
Computer Modeling in Engineering & Sciences         CMES, vol.121, no.2, pp.465-492, 2019 

CMES. doi:10.32604/cmes.2019.07190                                  www.techscience.com/cmes 

 
 

Peridynamic Modeling and Simulation of Ice Craters By 
Impact 

 
Ying Song1, 2, Jiale Yan1, 2, Shaofan Li2, * and Zhuang Kang1 

 
 

Abstract: In the present work, a state-based peridynamics with adaptive particle 
refinement is proposed to simulate water ice crater formation due to impact loads. A 
modified Drucker-Prager constitutive model was adopted to model ice and was 
implemented in the state-based peridynamic equations to analyze the elastic-plastic 
deformation of ice. In simulations, we use the fracture toughness failure criterion in 
peridynamics to simulate the quasi-brittle failure of ice. An adaptive particle refinement 
method in peridynamics was proposed to improve computational efficiency. The results 
obtained using the peridynamic model were compared with the experiments in previous 
literatures. It was found that the peridynamic simulation results and the experiments 
matched well except for some minor differences discussed, and the state-based 
peridynamic model has shown the specific predictive capacity to capture the detailed 
crater features of the ice. 
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1 Introduction 
Studying the behavior of ice under high-velocity impact can be encountered in civil 
engineering, shipbuilding, arctic research, and aerospace missions [Gao, Hu and Wang 
(2014); Liu, Xue, Lu et al. (2014); Poelchau, Kenkmann, Hoerth et al. (2014)]. Although 
many methods have been used to conduct research on ice behavior by impact, it is still a 
challenging task in computational mechanics research. The impact craters in ice can 
provide an understanding of the ice behavior due to impact [Gao, Hu and Wang (2014)]. 
There are two main approaches to capture the features of ice craters, modeling and 
laboratory testing. One of them is successfully done using the hydrodynamic code CTH, 
which produces a state Mie-Gruniesen formulation for ice [Jesse (2010)] to perform 
computer simulations. However, the modeling contains assumptions as to the physics 
involved [Shrine (2004)]. The process of ice behavior under impact remains 
incomprehension due to the complexity of ice physical properties including the density, 
the temperature, the porosity, the salinity, and the strain rate. This makes it a critical issue 
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to select the ice constitutive model. Furthermore, the damage of ice presents a 
discontinuity process during the impact that involves difficulties in solving such 
problems by traditional simulation methods came out of classical continuum mechanics 
[Peng, Zhang and Ming (2018)]. Although laboratory crating experiments [Cui, Zhang, 
Wang et al. (2018)] have many advantages in examining the ice material, it still has 
limitations in the processing of the ice cratering test involving size scale. 
Peridynamic theory, which was proposed by Silling et al. [Silling and Askari (2005)], is a 
non-local computational continuum mechanical method [Kundu (2018); Madenci (2004)]. 
The mechanical behaviors of ice during impact in solids can be characterized by its 
ability to capture discontinuous deformations along the cracks [Ha and Bobaru (2011)]. 
Efforts have been made to simulate ice behaviors by using peridynamics in recent years. 
Wang et al. [Wang, Wang and Zan (2018)] applied peridynamic theory to simulate the ice 
fragmentation subjected to underwater explosive loads. Based on bond-based 
peridynamics, the ice was built by an elastic-brittle constitutive model. Liu et al. [Liu, 
Wang and Lu (2017)] studied the force of a rigid cylindrical structure interacted on the 
ice based on state-based peridynamics. 
Moreover, peridynamic simulations [Bergel and Li (2016)] are usually performed with a 
constant horizon and are used as a uniform particle distribution. In some cases, especially to 
simulate the ice craters in 3D [Lange and Ahrens (1981)], the number of particles 
discretized in peridynamics is too large to use as a uniform particle distribution [Rabczuk, 
Ren and Zhuang (2019)] and may become forbidden from the perspective of memory 
requirements. In terms of this issue, using an adaptive particle refinement method may 
become a reasonable solution [Ren, Zhuang, Cai et al. (2016); Ren, Zhuang and Rabczuk 
(2017); Ren, Zhuang and Rabczuk (2018)]. Bobaru et al. [Bobaru and Ha (2011)] proposed 
an adaptive refinement algorithm based on bond-based peridynamic model that is capable 
of solving two-dimension statics problems. Furthermore, adaptive grid refinement adopted 
by Dipasquale et al. [Dipasquale, Zaccariotto and Galvanetto (2014)] was used to study the 
dynamic crack propagation in two-dimensional brittle materials. 
Unlike the previous work, the present study concludes the following processes: (1) A 
modified Drucker-Prager model was developed [Drucker and Prager (1952)] and was 
implemented into the corresponding peridynamic equations to simulate ice elastic-plastic 
behaviors. (2) Focusing on the ice craters simulation, an ice particle decohesion criterion 
was adopted to capture the brittle failure of ice. (3) The technique of adaptive particle 
refinement was used to investigate the ice craters, due to the reduction in the cost of the 
CPU time and memory requirements. Moreover, the test case was used to demonstrate the 
proposed adaptive particle refinement method. (4) A peridynamic contact algorithm was 
used to model the contact between the rigid projectile and ice targets. 
Our present paper is organized into the following five sections: (a) In Section 2, the 
state-based peridynamic theory and introduction of the updated artificial viscosity are 
overviewed. (b) In Section 3, the ice material properties and the proposed modified 
Drucker-Prager model are prescribed, with the criteria of ice failure based on 
peridynamics. (c) In Section 4, a numerical implementation process is introduced to 
model ice behaviors, mainly focusing on the implementation of the constitutive updates 
into corresponding peridynamic formulations. Furthermore, the contact algorithm and 
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adaptive particle refinement theory are introduced in this Section. (d) In Section 5, the 
numerical simulation of ice craters by impact is discussed as well as the parametric study 
of ice craters, and then used to compare with the corresponding experiments. (e) In 
Section 6, the numerical results of the study drawn some conclusions, and made 
significant closing remarks. 

2 The state-based peridynamic formulation overview 
In this Section, the state-based peridynamic method is briefly introduced. Then the 
integration of the artificial viscosity is presented, which is developed by Monaghan [Liu 
and Liu (2003)] into the peridynamic formulation. 

2.1 State-based peridynamic theory 
Peridynamics was proposed by using the non-local mechanical theory with its equations 
of motion replacing general partial differential derivatives with displacement, including 
integral formulations [Silling (2005)]. Stated-based peridynamics has an apparent 
advantage in simulating ice fragmentation. In the state-based peridynamic theory, 0Ω  as 
a continuum domain can discretize into material particle ix  with the related mass 
density 

ixρ and volume iV  (where 1, 2, ,i = ∞  denotes the index of the particle). 

Assume that a material particle ix  is only affected by the forces from its neighboring 
particles jx  ( 1, 2, ,j = ∞ ) within its local region known as a horizon 

( )i
Hx  and 

illustrated in Fig. 1. The horizon was typically chosen with the radiusδ , known as the 
horizon diameter of the particle ix . The relative position vector is called “bond,” which 
points from one particle ix  to its neighboring particle jx , and can be considered as an 
elastic spring due to the interaction (as shown in Fig. 1). This is denoted as 

ij j i= −ξ x x                                                            (1)                                                                                           
The continuum body deforms under specific deformation χ , and the bond in the current 
configuration is indicated by 

( , ) ( , )ij j it t= −η u x u x                                                   (2)                                                      

The current relative position vector between particle ix  and jx  is then described by 

the deformation state function ijY ξ , which maps the undeformed relative position 
vector to a deformed relative position vector: 

ij ( ) ( )j i j i j i ij ij= − = − + − = +Y ξ y y x x u u ξ η                             (3)                            

 
 
 

 



468                                            CMES, vol.121, no.2, pp.465-492, 2019 

 

 

Figure 1: Sketch of the bond in state-based Peridynamics [Fan and Li (2016)] 

At a reference configuration, the peridynamic governing equation of motion for a particle 
ix  at time t [Madenci and Oterkus (2014)] can be denoted as 

0 ( , ) ( , ) ( , )
ji ij ij iV

t dV tρ = +∫ Xu x f η ξ b x                                      (4)                                   

where 0ρ  is the mass density of the continuum body; ( , )ij ijf η ξ  is a pairwise function 

defined as the non-local integration of force vector that the particle jx  exerts on the 

particle ix  (as shown in Fig. 1); and ( , )i tb x  is the external body force density vector 
(as shown in Eq. (4)). Such non-local formulation contributes toward peridynamics to be 
adequate to perform discontinuity everywhere. 
In the state-based peridynamic theory, one concern is the force state T besides the 
deformation state Y. The momentum balance equation with the force state T can be 
expressed as 

0 ( , ) ( , ) ( , ) ( , )
j

xi
i i j i j i j iH

t t t dV tρ  = − − − + ∫ Xu x T x x x T x x x b x            (5) 

In the present work, the state-based peridynamic theory considered strain-rate effects into 
account, and the following governing equation can be obtained: 

0 ( , ) ( , ) ( , ) ( , )
j

xi
i ij ij ji ji iH

t dV tρ  = − + ∫ Xu x T ξ Y ξ T ξ Y ξ b x                 (6) 

According to the classical continuum mechanics, the relationship between the 
force-vector state T and the first Piola-Kirchhoff stress tensor 

ixP  [Silling, Epton, 
Weckner et al. (2007)] can be expressed as 

( ) 1

, ( )
i iij ij ij x x ijω

−

= ⋅ ⋅T ξ Y ξ ξ P K ξ                                         (7) 

In which ( )ijω ξ is a positive scalar influence function can be represented by the length 

of each bond ijξ ; and 
ixK is the symmetric shape tensor [Fan and Li (2017)] of the 

particle ix  in the reference configuration, which can be defined as 
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( )
i j

xi
x ij ij ij xH

dVω= ⊗∫K ξ ξ ξ                                              (8)  

In the case of the horizon size, it is the same between the particle ix  and the particle jx . 

Assuming that the deformations of each bond ijξ are uniform within the horizon 
ixH , 

we have 
i jx x=K K . 

The relation between 
ixP  and Cauchy stress 

ixσ  is given by 

det
i x i xi i

T
x x

− =  P F σ F                                                    (9) 

where 
ixF  is the non-local deformation gradient. We first obtain the deformation 

gradient tensor 
ixF  to get the first Piola-Kirchhoff stress 

ixP . Therefore, a non-local 

two-point shape tensor 
ixN is introduced as follows: 

( )
i j

xi
x ij ij ij xH

dVω= ⊗∫N ξ Y ξ ξ                                          (10) 

For quasi-uniform particle distributions [Lai, Liu, Li et al. (2018)], the relative deformed 
bonds can be written as 

iij ij x ij= =ξ Y ξ F ξ                                                    (11) 

where 
ixF  is a second-order tensor, which is the approximated deformation gradient. 

Then we get 

( )
i i j i i

xi
x x ij ij ij x x xH

dVω = ⊗ =  ∫N F ξ ξ ξ F K                                (12) 

Then the nonlocal deformation gradient 
ixF can be defined at the particle ix  in terms of 

the shape tensors as 
1

i i ix x x
−= ⋅F N K                                                        (13) 

2.2 Artificial viscosity updated 
Considering large deformation problems, non-physical deformation modes may occur in 
the stated-based peridynamic simulations [Silling and Askari (2005)]. Different 
treatments are required to simulate ice fragmentation that takes the strain rate into 
consideration. Otherwise, the simulation will develop unphysical penetration for particles 
approaching each other [Wang, Zhang, Ming et al. (2019)]. A numerical method is 
proposed in the present work, which the peridynamic formulation modified with an added 
artificial viscous stress term. To do so, the Monaghan type artificial viscosity in 
Smoothed Particle Hydrodynamics [Liu and Liu (2003); Zhang, Sun, Ming et al. (2017)] 
is expressed as follows: 
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( )2

0

0 , otherwise

ij
ij ij

ij ij
ij ij

cα φ β φ

ρ
Π Π

 − +
 ⋅ ≤Π = 



v x，                                 (14) 

where 

( )22

i

ij ij ij
ij

ij ij x

δ
φ

ϕδ

⋅
=

+

v x

x
                                                  (15) 

1 ( )
2ij i jρ ρ ρ= +                                                      (16) 

1 ( )
2

ij i jc c c= +                                                        (17)                                                   

1 ( )
2

ij i jδ δ δ= +                                                       (18) 

ij i j= −v v v , ij i j= −x x x                                              (19) 

where αΠ  and βΠ  are constants set to be 1.0, αΠ  generates a bulk viscosity, βΠ  is 
used to control particle interpenetration. 0.1ϕ =  is used to prevent numerical 

divergences. ijρ , ijc  and ijδ represent the density, the average velocity and the 

smoothing distance between the particles ix  and jx . 

The corresponding Cauchy stress [Fan and Li (2016)] can be introduced as follows: 

( ) ij

j i

viscous
ij j

H
Vω

∈

= Π∑
XX

σ ξ I      (20) 

Then, we can get the first Piola-Kirchhoff viscous stress as follows: 

det
viscous

i i i

viscous T
x x x

− =  P F σ F   (21) 
Finally, the force state combining with artificial viscosity function [Fan and Li (2015)] is 
updated as follows: 

1

( , ) ( )( )
i i iij

viscous
ij ij x x x ijω

−

= − ⋅ ⋅ξT ξ Y ξ P P K ξ   (22) 

2.3 State-based peridynamic decohesion algorithm 
According to the state-based peridynamic theory, when the stretching of a bond exceeds a 
critical value 0s , the bond connecting a pair of particles will break, indicating the 
occurrence and spread of damage. Such critical value 0s  is called “critical bond 
stretch.” In order to separate the body by a fracture surface into two parts, all bonds that 
connecting these particles need to break initially [Madenci and Oterkus (2014)]. The 
material constant energy release rate 0G , which can reflect the crack propagation, can be 
derived from the fracture mechanics as follows:  
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12 cos / 2 2
0 0 0 0

( ) sin
2

z

cz
G c s d d d dz

δ π δ ξ ξ ξ ξ φ φ ξ θ
−

= ∫ ∫ ∫ ∫   (23) 

Moreover, 0s  can be derived as 

0
0

5
18

Gs
E
π

δ
=  (24) 

In which, δ is the radius of the horizon, E is the elasticity modulus. 
The damage at a material point [Madenci and Oterkus (2014)] can be expressed as 

( , )
( , ) 1

t dV
t

dV

µ
φ = − ∫

∫
x

X  (25) 

where 

01,
( , )

0, otherwise
s s

tµ
<

= 


x  (26) 

3 Ice constitutive model description 
The physical properties of ice are mainly affected by parameters such as temperature, 
porosity, salinity, and density. Ice is a special material affected by the strain rate, under 
the low strain rate, ice exhibits plastic properties, and under the high strain rate, ice 
exhibits brittle properties. Moreover, ice exerts strong behaviors under compressive 
conditions than in tension, which was reported by Pernas et al. [Pernas, Pedroche, Varas 
et al. (2019)] and Schulson [Schulson (2001)]. 
Many constitutive models including the Mohr-Coulomb (MC) model and the 
Drucker-Prager (DP) model [Drucker and Prager (1952)] have been successfully used for 
simulating the ice behavior. In the present work, a rate-sensitive constitutive model based 
on the Drucker-Prager model was proposed to simulate the ice material. 

3.1 Elastic behavior 
It is assumed that a hyperelastic-plastic material may model the mechanical responses of 
ice. The following elastic and plastic components [Rist (1997)] provide the deformation 
tensor: 

+e p=ε ε ε   (27) 
Then adopting the expression of Hooke’s law as 

: : ( )e e e p∇ = = −σ C ε C ε ε   (28) 

In which, ∇σ  is an objective rate of Cauchy stress tensor; and eC  is the elastic tensor. 

3.2 Inelastic behavior 
To produce the inelastic behavior of the water ice, Schulson [Schulson (2001)] made the 
experimental observations considering the pressure dependence of strength in ice. Wang 
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et al. [Wang and Ji (2006)] used a Drucker-Prager yield function to present the pressure 
dependence of ice characteristic as follows: 

( )2 2, ( ) 0f p J J A c B pϕ ϕ= − − ≤   (29) 

2

3
9 12 tan

Aϕ

ϕ
=

+
 (30) 

2

tan
9 12 tan

Bϕ ϕ
ϕ

=
+

 (31) 

where c indicates the effective cohesion; ϕ  indicates the effective friction angle; and p 
is the hydrostatic pressure expressed as 

:
3

p = −
σ I   (32) 

J2 is the second invariant of deviatoric stress tensor defined as 

2
3 :
2

J = s s   (33) 

s  is the deviatoric stress tensor.  

3.3 Failure conditions 

Ice is considered to be a brittle material under the condition of an impact. 0G  can be 
expressed as [Wang, Wang and Zan et al. (2018)] 

2
0 =K /IG E   (34) 

where K I denotes the fracture toughness, which can be measured by the experiment and 
reflected the resistance to the brittle fracture of ice [Liu and Miller (1979)]. 
Substitute Eq. (34) into Eq. (24), 0s  can be expressed as [Wang, Wang, Zan et al. 
(2018)] 

2

0 2

5 K
18

Is
E
π

δ
=  (35) 

4 Numerical implementations 
In this Section, the numerical method to update the constitutive model of ice and the 
approach to implementing it into the corresponding state-based peridynamics formulations 
are introduced. 

4.1 Explicit stress update algorithm for ice constitutive model 
The non-ordinary state-based peridynamics can be regarded as a basic form of the 
non-local continuum theory, because the conventional relation of the stress and strain 
through the force-vector state T can be integrated (Eq. (7)). 
The ice is treated as an ideal elastic-plastic material [Song, Yu and Kang (2018)]. Drucker 
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et al. [Drucker and Prager (1952)] put forward the yield surface and was used by Wang et 
al. [Wang and Ji (2006)], which was developed to simulate ice behaviors. In Section 3.2, 
the D-P yield function is given as mentioned. The potential plastic function of 
Drucker-Prager is written as follows: 

( )2 2, ( )g p J J A c B pψ ψ= − −  (36) 

2

3
9 12 tan

Aψ

ψ
=

+
 (37) 

2

tan
9 12 tan

Bψ ψ
ψ

=
+

 (38) 

where ψ  is the effective dilation angle. The yield function overlaps with the potential 
function under the condition, 0φ ψ= = . Eqs. (37) and (38) are identical, which possess 
advantages in presenting the ice’s shear strength. 
The function of the Helmholtz free energy ρΨ  [Fan and Bergel (2016); Fan and Li 
(2017); Fan, Ren and Li (2015)] can be separated into its corresponding elastic and 
plastic components as 

1 1( , ) : :
2 2

e e e eρ ζΨ = + ⋅ ⋅ε ε C ε ζ H ζ  (39) 

where eε  denotes the elastic strain tensor; eC  denotes the elastic modulus tensor; and 
ζ  is the set of kinematic internal state variables (ISVs) [Ren and Li (2010)]. For 
simplicity, based on the linear softening/hardening model, the ISVs are assumed to the 
evolution independently. H  is the softening/hardening matrix, which can be expressed 
as 

0 0
0 0
0 0

cH
H

H

ϕ

ψ

 
 =  
  

H  (40) 

In which, cH , H ϕ , and H Ψ  denote the linear softening/hardening modulus for c, ϕ , 
ψ , respectively. 
Rate equations for stress states and evolution equations for plastic flows [Ren, Li and 
Qian et al. (2011)] can be represented as follows 

( ) : : ( )

( )

e e e p
e

ζ

ρ

ρ

∂ Ψ
= = = −

∂
∂ Ψ

= = ⋅
∂

σ C ε C ε ε
ε

q H ζ
ζ

   









 (41) 

The developed equation of plastic flow [Liu, Amdahl and Løset (2011)] based on the 
potential plastic function can be expressed as following: 
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2( ) ( )( ( ) )p Jg pBγ γ ψ∂∂ ∂
= = +

∂ ∂ ∂
ε

σ σ σ
   (42) 

2

2

2

2

2

2

ii

p ii
ii

jjp
jj

jjp
ij

ij

ij

Sg B
J

d
Sgd B

Jd
g S

J

ψ

ψ

σ
ε
ε γ γ

σ
ε

σ

  ∂ −  
∂       ∂     = = −     ∂     

     ∂
   
∂      

   (43) 

The developed equation of the ISV [Fan, Bergel and Li (2016)] can be written as 

γ= ⋅ = ⋅c H ζ H h

   (44) 
In which h  is a hardening function, which can be obtained by using the maximum 
plastic dissipation principle:  

A
A Ac p

B Bc p

ϕ

ϕ ϕ

ψ ψ

ϕ ϕ

ψ ψ

 
 
 
 ∂ ∂

= − ∂ ∂ 
 ∂ ∂

− 
∂ ∂ 

h  (45) 

f Aϕ∂
= − =

∂
h

c
  (46) 

The constitutive update equations [Fan and Li (2017)] based on the consistency condition 

0f =  can be derived as 

1 : :fγ
χ
∂

=
∂

C ε
σ

   (47) 

: :f f fχ ∂ ∂ ∂
= − ⋅ ⋅
∂ ∂ ∂

C H h
σ σ c

 (48) 

Based on the Newton-Raphson iteration method, the unknown sets ( , , )σ c γ  can be 
solved in the non-linear equations [Fan, Ren and Li (2015)]. The updating algorithm is 
adopted as follows: 

1 :tr e
n n+ = + ∆σ σ C ε   (49) 

1 2 1( ) ( )n ntr tr tr
n n nf J A B pϕ ϕ
+ += − −c   (50) 

if 1 0tr
nf + <  elastic phase: update tr

1 1=n n+ +σ σ  and 1=n n+c c   
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if 1 0tr
nf + ≥  plastic phase [Fan and Li (2017)]: 

1
22 ( )

tr
nf

KB B H Aϕ ψ ϕγ
µ

+∆ =
+ +

  (51) 

1 1 1( 2 )tr
n n nKBψγ µ+ + += − ∆ +σ σ I n   (52) 

1n n γ+ = + ∆ ⋅c c H h   (53) 

 

Figure 2: The direction of stress return in the yield surface [Hughes and Winget (1980)] 

The trial stress is computed by Eq. (50) under small deformation assumption. However, 
solids such as ice subjected to high-velocity impact loads may perform large rotation 
deformations. Therefore, it should be replaced by a nonlinear equation of the 
Hughes-Winget algorithm [Hughes and Winget (1980)]. In the present work, an 
intermediate configuration [Fan and Li (2017)] at time step n α+  can be expressed as 

(1 )n nα α α+ = − + ∆x x u   (54) 
whereα is a scalar and is set to be 0.5, then the deformation gradient [Fan, Bergel and Li 
(2016)] at the configuration n α+x is defined as 

1( )( )
i

j i

n
n n n

ij j i ij x
H

α
α α αω

+
+ + + −

∈

 ∂
= = − ⊗  ∂  

∑
XX

xF ξ x x ξ K
X



 (55) 

Additionally, the gradient of ∆u  for the reference configuration [Fan, Bergel and Li 
(2016)] can be represented as 

1( ) ( )( )
i

j i

x ij j i ij x
H
ω −

∈

 ∂ ∆
∇ ∆ = = − ⊗  ∂  

∑
XX

uu ξ u u ξ K
X



 (56) 

Then the deformation increment [Fan, Bergel and Li (2016)] using the chain rule can be 
represented as 

1( )
x n

n
α

α

−
+

+

∂ ∆
= = ∇ ∆
∂

uG u F
x



 (57) 

which can be divided into the increments of strain and rotation [Fan, Bergel and Li 
(2016)] as follows: 
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( ) / 2T= +γ G G   (58) 
( ) / 2T= −ω G G   (59) 

Then the increment of the objective effective stress [Fan, Bergel and Li (2016)] can be 
written as 

:e∆ =σ C γ   (60) 
Finally, Eq. (49) can be replaced by a set of equations [Fan, Bergel and Li (2016)] as 
follows: 

1 +n n+ = ∆σ σ σ    (61) 
T

n n= ⋅ ⋅σ Ω σ Ω   (62) 
1= +( )α −− ⋅Ω Ι Ι ω ω    (63) 

4.2 Contact algorithm for impact 
In this work, we built a contact detection algorithm by using the penalty method [Li, Hao 
and Liu (2000)], which is based on the peridynamic’s frame, and then it used to be 
converted into peridynamics precisely due to its benefits in performing the evolution 
tendency [Madenci and Oterkus (2014)]. In the following paragraph, the contact 
detection algorithm [Li, Qian, Liu et al. (2001)] and its specific implementation are 
introduced.  
Assuming the incoming ball to be rigid and moves at a constant velocity towards the 
fixed solid (as shown in Fig. 3(a)), the incoming ball pierce through the stationary one. It 
is assumed that certain static solid particles are within the range of the incoming solid 
particles, as shown in Fig. 3(b). These particles are then squeezed out of the solid to 
simulate the infiltration physical process, as shown in Fig. 3(c). The practical contact 
algorithm is provided based on such operation can be expressed as follows.  

   

(a) t (b) t+△t (c) t+△t 

Figure 3: The material particles relocated inside the ice to display the collision with the 
rigid ball 

At the time step ( )t t+ ∆ , in a new location, we can get the velocity of such a particle ix  
calculated as follows [Madenci and Oterkus (2014)]: 
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t t t tt t i i
i

t

+∆ +∆
+∆ −

=
∆

u uv   (64) 

We can get the total contact force as follows [Madenci and Oterkus (2014)], which exerts 
between the impact projectile and the stationary solid. 

1
t t t t
it t i

i i iV
t

ρ
+∆ +∆

+∆ −
= − ×

∆
v vF   (65) 

where t t
i
+∆v  represents the velocity of a particle ix  at time step ( )t t+ ∆ : 

i 1

t t t t t t
i iλ

+∆ +∆ +∆

=

=∑F F   (66) 

1 inside impactor
=

0 outside impactor
t t
iλ
+∆ 




 (67) 

4.3 Adaptive particle refinement theory 
To reproduce the physical phenomena in the ice impact problem applications, especially 
for the cases to simulate ice craters by impact, sufficient refinement particle resolution 
should be adopted. Conventional peridynamics simulations discretize the ice model to a 
large number of particles with a uniform distribution, which leads to prohibitive 
computational costs. In order to reduce costs of the CPU time and memory requirements, 
the dynamics adaptive refinement method was applied to the peridynamic model. In this 
paper, the adaptive particle refinement method was adopted in peridynamic simulation, 
inspired by the SPH method. An example of a plane problem is presented to illustrate the 
precision of the proposed adaptive particle refinement method. For the first time, the 
state-based peridynamics with adaptive particle refinement method extended to the 3D 
simulation of ice crater. 

 

Figure 4: Sketch for the adaptive particle refinement (blue particle are active particle and 
red particles are inactive particle) 
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In the adaptive particle refinement method, the coarse particles should be refined (called 
mother particles) into fine particles (called daughter particles) in the main focus area [Sun, 
Zhang, Marrone et al. (2018)]. As shown in Fig. 4, a mother particle is defined into four 
daughter particles in 2D. Similarly in 3D, a mother particle will be defined into eight 
daughter particles. A parameter α  is defined to determine the spacing between the 
daughter particle and the radius of the daughter particles corresponding to the mother 
particles as follows [López, Roose and Morfa (2013)]: 

d mx x∆ = α∆   (68) 

d mR R= α   (69) 
where the subscripts m and d represent mother and daughter particles, respectively. In this 
paper, 0.5α = . The mass, momentum, and energy of the refinement process should 
conserve, as shown in Tab. 1. 

Table 1: Particle refinement conservation conditions 

Quantity Mother particle Daughter particle 
Mass 

mm   
C

1
j

j
m

=
∑  

Kinetic energy 1
2 mm m mu u  

C

1

1
2 j

j
m

=

⋅∑ j ju u  

Linear momentum 
mm mu  

C

1
j

j
m

=
∑ ju  

Angular momentum 
mm×m mx u  

C

1
j

j
m

=

×∑ j jx u  

Because the particles in the horizon of each particle of the solid are fixed (which is 
different from the fluid particles), the coalescing process can be neglected in the PD 
adaptive refinement method. In the refinement zone, the mother particles will become 
inactive particles and are not considered for computing the governing equations. The 
physical variables can be obtained from the Shepard interpolation. On the contrary, the 
daughter particles in the refinement zone are active, and they will be involved in the 
calculation during the entire process. In the transition zone, the properties of the particles 
are the opposite of the refinement zone; the mother particles are active while the daughter 
particles are inactive particles. 

To obtain the physical variables i inactive∈Ψ  [Bonet and Lok (1999)] of the inactive PD 
particles such as stress and velocity, we address the Shepard interpolation method as 
follows: 

N

i inactive j ij ij
j active

W W∈
∈

Ψ = Ψ∑   (70) 

where N is the active particles’ total number including the horizon of the inactive particle 
i; and ijW  denotes the influence function. According to the velocity obtained by 
interpolation, the position of the inactive particles can be updated by time integration. The 

javascript:;
javascript:;
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inactive particle is also considered the damage criterion. If the stretch between two inactive 
particles is beyond the critical stretch 0s , the bond existing at the two adjacent particles will 
be broken. After that, the inactive particle will no longer affect the active particle. 

5 Numerical simulations 
In the present work, the state-based peridynamic method was validated by using the 
numerical simulations to capture the ice crater problem. The simulation concludes the 2D 
and 3D models with adaptive particle refinement. The numerical results used in comparison 
with the experimental results validate the application of the proposed method. 

5.1 Verification of the state-based peridynamics with adaptive particle refinement 
To validate the objectivity of the proposed numerical algorithm, a quasi-static stretching 
of an elastic plate model was presented. A thin plate with the dimension of 0.01×0.01 m 
is considered, subjected to the traction of 20 m/s at the top and the bottom of the 
boundary, as shown in Fig. 5(a). To check the sensitivity of the simulation results of the 
initial particle distributions, the uniform peridynamic simulations were compared to the 
adaptive particle refinement solutions. The whole domain of the uniform distribution 
contains 10,180 particles, and the grid size is 0.001 m. The refinement particles are 
18,115, and the grid size in the refinement zone is 0.0005 m, as shown in Fig. 5(b). 
Material parameters for ice are chosen as follows: the density ρ as 897.6 kg/m3, Poisson 
ratio ν as 0.33, and Young’s modulus E as 9.31 GPa. The time step is t∆ =1.0×10-9 s.  

 
(a)              (b) 

Figure 5: Illustration of a test plate model 
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(c) 

Figure 6: Comparison results of the Y displacement (a) FEM results (b) Peridynamics 
simulation with a uniform coarse grid (c) Peridynamics simulation with particle 
refinement grid 

By comparing the FEM results and the simulation results in Fig. 6, both the numerical 
results, uniform grid, and particle refinement grid coincide well with the FEM results, 
proving the availability of the implementation of the state-based peridynamic model. 
Another significant conclusion is that the particle refinement results coincide well with 
the uniform particle distribution, illustrating the precision of the proposed adaptive 
particle refinement technique. 

5.2 Ice craters 2D simulation 
In order to demonstrate the proposed numerical method to simulate the fragmentation of 
ice and understand the ice impact catering process, axial cylindrical symmetry is assumed 
for simplicity, and a 2D plane model was built. The ice target had a radius of 0.045 m and 
a depth of 0.08 m, and the projectile balls were modeled as spheres with diameter 
d=0.001 m. In Tab. 2, the primary ice material parameters are listed. For simplicity, 
compared to the ice, the mass of the rigid projectile can be neglected, so that the 
projectile aimed to move at a constant speed as rigid. According to the compared 
experimental data [Shrine, Burchell and Grey (2002)], the projectile has different initial 
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velocities, ranging from 1.07 to 7.04 km/s. 
The mesh size for ice was chosen to be 0.0002 m. Therefore, we discretized the rigid ball 
into 48 hexahedral elements and 57 particles, and we discretized the ice target into 
115,200 quadrilateral elements and 115,881 corresponding particles. The horizon δ is 
chosen to be three times the grid size. We set the boundaries to be free. The time step is 

t∆ =5.0×10-9 s. 

Table 2: Input parameters for ice material 

Young’s modulus E 9.31 GPa 
Density ρ 897.6 kg/m3 
Poisson rate ν 0.33 
Fracture toughness K I

 134 kN m-3/2 
Effective friction angle φ 1.1419 
Effective dilation angle ψ 0.2981 
Effective cohesion c 2,973,800Pa 
Dimensionless coefficient β -1 

A parametric study including analyzing the crater diameter, depth, and diameter ratio was 
carried out under the conditions of varies impact velocities. The definition of crater 
diameter D and depth H is shown in Fig. 7. The simulation ran until the shape of the ice 
crater underwent no significant changes. The total time varied between -91.0 10 st = ×  
and -82.5 10 st = × , depending on the initial velocity of the projectile. 

 

Figure 7: Definition of crater diameter D and crater depth H 
From the simulation results, the first interesting observation is that the peridynamic 
model can observe the damage propagation of the ice target. The total plastic strain and 
the yield strength can be measured by damage. In general, the strength is assumed to be 
constant until the damage reached its critical value, then the cracks propagate freely 
through the ice target. If such cracks are near the surface, spall zone can be defined where 
the material would move and spall, as illustrated in Fig. 7. Finally, the damage of the ice 
is defined as a scalar quantity in the peridynamic model that comprises shear crack zone, 
cracks, and spalled material, as shown in Fig. 7. 
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Figure 8: Damage contours plot with an impact velocity of 1.0 km/s 
Fig. 8 shows the simulation results of the damage contours under the impact condition of 
1.0 km/s velocity. From Fig. 8: (a) the damaged area is around 1 or 1.5x larger than the 
total ice cratering area (shown in red color), and the propagation of the damage directly 
affects the crater evolution; (b) the peridynamic simulation can capture the split material 
and concentric cracks defined in Fig. 7.  
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X(m)

Y
(m

)

-0.02 0 0.02
0.04

0.045

0.05

0.055

0.06

0.065

0.07

0.075

0.08

0.085

0.09

0.095
Damage

0.95
0.9
0.85
0.8
0.75
0.7
0.65
0.6
0.55
0.5
0.45
0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05

 X(m)

Y
(m

)

-0.02 0 0.02
0.04

0.045

0.05

0.055

0.06

0.065

0.07

0.075

0.08

0.085

0.09

0.095
Damage

0.95
0.9
0.85
0.8
0.75
0.7
0.65
0.6
0.55
0.5
0.45
0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05

 
(c) v=4.0 km/s (0.045 sµ ) (d) v=6.5 km/s (0.045 sµ ) 

Figure 9: Damage contours of ice at a different impact speed 
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The second important observation is the final forming shape of the ice craters. The 
peridynamic simulation damage contours of ice at different impact speeds are shown in 
Fig. 9. Assuming that the crater depth and diameter were nearly identical, the projectile 
velocity is typically chosen to be 1.0, 2.5, 4.0, and 6.5 km/s. From Fig. 9, the crater shape 
exhibited similar shapes for the cases of 1.0 and 2.5 km/s, which can be observed as 
concentric cracks and a small pit hole at the bottom of the ice crater. On the contrary, the 
final crater shape changed at projectile velocities over 4.0 km/s. The craters exhibited 
damaged cracks along the radial region, as shown in Figs. 9(c) and 9(d). 
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(c) -9t 9.0 10= ×  s (d) -8t 1.0 10= ×  s 
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(e) -8t 1.3 10= ×  s (f) -8t 1.7 10= ×  s 

Figure 10: Damage propagation in ice under the projectile velocity of 4.0 km/s (a) 
Damage counters of the contact and contraction step -95.0 10t = ×  s ; (b) End of contact 
and contraction step -98.0 10t = ×  s ; (c) Damage counters of the initial cracks 
progression step -99.0 10t = ×  s ; (d) End of initial cracks progression step -8=1.0 10t ×  
s ; (e) Damage counters of the ice craters shaping step -81.3 10t = ×  s ; (f) End of the ice 
craters shaping step -81.7 10t = ×  s  

The last important issue to study is the damage propagation of ice cratering during the 
impact, which can be comprised into three general steps [Jesse (2010)]: (1) the contact and 
contraction step; (2) initial crack progression step; and (3) ice craters shaping step. Ice 
crater development at different steps can be observed in Fig. 10. We define the first step to 
be the contact and the contraction step, the rigid projectile first come into the ice target and 
interact with the ice, as shown in Figs. 10(a) and 10(b). This step begins with the impact 
loading from the rigid projectile. The second step is defined as the initial crack progression 
step, as shown in Figs. 10(c) and 10(d). This step commences when the damage starts to 
accumulate, and cracks continue to grow and terminate when the crack diameter shows no 
significant growth. The damage progression step ends at -81.0 10t = × s. The third step is 
called the ice craters shaping step, as shown in Figs. 10(e) and 10(f). The layer of 0.95 
damaged ice began to expand rapidly along the cracks from the previous step as the ice was 
compressed and continued to grow horizontally along the crater until the final crater shape 
formulated. This step ended when the damaged ice stopped increasing. 

5.3 Ice craters 3D simulation with adaptive particle refinement 
Although the 2D simulation can capture most of the ice behavior features during the 
cratering process with less time and computational costs, it is still a challenging work to 
reproduce the physical phenomena, and sufficient refinement particle solution should be 
proposed. In the 3D simulations of the ice craters problem, the number of ice particles 
discretized in peridynamics is too large to use as a uniform particle distribution, which 
may lead to computational costs. In order to address this problem, an adaptive particle 
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refinement solution is adopted. The adaptive particle refinement 3D model is shown in 
Fig. 11. The ice target is a cylinder with a diameter of 0.09 m and 0.04 m high. The 
diameter of the projectile ball is 0.002 m. The ice was discretized into 1,113,364 
peridynamic particles correspondingly. Material parameters for ice are similar to the 
previous model listed in Tab. 2. The time step is t∆ =1.0×10-9 s. We set the boundaries to 
be free. The projectile velocities were chosen to be 1.0 km/s. 

  

(a) 

 
 

(b) (c) 

Figure 11: 3D numerical model with adaptive particle refinement 

  

 

 
(a) -9t 8.0 10= ×  s (b) -9t 9.0 10= ×  s  
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(c) -8t 1.0 10= ×  s (d) -8t 1.3 10= ×  s  

   

(e) -8t 1.6 10= ×  s (f) -8t 2.0 10= ×  s  

Figure 12: Different stages of damage contours of ice at a velocity of 1.0 km/s  

Fig. 12 shows the contours of the damage at different time stages under the condition of 
1.0 km/s impact velocity. As damage accumulates, the energy wave quickly propagates 
through the refinement zone of the ice target, which indicates that the state-based 
peridynamic model with adaptive particle refinement technique is successful. 

5.4 Analysis and discussion 
Comparing the peridynamic simulation results with the previous experimental data (as 
shown in Figs. 13-15), it can be found that the diameter obtained from the numerical 
simulations is in good agreement with previous experimental data. 
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Figure 13: Crater depth vs. velocity 
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The influence of the projectile velocity on the crater depths is shown in Fig. 13. The 
peridynamic simulation follows the power law trend and coincides well with the power 
law function. The simulation results were mildly above the experimental data but were 
well within the indeterminacy of the power law function. The equation of the power law 
correlation is as follows [Shrine (2002)]: 

0.48 0.47 2H (4.1 0.5) V ,R 0.82±= ± =  (71) 
where H is the crater depth in mm; V is the impact velocity in km/s; and 2R is the 
correlation coefficient. 
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Figure 14: Crater diameter vs. impact velocity 

The relationship between the velocity of the projectile and the crater diameter is shown in 
Fig. 14. Compared with the peridynamic simulation. Shrine et al. [Shrine, Burchell and 
Grey (2002)] developed the experimental data according to the power law fit as follows: 

0.72 0.09 2D (17 3) V , t 0.89±= ± =  (72) 
where D is the crater diameter; and V is the projectile velocity. 
From Fig. 14, the peridynamic simulation data were smaller than the experimental data. 
However, all of the peridynamic simulation results were within the same increasing trend 
of the power law denoted by Eq. (72). 
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Figure 15: Spall diameter ratio vs. impact velocity 
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Fig. 15 shows the influence of the velocity on the spall diameter ratio (H/D), which was 
plotted by the comparison of the experimental data. The power law is given in Eq. (73) 
[Shrine, Burchell and Grey (2002)]: 

2 2H/D (0.24 0.02) (1.5 0.4) 10 V, 0.49R−= ± − ± × =  (73) 
It can be observed that the peridynamic simulation performs on a similar trend to the 
experimental data, which is approximately a small decrease from 0.3 at 1 km/s to just 
below 0.2 at 7 km/s. Fig. 15 shows that with the increase of the velocity, the crater depth 
to crater diameter ratio gradually decreased. 
From the comparison, it can be validated that the state-based peridynamics can simulate 
the general characteristics of ice crater by impact. Although the model can exceptionally 
capture ice crater depth, not all of the ice crater diameters can be obtained due to the 
initial imperfection of the material and the energy dissipation during the ice cratering 
process. The advantage of using the peridynamic simulation is that the peridynamics can 
simulate the evolution of the ice cratering procedure, which is limited during 
experimental tests. The experiments conducted by Shrine et al. [Shrine, Burchell and 
Grey (2002)] can only measure the physical features of the ice crater after the impact. 

6 Conclusions 
In this paper, a modified Drucker-Prager constitutive model for ice based on stated-based 
Peridynamics with adaptive particle refinement technique is developed to simulate the 
impact cratering in ice. The critical advantage in this study is that the constitutive ice 
model was implemented into the peridynamic equations. The proposed numerical model 
can be divided into two parts: elastic-plastic deformation, and brittle failure. The 
modified Drucker-Prager peridynamic model was adopted to analyze the elastic-plastic 
deformation, and we use the fracture toughness failure criterion of ice in peridynamics to 
simulate the brittle process. The proposed state-based peridynamic method was validated 
by the numerical simulations. Comparing with the previous experimental data from the 
open literature, the numerical results coincided well with the previous studies (not only 
from the view of the parametric study but also from the view of damage propagation of 
ice). Another important advantage is that the state-based peridynamics with adaptive 
particle refinement technique is extended to the 3D simulation of ice crater for the first 
time. The adaptive particle refinement technique can save the CPU time and memory 
requirements caused by a large number of particles with a uniform distribution and a 
constant horizon in conventional peridynamic simulations. The last significant result is 
that this validation process develops the dynamic characteristic of the ice. It can be 
illustrated that the state-based peridynamic model is capable of representing ice craters 
features. Considering the high strain rate and temperature effect of the ice, an improved 
peridynamic model with transient heat conduction and thermomechanical deformation in 
ice will be presented in the future. 
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