ≥ s0
, (7)
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where the elongation s of a bond means the relative displacement between material points,
each bond breaks and does not contribute to interactions if the elongation exceeds a given
critical value of s0. During the deformation, the material is considered to be perfectly
micro-elastic until it exceeds the critical stretch. The damage measure of a material point
can be defined as the ratio of the number of broken bonds to the number of bonds in the
horizon, and as follows:

ϕ(x, t) = 1−

∫
H

µ(x, t, ξ)dVx′∫
H

dVx′
. (8)

The damage value ranges from 0 to 1. When ϕ(x, t) = 1, all the bonds connected to the
material point x are broken, when ϕ(x, t) = 0, all the bonds are intact. The presence
of a crack is indicated by a damage value of about 0.5. Because the material response is
dependent on the damage state, all the bond stretch needs to be checked at each step.

3 Digital image correlation
The correlation criteria of standard DIC use Normalised Sum-Squared Difference (NSSD)
algorithm to correlate the changes of pixels in a deformed image compared to the reference
image [Chu, Ranson and Sutton (1985)]. The correlation coefficient is defined as

C = 1−
∑∑[

f (x, y)− f̄
] [
h (x∗, y∗)− h̄

]√∑∑[
f (x, y)− f̄

]2∑∑[
h (x∗, y∗)− h̄

]2 , (9)

where C is the cross-correlation coefficient; f (x, y) is the greyscale value of the pixel
intensity at the point (x, y) in the reference image, whose value range is [0, 255], f̄ is the
average grayscale of the corresponding subdomain, h (x∗, y∗) is the grayscale value of
point (x∗, y∗) on the target graph, h̄ similarly is the average grayscale of the corresponding
sub-region.

It is noteworthy that DIC correlates square subdomains that comprise of a wide variation of
greyscale pixels and can be distinguished from other subdomains. Generally, the reference
image is discretized with subdomains with a size of (2M + 1) × (2M + 1) and a central
position (x, y), then the correlation algorithm combined with the marching technique
applied on the target images to find out the corresponding deformed subdomains matching
to the reference subdomains.

The displacement and new position are calculated by the distance between the control point
of a template image and the centroid of a target image with the correlation algorithm to
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maximize the correlation coefficientC, and then the displacement gradients can be obtained
through the following formulas.

x∗ = x+ u+
∂u

∂x
∆x+

∂u

∂y
∆y, (10)

y∗ = y + v +
∂v

∂x
∆x+

∂v

∂y
∆y, (11)

where u and v are the displacement components of the reference image center (x, y) in
coordinate directions, ∆x and ∆y are the distances from point (x∗, y∗) to the center (x, y)
of the reference computational window, and ∂u

∂x ,
∂u
∂y ,

∂v
∂x ,

∂v
∂y are the displacement gradient

components of the subdomain.

4 Coupled DIC and peridynamics
We target to address the difficulties of DIC in both tracking the damage evolution and
accurately capturing the local displacement around discontinuities by using the OSB PD
in local damage regions. This new method of coupling DIC and PD is based on Turner
algorithm [Turner (2014)], and the discrepancy is that our method can deal with complex
experiments better and has higher computational efficiency in areas with the low correlation
coefficient. When we deal with this case, the results are only acquired by PD simulation,
while the Turner algorithm needs to combine PD and DIC results.

Firstly, as with any DIC method, multiple control points are established in the reference
image and discretized by subdomains (Fig. 2(a)). Secondly, the correlation between
target subdomains in the deformed image and the reference subdomains is evaluated using
a correlation algorithm (Fig. 2(b)). Then, the local subdomains with poor correlation
coefficient, such as C<0.9, are recognized as damage regions (Fig. 2(c)), which will
be further analyzed by peridynamics. It is noteworthy that the picked damage region
had better occupy a regular shape. The highly accurate DIC displacements of points
surrounding the picked damage regions are set as displacement boundary conditions (BC)
[Oterkus, Madenci, Weckner et al. (2012)], as shown in Fig. 2(d). To conduct peridynamic
simulations, the meshfree particle method is adopted to discretize the damage regions
into a set of material points with characteristic volume. When using uniform orthogonal
discretization (Fig. 2(e)), the grid spacing between PD material points should be shorter
than that between DIC control points for more accurate results. Finally, the displacement
distribution and local damage in these regions can be captured by the PD analysis, as
displayed in Fig. 2(f).

In the present approach, mechanics and DIC are decoupled, so that the analyst can use any
DIC approach appropriate to obtain global displacements of problems and use PD to obtain
local displacements and damages for areas that DIC does not work accurately.
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(b) Evaluate correlation (c) Select damage region

(d) Treat DIC displacements
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(e) Generate nonlocal
discretization
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(f) Solve damage
region with PD

Figure 2: General overview of the steps involved in the coupled DIC and PD algorithm

5 Numerical examples and results

5.1 Compact tension test of aluminum alloy

In order to validate the capability of the integrated DIC and PD method, a compact tension
specimen test was performed on aluminum alloy [Justin and Antonia (2015)] as shown in
Fig. 3(a). It should be noted that a DIC method without any subpixel accuracy or advanced
sophistication was selected to show that the integration method works well even for a simple
DIC method. The spacing of DIC control point is set as 5 pixels, which is identical to 5 mm
in actual specimens. Moreover, the Young’s modulus, Poisson’s ratio and yield stress are
respectively as E = 70 GPa, ν = 0.32 and σY = 245 MPa [Farahani, Tavares, Belinha
et al. (2018)]. A two-dimensional OSB PD calculation model is established for the red box
area as shown in Fig. 3(b). Specifically, the critical stretch is 0.01. the grid spacing of
material points is chosen as ∆x=2.5 mm the horizon size is set as δ = 3 ∆x, and the time
step is adopted as ∆t = 1× 10−7 s in the explicit time integration algorithm.

Fig. 4 shows the damage distribution or crack trajectory at three loading stages. Besides,
Fig. 5 presents the discontinuous displacements after loading, from which the crack path
can also be observed and be found to be coincident with the damage distribution in Fig.
4(c). Therefore, it verifies that the damage index defined in Eq. (8) is valid for representing
crack paths.

The crack trajectory observed in the experiment is illustrated in Fig. 3(c). Fig. 6 shows the
similarity of crack trajectories from PD numerical prediction and experimental observation,
indicating that the coupled DIC and PD algorithm can identify crack locations robustly,
which in turn can guide the arrangements, i.e., position and density, of DIC control
points to obtain higher precision. This feature is particularly advantageous because the
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(a) Diagram of a pre-cracked compact tension specimen

(b) Grayscale image of reference
configuration

(c) Grayscale image of deformed
configuration with crack

Figure 3: Diagram of a compact tension specimen of aluminum alloy and grayscale images
in DIC measurements

(a) initial stage (b) cracking stage (c) crack arrest at the end of
loading

Figure 4: Damage distribution of the aluminum alloy specimen at different loading stages

microcracking locations in materials are not always identifiable with DIC method.

In addition, the PD strain components are compared with the local strain components from
DIC technique, as shown in Fig. 7. The PD strains outside the crack are comparable with
the local strains, while the PD strains near and inside the crack are different from the DIC
results. The non-smooth and diffuse strain distribution inside the crack illustrates that PD
can describe the localized deformation and failure allowing the discontinuous deformation
due to its nonlocal feature.

5.2 Static three-point bending concrete beam test

5.2.1 Experiment setup of static three-point bending test

There exists a need to better quantify the failure properties of concrete due to its significance
in engineering structures, so that we conducted the static three-point bending tests of
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(a) (b)

Figure 5: Full-field horizontal and vertical displacements of damaged aluminum alloy
specimen
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Figure 6: Numerical and experimental crack trajectories
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Figure 7: Comparison of strains in damaged aluminum alloy specimen from (a) DIC
measurement and (b) PD predictions
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Figure 8: Schematic diagram for the static three-point bending test of concrete beam

Figure 9: Original reference image of the concrete beam surface

concrete beams. As shown in Fig. 8, the plain concrete beam has a length of 550 mm with a
square cross-section of 100 mm×100 mm. A concentrated line load is applied at the middle
of the upper surface, through the 100 kN electronic universal testing machine of CSS44100
manufactured by Changchun Testing Machine Research Institute. The concrete specimen
did not break until the bending load reached to 10.08 kN. The DIC acquisition system
collected 504 images of this three-point bending beam during the loading process. However,
it is difficult for a DIC system to capture the micro-cracks evolution before they become
visible. As mentioned in the introduction, although several improvement strategies have
been proposed to compensate this shortcoming, it is still difficult to capture the unguided
crack paths.

5.2.2 Characteristics of fracture process

Because cracks primarily occur in the middle of the bottom surface with maximum tensile
stress state in the three-point bending test, the DIC technique targets to the red box region as
shown in Fig. 9 and arranges a set of control points in it. The correlation criterion is applied
on the deformed images suffering different load levels, to evaluate the corresponding
cross-correlation coefficients as depicted in Fig. 10. The red areas with cross-correlation
coefficient of C = 1 indicate that the target images are matching well with the reference
image. The blue areas represent the lower correlation between the target image and the
reference image. As shown in Fig. 11(c), the crack in the specimen cannot be detected by
our naked eyes, although the cross-correlation coefficients especially in local blue region in
Fig. 10(b) has suggested the lower correlation, representing the possibility of discontinuous
deformation and cracking.
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Figure 10: Cross-correlation coefficient distribution of deformed images under different
loading level of (a) 3.34 kN, (b) 7.78 kN and (c) 10.00 kN

Table 1: Parameters used in this problem

Parameter
Elastic

modulus
Poisson’s

ratio
Density Horizon

Image
size

Template
size

Value 30 GPa 0.25
2350
Kg/m3 3 × cell radius

1624× 1224
pixels

5× 5
pixels
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(a) (b)

(c) (d)

Figure 11: Surface morphologies from DIC and PD predicted damage distribution under
the loads of (a) 0 kN, (b) 3.34 kN, (c) 7.78 kN, and (d) 10.00 kN respectively
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Figure 12: Numerical and experimental crack trajectories

Therefore, with the guidance of the coefficient distributions, the OSB PD is introduced in
a local rectangular region with poor correlation to achieve the damage evolution and crack
propagation. The concrete material properties and the pixel information of DIC images
for this problem are listed in the Tab. 1. The region is uniformly discretized with grid
spacing of ∆x=2.5 mm, the horizon size is set as δ = 3 ∆x, and the time step is adopted
as ∆t = 1 × 10−7s in the explicit time integration algorithm. Also, the critical stretch is
1.5× 10−3.

The peridynamic simulation can clearly capture the whole process of damage accumulation,
crack initiation and propagation and the final failure pattern of the concrete specimen.
Fig. 11 presents the surface morphologies of four typical deformation states respectively
under the loading level of 0 kN, 3.34 kN, 7.78 kN and 10.00 kN, in which the left
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column is the experimental results and the right column is the PD predicted damage
distribution. Comparing Fig. 11(c) with Fig. 11(a) and Fig. 11(b), one cannot discover
obvious distinctions and surface micro-cracks in the experimental results with naked eyes.
Fortunately, the OSB PD prediction can show the process of damage evolution and crack
propagation. Specifically, there was no damage under the loading level of 3.34 kN;
nevertheless, the damage accumulated significantly, leading to the formation of a damage
band when the load reached to 7.78 kN, as shown in Fig. 11(c); moreover, the crack
propagated gradually to form an apparent macro-crack as the load increased from 7.78 kN
to 10.00 kN, as shown in Fig. 11(d). Furthermore, the numerical and experimental crack
trajectories are plotted together in Fig. 12, which are in good consistent, demonstrating the
capability of the integrated DIC and OSB PD approach. Our method not only improves the
accuracy of DIC results with non-smooth or discontinuous deformation, but also increases
the computational efficiency of PD simulations by simply extracting boundary conditions
from DIC experiment results.

In addition, the PD strain components under different loads are compared with the local
strain components from DIC technique, as shown in Fig. 13. The PD strains outside the
crack are comparable with the local strains, while the PD strains near and inside the crack
are different from the DIC results.

(a)

(b)

Figure 13: Comparison of strains obtained from (a) DIC measurement and (b) PD
prediction under different loads of 3.34 kN, 7.78 kN and 10.00 kN
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Figure 14: Random Young’s modulus in concrete specimens with different homogeneous
indexs m

5.2.3 Fracture simulations considering concrete heterogeneity

Heterogeneity is a typical characteristic of concrete materials. Therefore, it is necessary to
investigate the effect of material heterogeneity on crack initiation and propagation. Here,
the material parameters are assumed to satisfy the Weibull distribution [Tang and Yang
(2012); Wang, Zhou and Shou (2017)]

ϕ (a) =
m

a0

(
a

a0

)m−1

exp

[
−
(
a

a0

)m]
, (12)

where ϕ (a) is a statistical distribution density function, a is the mechanical property,such
as Young’s modulus, a0 is the average value of the mechanical property and m is the
homogeneity level index, which indicates the heterogeneity of a material. The larger the
value of m, the more homogeneous the material.
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m=5
m=20
m=50
PD

Figure 15: Numerical and experimental crack trajectories

Fig. 14(a) shows the Weibull distribution of Young’s modulus in concrete specimens with
the index value of m = 5, 20 and 50. Also, it can be obtained from Figs. 14(b)-14(d)
that the concrete specimen becomes strongly heterogeneous with m = 5. Three OSB
PD simulations with m = 5, 20 and 50 are conducted to get the final crack paths, which
are depicted together with the experimental result in Fig. 15. Although external loading
conditions are same for those simulations and the crack initiation positions are always close,
the crack propagation and the final crack trajectories are slightly different due to the effect
of material heterogeneity.

6 Conclusion

In this paper, a new DIC algorithm based on peridynamics is proposed, which can generate
high-quality displacements for problems involving cracks and other discontinuities. The
combination of DIC technique and peridynamics provided a viable approach for advanced
study of damage in brittle materials, which extends DIC to previously difficult or intractable
problems. The ordinary state-based peridynamics to characterize material damage from
DIC full-field displacements shows great potential. The algorithm is demonstrated to be
robust by analyzing the failure of a compact tension specimen of aluminum alloy and a
static three-point bending concrete beam. It also reveals that the coupled DIC and PD
strategy can be utilized to predict the damage evolution and invisible micro-crack initiation
and propagation of materials and structures before macro-crack forms.
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