
 
 
 
Computer Modeling in Engineering & Sciences                 CMES, vol.121, no.2, pp.661-686, 2019 

CMES. doi: 10.32604/cmes.2019.08275                                                                  www.techscience.com/cmes 

 
 

Some Remarks on the Method of Fundamental Solutions for Two-
Dimensional Elasticity 

 
M. R. Hematiyan1, *, M. Arezou1, N. Koochak Dezfouli1 and M. Khoshroo1 

 
 
Abstract: In this paper, some remarks for more efficient analysis of two-dimensional 
elastostatic problems using the method of fundamental solutions are made. First, the effects 
of the distance between pseudo and main boundaries on the solution are investigated and by 
a numerical study a lower bound for the distance of each source point to the main boundary 
is suggested. In some cases, the resulting system of equations becomes ill-conditioned for 
which, the truncated singular value decomposition with a criterion based on the accuracy of 
the imposition of boundary conditions is used. Moreover, a procedure for normalizing the 
shear modulus is presented that significantly reduces the condition number of the system of 
equations. By solving two example problems with stress concentration, the effectiveness of 
the proposed methods is demonstrated. 
 
Keywords: Method of fundamental solutions, elastostatic, location parameter, 
configuration of source points, Ill-conditioned system of equations, shear modulus 
normalizing. 

1 Introduction 
Nowadays, the method of fundamental solutions (MFS) is widely used by engineers and 
scientists in a variety of applications. The MFS has a great capability to provide very 
accurate solutions [Alves (2009); Tsai and Young (2013)] without considering any 
unknown variable within the domain of the problem. A few different boundary-type 
meshfree techniques have also been proposed and developed which are different but 
related to the MFS, see for example [Zhang, Gu, Hua et al. (2018); Liu, Wang and Qu 
(2018); Gu, Fan and Xu (2019)]. Many important meshfree methods based on weak form 
formulation have been proposed, in which efficient evaluation of domain integrals 
requires special techniques [Chen, Yoon and Wu (2002); Hematiyan, Khosravifard and 
Liu (2014); Jamshidi, Hematiyan and Mahzoon (2019)]; however, the MFS is an 
integration-free strong-form meshfree method.  
Besides these advantages, the MFS involves some difficulties, which have restricted its 
fast development, especially in engineering fields. The proper determination of the 
location of source points and solving the resulting ill-conditioned system of equations are 
important issues, which should be dealt with in the MFS.   
Until now, several researches have been conducted for proper determination of the 
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location of source points in the MFS. Tsai et al. [Tsai, Lin, Young et al. (2006)] 
investigated on the MFS for Laplace, Helmholtz, modified Helmholtz, and biharmonic 
equations and found out that more accurate solutions can be obtained by considering 
source points farther from the boundary. They also mentioned that the condition number 
of the system of equations increases by increasing the distance between main and pseudo 
boundaries and concluded that this distance should be limited with an attention to the 
capability of the system solver. Gorzelańczyk et al. [Gorzelańczyk and Kołodziej (2008)] 
investigated on the analysis of the torsion problem with the Poisson’s governing equation 
using the MFS, where they employed the fundamental solution of the two-dimensional 
Laplace equation. They examined circular pseudo boundaries and source contours 
geometrically similar to the main boundary and concluded that the latter leads to much 
more accurate results.  
Karageorghis [Karageorghis (2009)] proposed an optimization method with one variable 
for determining the suitable distance between pseudo and main boundaries in the MFS. 
He examined harmonic and biharmonic boundary value problems with different boundary 
conditions. Wong et al. [Wong and Ling (2011)] proposed an optimization method for 
determining the suitable configuration of the pseudo boundary in the MFS for Laplace 
equation. They considered two cases with one optimization variable. In the first case, the 
distance between main and pseudo boundaries was the unknown of the optimization 
problem, while in the second case, this distance was fixed and the number of source 
points was the unknown of the optimization problem. Liu [Liu (2012)] introduced an 
optimization method for location of source points in the MFS for the Laplace equation. 
He considered one unknown distance factor for each source point and could find the 
unknowns by solving an uncoupled system of nonlinear equations. Li et al. [Li, Chen and 
Karageorghis (2013)] investigated on different configurations of collocation and source 
points in the MFS for 2D Laplace equation. They observed that placing the source points 
on a circle leads to poor results and recommended pseudo boundaries similar to the main 
boundary of the problem.  
Chen et al. [Chen, Karageorghis and Li (2016)] investigated on the configuration of 
source points in the MFS for 2D and 3D boundary value problems governed by the 
Laplace and biharmonic equations. They used an optimization algorithm based on the 
accuracy of the imposition of boundary conditions for proper determination of the 
location of source points. Hematiyan et al. [Hematiyan, Haghighi and Khosravifard 
(2018)] proposed a method for determining the location of collocation and source points 
in the MFS for the 2D Laplace equation without any optimization process. They 
introduced a new index, namely “the location parameter” for source points that expresses 
the location of the source point relative to its neighboring source and collocation points. 
They showed that values greater than 0.8 are suitable for the location parameter of source 
points in the MFS for the 2D Laplace equation. This method was successfully used by 
Mohammadi et al. [Mohammadi, Hematiyan and Khosravifard (2019)] for selecting the 
position of source points in the MFS for steady-state heat conduction analysis.   
Grabski et al. [Grabski and Karageorghis (2019)] applied the MFS for potential boundary 
value problems, in which both intensity and position of source points were unknown. 
This approach yields a system of nonlinear equations. Recently, Grabski [Grabski (2019)] 
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examined four different configurations of source points for analysis of transient heat 
conduction problems using the MFS. He observed that the results were more accurate in 
the cases that source points were located further from the main boundary of the problem. 
As it is seen, most of the above-mentioned researches on the location of source points in 
the MFS are devoted to boundary value problems with the Laplace, Helmholtz, and 
biharmonic equations. The investigations on the configuration of source points in the 
MFS for elastostatic problems have been very rare; however, the MFS formulation for 2D 
and 3D elastostatic problems have been considered by several researches that are briefly 
reviewed here.  
Berger et al. [Berger and Karageorghis (2001)] used the MFS for analysis of elastostatic 
problems in 2D isotropic and anisotropic domains. They analyzed domains with one or 
two materials. Poullikkas et al. [Poullikkas, Karageorghis and Georgiou (2002)] applied 
the MFS to 3D isotropic elastostatic problems. Similar to the work by Berger et al. 
[Berger and Karageorghis (2001)], components of pseudo forces and their locations were 
considered as unknowns of the problem in this work. De Medeiros et al. [De Medeiros, 
Partridge and Brandão (2004)] formulated the MFS with the dual reciprocity method for 
analysis of 2D elastostatic problems involving body forces. They considered circular 
pseudo boundaries and used singular value decomposition for solving the MFS system of 
equations. Marin et al. [Marin and Lesnic (2004)] and Marin [Marin (2005)] used the 
MFS for the Cauchy problem in 2D and 3D elasticity, respectively. They observed that 
the error of solutions decreases by increasing the distance between pseudo and main 
boundaries. Fam et al. [Fam and Rashed (2005)] used the MFS with a new set of 
particular solutions to solve 3D elastostatic problems involving body forces. They 
derived particular solutions in explicit forms for displacements and stresses using a 
decoupling technique. They located the source points on a pseudo boundary similar to the 
main boundary of the problem. 
Tsai [Tsai (2009)] developed the MFS with the dual reciprocity for analysis of 3D 
thermoelastic problems involving body forces. He observed that using truncated singular 
value decomposition (TSVD) could improve the accuracy of the obtained results. Marin 
et al. [Marin and Karageorghis (2013)] formulated the MFS with the method of particular 
solutions for analysis of thermoelastic problems. They derived new particular solutions 
for the nonhomogeneous equilibrium equations. Marin et al. [Marin and Karageorghis 
(2013a, 2013b); Marin, Karageorghis and Lesnic (2015)] used the MFS for inverse 
analysis of inverse thermoelastic problems too. Sun et al. [Sun and Marin (2017)] 
proposed an invariant method of fundamental solutions for analysis of 2D elastostatic 
problems. They used the Tikhonov regularization method and the discrepancy principle 
and obtained very accurate solutions. Askour et al. [Askour, Tri, Braikat et al. (2018)], by 
combination of the MFS, the asymptotic numerical method, and the analog equation 
method, developed a technique for analysis of nonlinear elastic problems. They also used 
the TSVD and Tikhonov regularization methods for solving the resulting ill-conditioned 
system of equations. 
As it can be seen from the above review, several researches have been conducted on the 
configuration of source points in the MFS analysis of boundary value problems with the 
Laplace, Helmholtz, and biharmonic equations; however, to the authors’ best knowledge, 
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no research devoted to the configuration of source points for the MFS analysis of 
elastostatic problems has been reported yet. In the present work, a procedure for 
determining a suitable configuration of source points in the MFS for 2D elastostatic 
problems is presented. A criterion based on the accuracy of imposition of boundary 
conditions is employed for solving the resulting ill-conditioned system of equations using 
the TSVD. Moreover, a method for reducing the condition number of system of equations 
by normalizing the shear modulus is suggested. By analyzing two example problems with 
stress concentration, it is shown that the proposed methods can be efficiently used for 
analysis of complicated 2D elastostatic problems. 

2 The MFS for 2D elastostatic problems 
In the absence of body forces, the governing equations for elastostatic problems are 
expressed as follows: 
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where σ  and ε  are the stress and strain tensors, respectively; u is the displacement 
vector,  ν  and G are the Poisson’s ratio and shear modulus, respectively, and x is a point 
within the problem domain Ω  or over its boundary Γ . The shear modulus G  can be 
expressed in terms of the elastic modulus E  as )1(2/ ν+= EG . The unknowns in a 2D 
elastostatic problem are 1u , 2u , 11ε , 12ε , 22ε , 11σ , 12σ , and  22σ . 

Boundary conditions at a boundary point of a 2D elasto-static problem can be expressed 
as follows: 

)()( xx nn uu =  or )()( xx nn tt =  Γ∈x                (4) 

)()( xx tt uu =  or )()( xx tt tt =  Γ∈x                (5) 

where nu  and tu  are normal and tangential displacement, respectively, and nt  and tt  are 

normal and tangential components of the traction vector at the boundary point. nu , tu , 

nt , and tt  are given functions. As it is seen from Eqs. (4) and (5), two boundary 
conditions are considered at a boundary point. Boundary conditions at a boundary point 
of a 2D problem in a generalized form can be expressed as follows: 

62251241132211 ffffufuf =++++ σσσ               (6) 

62251241132211 ggggugug =++++ σσσ               (7) 

where αf  and αg  with 6 , 2, 1, =α  are given functions. For example, for a boundary 

point with 11 =u  and 012 =σ  as its boundary conditions, we have 11 =f , 16 =f , 
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14 =g , while other functions of αf  and αg  are zero. We describe the MFS formulation 
for plane strain problems only. A plane stress problem formulated in terms of the elastic 
constants ν  and G  can be solved by a solver of plane strain problems by changing ν  
into )1( νν + , while the shear modulus is not changed. 

In the MFS with N sources (fictitious concentrated force), the displacement solution of 
the 2D elastostatic problem is expressed as follows: 
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1ka  and 2ka  are the components of the kth concentrated force (source), which are to be 

determined. kS  with coordinates ),( kk ηξ  represents the location of the kth source point 
and x  with coordinates ),( yx  represents a point of the domain. The displacement 
fundamental solutions for 2D plane strain problems are given by the following equations 
[Berger and Karageorghis (2001)]: 









+−

−
= 2

* 1ln)43(
)1(8

1),(
r
rr

rG
u ji

ijkij δν
νπ

Sx                       (9) 

where kxr ξ−=1 , kyr η−=2 , 2
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By substituting Eq. (8) into Eq. (2) the components of the strain tensor are found as follows: 
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The stress components are found by substituting Eq. (10) into Eq. (3). For plane strain 
problems with 0231333 === εεε  the following equations are obtained: 
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There are 2N unknowns, i.e., 1ka  and 2ka  with k=1 to N. We consider M ( NM ≥ ) 

collocation points MCCC ...,,, 11  over the boundary Γ . By using Eqs. (8) and (12) and 
satisfying Eqs. (6) and (7) for the M collocation points, the following system of 2M 
equations are obtained: 
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The system of equations given in Eqs. (14) and (15) can be expressed as follows: 
[ ]{ } { }baP =                 (20) 
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Eq. (20) represents a system of 2M linear equations with 2N unknowns. For the cases 
with M=N, the system may be solved by a standard system solving method; however, the 
system should be solved using an ordinary least-squares method for the cases with 

NM > . 
For elastostatic problems with a body force or elastodynamic problems, a 
nonhomogeneous term appears in Eq. (1). In the MFS and other methods that use point 
collocation, the nonhomogeneous term can be treated using particular solutions [Liu, 
Wang and Qu (2018)]. 
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3 A suitable configuration for source points in the MFS for 2D elasticity 
The configuration of source points in the MFS has a noticeable effect on the accuracy of 
the solution. If source points are located very close to the boundary, the solution would 
experience undesired oscillations on the boundary. On the other hand, if source points are 
located very far from the boundary, we confront an ill-conditioned system of equations. 
Hematiyan et al. [Hematiyan, Haghighi and Khosravifard (2015, 2018)] have introduced 
a parameter for each source point that describes the position of the source point relative 
to the physical boundary and relative to its neighbouring source points. This parameter 
has been called the location parameter, which is defined as follows:  

10,
),max(

<<= in
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p
i

i
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i K
dd

dK            (24) 

where iK  represents the location parameter for the source point iS . Other parameters in 

Eq. (24) can be defined according to Fig. 1. The source point iS  is shown in Fig. 1. pS  

and nS  are the previous and next source points, respectively. We also consider a base 
point on the physical boundary for each source point. The base point of the source point 

iS  is denoted by iB , which is a point on the boundary with the smallest distance to the 

source point iS . As shown in Fig. 1, the base points of the source points pS  and nS  are 

represented by pB  and nB , respectively. i
id , p

id , and n
id  in Eq. (24) are the distances 

from the source point iS  to the base points iB , pB , and nB , respectively. A large value 
of the location parameter of source points means that the distance between pseudo and 
physical boundaries is large in comparison with the distance between two adjacent source 
points. For a problem with a large value of the location parameter of source points, the 
local effect of each source (pseudo force) on the boundary reduces and therefore, the 
condition number of the coefficient matrix becomes large. For simple geometries such as 
a circular domain, with regular boundary conditions, larger values of the location 
parameter lead to more accurate solutions if a sufficiently accurate system solver is used 
[Hematiyan, Haghighi and Khosravifard (2018)].  

 
Figure 1: Location of a source point relative to the physical boundary and relative to its 
neighboring source points 
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It has been observed that a location parameter greater than 0.80 is suitable for source 
points in the MFS for problems with the Laplace fundamental solutions [Hematiyan, 
Haghighi and Khosravifard (2018)]. In this section, by a numerical study it is observed 
that a location parameter greater than 0.85 is suitable for source points in the 2D 
elastostatic problems. 
Suppose that we want to solve an elastostatic problem in a circular domain as shown in 
Fig. 2. The radius of the circle is 1.0 and boundary conditions are 5.0=ru  and 0=θu . 
The elastic constants are 0.1=E  and 3.0=ν . This problem is solved using the MFS 
with 16 source points and 16 collocation points.  

 

Figure 2: A circular domain with simple boundary conditions 

 
Figure 3: The solution of the circular problem with a) 2.0=K , b) 4.0=K  

 
Figure 4: The angle covered by two adjacent source points 
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The obtained solutions for the deformed shape in two different cases with location 
parameters of 0.2 and 0.4 for source points are shown in Fig. 3. The exact solution for ru  
is uniform over the boundary; however, as it can be seen in Fig. 3, the solution obtained 
by the MFS has a local oscillation. Also it is observed that the oscillation in the case with 

2.0=K  ( 0.2, 1, 2, ..., iK i N= = ) is more than that with 4.0=K . 

 
Figure 5: Variation of ru  between two adjacent base point a) N=16, b) N=64, c) N=256 

For further study, we consider different cases with different numbers of source points 
(N=16, 64, 256, 1024) and different values of the location parameter. The angle covered 
by two adjacent source points is denoted by θ∆  as shown in Fig. 4. By increasing the 
number of source points, the value of θ∆  decreases. For the case with N=16, the value 
of θ∆  is 8/π  (Fig. 4), where the boundary between two adjacent base points has a 
curved shape. For the case with N=1024, the value of θ∆  is / 512π , which is small 
angle and it means the boundary between two adjacent base points in this case is 
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approximately a straight line. The solution of the MFS for radial displacement ( ru ) and 
radial stress ( rσ ) between two adjacent base points for different values of the location 
parameter and different number of source points are shown in Figs. 5 and 6, respectively. 
The exact solutions for ru  and rσ  are uniform over the boundary; however, the solution 
of the MFS has some oscillations over the boundary. From Figs. 5 and 6, it is observed 
that the solutions have an undesired oscillation in the cases with 85.0<K . For better 
clarification, the values of maxuur  and maxσσ r  for different values of N and K at the 

midpoint between two adjacent base points ( 5.0=∆θθ ) are given in Tab. 1. It should 
be mentioned that the maximum values of ru  and rσ  occur at base (collocation) points, 
i.e., at 0=∆θθ  and 1=∆θθ . 

 
Figure 6: Variation of rσ  between two adjacent base point a) N=16, b) N=64, c) N=256 
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Table 1: Values of maxuur  and maxσσ r  for different values of N and K at the 

midpoint between two adjacent base points ( 5.0=∆θθ ) 

N K maxuur  maxσσ r  

16 

0.55 0.96038 0.79199 
0.65 0.98436 0.91238 
0.75 0.99600 0.96672 
0.85 0.99963 0.99782 

64 

0.55 0.99211 0.82865 
0.65 0.99716 0.93415 
0.75 0.99937 0.98476 
0.85 0.99996 0.99892 

256 

0.55 0.99812 0.83570 
0.65 0.99934 0.93800 
0.75 0.99986 0.98600 
0.85 0.99999 0.99905 

We also define the following oscillation factors: 
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where disp.f  and stressf  are the displacement and stress oscillation factors, respectively. 

max)( ru  and min)( ru  are respectively, maximum and minimum values of radial 

displacement over the boundary between two adjacent base points. Similarly, max)( rσ  

and min)( rσ  are maximum and minimum radial stresses. Smaller oscillation factor 
corresponds to less oscillation. Fig. 7 shows the variation of disp.f  with respect to the 

value of the location parameter of source points (K). It is observed that for 85.0≥K  we 
have 4

disp. 107.3 −×<f . The variation of stressf  with respect to K for different numbers of 

source points is shown in Fig. 8. It can be seen that for 85.0≥K  we have 
3

stress 102.2 −×<f . Figs. 7 and 8 show that the oscillation of stress is more than that of 
displacement. However, the oscillations are very small for 85.0≥K . It should be noted 
that larger values of K correspond to larger distances between main and pseudo 
boundaries and also larger values of the condition number.  
Here, we analyzed circular domains. More complicated geometries are studied in Section 
6. It is worth mentioning that Hematiyan et al. [Hematiyan, Haghighi and Khosravifard 
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(2018)] have recommended 8.0≥K  for 2D problems with the Laplace operator; 
however, the present study shows that the location parameter for source points should be 
more than 0.85 for 2D elastostatic problems. Moreover, it should be mentioned that a 
configuration of source points with 85.0≥K is a suitable configuration for 2D 
elastostatic problems but not necessarily the optimum one.   

 

Figure 7: Displacement oscillation factor with respect to the location parameter 

 

Figure 8: Stress oscillation factor with respect to the location parameter 

4 System solving using the singular value decomposition and a suitable truncation 
criterion 
As it was demonstrated in the previous section, for avoiding undesired local oscillation of 
the solution on the boundary, it is necessary to consider a sufficient distance between 
pseudo and physical boundaries. This leads to an ill-conditioned system of equations in 
some problems [Liu (2008)]. Therefore, a reliable method should be used to solve the 
system of equations. The TSVD method has been widely used to solve ill-conditioned 
systems of equations (e.g., [Ramachandran (2002); Chen, Cho and Golberg (2006); Feng 
Li and Chen (2014); Marin, Karageorghis and Lesnic (2016); Li, Lee, Huang et al. 
(2017)]). For efficient use of the TSVD method, a suitable criterion for neglecting some 
smallest singular values should be employed. In this work, a criterion based on the 
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accuracy of the imposition of boundary conditions is used for truncation of a sufficient 
number of singular values.    
For simplicity, we assume that the number of source points is equal to the number of 
collocation points, i.e., NM = . Based on the SVD, the coefficient matrix )(][ ZZ×P  in 
Eq. (20) can be expressed as follows: 

T]][][[][ RWLP =                (27) 

where NZ 2=  and 
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][L  and ][R  in Eqs. (28) and (29) are orthonormal matrices, i.e., ZZ
T

×= ][]][[ ILL , 
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×= ][]][[ IRR , and iλ  in Eq. (30) are the singular values of the matrix )(][ ZZ×P  with 

Zλλλ ≥≥≥ 21 . The condition number of )(][ ZZ×P  can be computed as follows: 
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Based on the TSVD method, the solution of the system of Eq. (20) can be found as 
follows: 
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where the integer number TN  represents the number of truncated singular values. The 
suitable value for TN  should be selected based on a suitable criterion. Some criteria 
based on generalized cross validation [Golub, Heath and Wahba (1979)] and L-curve 
method [Hansen (1992); Hansen and O’Leary (1993)] have been proposed. In this work, 
an alternative criterion based on the accuracy of the MFS solution on the boundary is 
used for this purpose. In the MFS for elastostatic problems, the governing equations of 
the problem are exactly satisfied. Boundary conditions at collocation points are exactly 
satisfied too. However, the boundary conditions are approximately satisfied at other 
boundary points between collocation points. We consider a few test points between two 
neighbouring collocation points as shown in Fig. 9. A value of the truncation parameter, 
i.e., TN , which minimizes the summation of the errors of boundary conditions at test 
points ( ΓE ) is selected. We can start with 0=TN  and then increase TN  and compute the 
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corresponding ΓE . For an ill-conditions system of equations, the value of ΓE  first 
decreases and then increases with increase of TN  and therefore the optimum value of TN  
can be simply found.     

      
Figure 9: Collocation points, source points, and test points in the MFS modeling of a 
problem 

5 Reducing the condition number of the system of equations by normalizing the 
shear modulus 
In applied engineering problems with stiff materials such as metals, the magnitude of the 
shear modulus is very large. In these problems, the magnitude of the stress over a part of 
the boundary with natural boundary condition can be very large, e.g., Pa 108 . On the 
other hand, in the same problems, the magnitude of the displacement is very small, e.g., 

m 10 3− , on the boundaries with essential boundary conditions. Considering Eqs. (6) and 
(7), it is observed that equations corresponding to essential boundary conditions are 
expressed in terms of small numbers, while equations corresponding to natural boundary 
conditions are expressed in terms of very large numbers. It means that the numbers in 
some lines of the coefficient matrix are very small and in some other lines are very large. 
This configuration of numbers makes the coefficient matrix highly ill-conditioned. To 
avoid this issue, before solving the problem using the MFS, we set the shear modulus to 
the value of 1.0. Moreover, prescribed stresses in the natural boundary conditions are 
divided by the shear modulus. Then the problem is solved using the MFS. After that, the 
computed values for stresses should be multiplied by the shear modulus. For better 
explanation of this approach, we can rewrite the governing equations, i.e., Eqs. (1), (2) 
and (3), as follows: 

0)(ˆdiv =xσ                 (33) 
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where Gσσ =ˆ . Eqs. (33), (34), and (35) represent an elastostatic problem with .1=G  
The traction vector on a boundary point with unit normal n, i.e., tσn = , can be 
expressed as Gtnσ =ˆ , which shows that prescribed stresses on the boundary should be 
divided by G in the equivalent problem.  
By this approach, the condition number of the coefficient matrix significantly reduces 
and the problem can be solved more accurately. The effectiveness of normalizing shear 
modulus is demonstrated in Section 6.    

6 Examples 
In this section, two examples with stress concentration are considered. In the first 
example, the stress concentration is due to the shape of the member, while in the second 
example the stress concentration is due to the presence of a concentrated load on the 
boundary. The locations of source points are determined based on the limitation proposed 
in this work. The system of equations in each example is solved by the TSVD using the 
criterion proposed in this study.   
In an elastostatic problem, two boundary conditions are defined for each boundary point. 
The boundary data computed using the MFS at the test points have a difference with the 
prescribed one (exact values). There is usually a difference between the boundary data 
computed using the MFS with the exact ones (prescribed values) at test points. The error 
of boundary data at test points, i.e., ΓE , is defined as follows:  
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where MFSu  and Ex.u  are the MFS and exact solutions for a displacement component and 

MFSt  and Ex.t represent the MFS and exact values of a traction component at a test point, 

respectively. Ref.u  and Ref.t  are reference values for displacement and traction, 
respectively. In this work, the maximum absolute values of displacement and traction are 
used for Ref.u  and Ref.t , respectively. The total number of displacement and traction 

boundary data at test points are denoted by uN  and tN , respectively. Therefore, 

tu NN +  is twice the total number of test points. In this work, only one test point is 
considered between two adjacent collocation points. Each test point is located at the 
midpoint of two adjacent collocation points. 

6.1 A plate with a circular hole 
Consider an infinite plate with a circular hole of radius a  under the uniform far-field 
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tension T . Assuming the center of the hole is placed at the origin of the coordinates 
system and T  is applied in the x-direction, the solution for stress field can be expressed 
as follows [Sadd (2009)]: 
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The maximum stress concentration occurs at ),0(),( ayx = , i.e., point A in Fig. 10, 
where  Tx 3=σ . 

As shown in Fig. 10, a finite part of the infinite plate, which includes a quarter of the hole, 
is considered in this example. Symmetric boundary conditions are considered for the left 
and lower edges of the domain as shown in Fig. 10. For the right edge, i.e., CD, Eqs. (37) 
and (39) are considered as boundary conditions, while for the upper edge, i.e., BC, Eqs. 
(38) and (39) are used as boundary conditions. The problem is solved under plane stress 
condition with MPa 100=T , m 1=a , GPa 80=G , and 3.0=ν .  
To solve the problem by the MFS, two cases with 58 and 118 collocation points are 
considered. The configurations of source and collocation points for these two cases are 
shown in Figs. 11 and 12, respectively. In the first case with 58=N , the distance 
between each source point to the main boundary of the problem is 0.75. In this case, the 
minimum and average values of the location parameter for source points are 0.85 and 
0.95, respectively. In the second case with 118=N , the distance between each source 
point to the main boundary of the problem is 0.65. In this case, the minimum and average 
values of the location parameter for source points are 0.93 and 0.98, respectively. In the 
two cases the minimum value of the location parameter is greater than 0.85. 
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Figure 10: A plate with a hole 

 
Figure 11: Configuration of 58 source and 58 collocation points for the plate with a 
circular hole  

 
Figure 12: Configuration of 118 source and 118 collocation points for the plate with a 
circular hole  
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In the MFS analysis of the problem, the method described in Section 4 was used to solve 
the system of equations and it was observed that there was no need for truncating any 
singular value, i.e., 0=TN . The results for the normal stress along the edge AB, 
obtained by the MFS in comparison with the exact solution are shown in Fig. 13. As it 
can be observed, the results obtained by the MFS are in very good agreement with the 
exact solution. For better comparison of the results obtained with 58=N  and 118=N , 
the results for the normal stress in the x-direction at points A and B are reported in Tab. 2. 
From Tab. 2, it can be seen that the results obtained with 58=N  is sufficiently accurate; 
however, the results corresponding to 118=N  is more accurate.  
The effects of the shear modulus normalizing (described in Section 5) on the results are 
also investigated in this example. The results for normal stresses at points A and B with 
and without shear modulus normalizing are given in Tab. 3. From this table, it is 
observed that the condition number significantly reduces by performing the shear 
modulus normalizing procedure. In the case without shear modulus normalizing, 3 
singular values are truncated; however, the error of the obtained results is more than the 
case with shear modulus normalizing.       

 
Figure 13: Results for the normal stress along the edge AB 

Table 2: The normal stress at points A and B in the plate with a hole 

Method of solution xσ  at point A 

(error) 
xσ  at point B 

(error) 

MFS, 58=N  
303.21 
(1.1%) 

109.29 
(1.8%) 

MFS, 118=N  
300.07 

(0.02%) 
107.35 
(0.06%) 

Exact 300.00 107.41 
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Table 3: The normal stress at points A and B in the plate with a hole, with and without 
shear modulus normalizing 

Method of solution Condition 
number TN  xσ  at point A 

(error) 
xσ  at point B 

(error) 
MFS, 58=N , 

with shear modulus 
normalizing 

71080.8 ×  0 
303.21 

(1.07%) 
109.29 

(1.75%) 

MFS, 58=N , 
without shear modulus 

normalizing 

181013.5 ×  3 
303.75 

(1.25%) 
100.14 

(6.77%) 

Exact --- --- 300.00 107.41 

6.2 A rectangular domain under a pressure with a sharp variation 
In the previous example, the complexity in the geometry resulted in a stress concentration 
at a part of the domain. In the present example, a simple domain is considered; however, 
a load with a sharp variation causes a stress concentration at a part of the domain. 
The geometry and boundary conditions of the problem are shown in Fig. 14. The pressure 

)01.0/()5.1()( 222 xxxp +−= , which has a very sharp variation at 0=x , is applied 
over the upper edge. The other edges of the rectangle are fixed in the normal direction 
and free in the tangential direction. The problem is solved under plane strain condition 
with GPa 200=E  ( GPa 92.76=G ) and 3.0=ν .  
To solve the problem by the MFS, two cases with 56 and 111 collocation points are 
considered. The configurations of source and collocation points for these two cases are 
shown in Figs. 15 and 16, respectively. In both cases, near the critical point (0,0.5), a 
smaller distance between collocation points has been considered. In both cases, the 
location parameter for all source points around the critical point is 0.95. Therefore, the 
source points are located closer to the boundary around the critical point.  
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Figure 14: A rectangular domain under a pressure with a sharp variation 

 
Figure 15: Configuration of 56 source and 56 collocation points for the rectangle 

 

 

Figure 16: Configuration of 111 source and 111 collocation points for the rectangle 

For comparison purposes, the problem has been solved by the finite element method 
(FEM) using ANSYS software too. To obtain an accurate solution at the critical point 
using the FEM, it is necessary to consider a very fine mesh with more than 450000 
quadrilateral 4-node elements. The results at the upper edge of the rectangle are shown in 
Figs. 17 and 18. yσ  and xyτ have been prescribed over the upper edge as boundary 

conditions, therefore, the results for yu  and xσ  obtained by the MFS in comparison with 
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the FEM solution are shown in Figs. 17 and 18. As it can be observed, the results 
obtained by the MFS are in excellent agreement with the FEM with very fine mesh.  

 
Figure 17: Vertical displacement along the upper edge of the rectangle 

 
Figure 18: Normal stress in x-direction along the upper edge of the rectangle 

For better investigation of the convergence rate of the FEM and the MFS, numerical 
results for xσ  at the critical point (0,0.5) with different number of finite elements and 
different number of collocation points are computed. For the FEM modelling of the 
problem, a denser mesh is used around the critical point. The discretization of the 
rectangle with 1200 finite elements is shown in Fig. 19. The numerical results are listed 
in Tab. 4. From this table it is observed that a large number of finite elements are 
required to accurately model the problem. However, it is possible to obtain very accurate 
solutions using the MFS with a relatively small number of collocation points.  
In the previous analysis, we considered a configuration of collocation points with non-
uniform spacing. For better clarification, we also examined a case with 116 collocation 
points and with uniform spacing as shown in Fig. 20. In this case, the distance between 
the pseudo and main boundaries is uniform and equal to 0.285. This distance has been 
found by solving an optimization problem for minimizing ΓE  (see Eq. (36)). The 
obtained value for xσ  at point (0,0.5) in this case is -191.8 MPa. Comparing this value 
with those reported in Tab. 4, it is observed that the results obtained by the configurations 
with non-uniform spacing of collocation points are much better than the case with 
uniform spacing between collocation points. 
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Figure 19: Discretization of the rectangle using 1200 finite elements 

Table 4: Normal stress in x-direction at the critical point of the rectangle with different 
number of elements/collocation points 

Method of solution xσ  at point (0,0.5) 

(MPa) 

FEM 

1200 elements -175.2 
4800 elements -188.9 

19200 elements -196.3 
76800 elements -200.0 

154646 elements -203.3 
459958 elements -203.5 

MFS 
56 collocation points -203.2 
111 collocation points -203.7 

 

 

Figure 20: Configuration of 116 collocation points with uniform spacing and 116 source 
points with uniform distance from the main boundary 

7 Conclusions 
In this work, by a numerical study, the effects of the distance between pseudo and main 
boundaries in the MFS for 2D elastostatic problems were investigated. It was observed 
that in the cases where the source points were near to the main boundary, the obtained 
solutions for displacements and stresses had unacceptable oscillations on the boundary. It 
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was suggested to locate the source points in a way that their location parameters would be 
greater than 0.85. 
Greater values of the location parameter results in more smooth solutions; however, it 
makes the resulting system of equations ill-conditioned. To solve the ill-conditioned 
system of equations, the TSVD with a criterion based on the accuracy of imposition of 
boundary conditions was employed. The solutions of elastostatic problems obtained by 
the MFS exactly satisfy the governing equations of elasticity; however, the boundary 
conditions are only satisfied at collocation points. By making sure that boundary 
conditions are also accurately satisfied at some test points between collocation points, we 
can obtain very accurate solutions.  
In real engineering elastostatic problems, the values of the elastic constants are very large 
and the values of displacements are very small. This is another reason for making the 
system of equations ill-conditioned. A procedure for normalizing the shear modulus was 
suggested in this work and it was observed that it is very effective in reducing the 
condition number of the system of equations and improving the results. 
It was found that problems involving tractions with a local concentration on the boundary 
can be suitably modeled and accurately solved by the MFS. In these cases, one can 
consider condensed collocation points near the critical point on the boundary. The 
spacing between collocation points should be gradually changed from a small value at the 
critical point to a larger value at the other parts of the boundary. We can use a specific 
value of the location parameter (e.g., 95.0=K ) for source points around the critical 
point. By this approach, the source points around the critical points would be closer to the 
boundary (see Figs. 15 and 16).  
The results of the presented numerical examples showed that by considering the remarks 
made in this work, we are able to accurately solve very complicated 2D elastostatic problems 
using the MFS with a small number of collocation points. Since the MFS is a boundary-type 
truly meshfree method, it can be efficiently used for analysis of shape and structural 
optimization problems. It should be mentioned that the application of the presented method to 
three-dimensional problems is not straightforward and needs more investigations. 
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