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Abstract: Fractures in a discrete fracture network can be divided into two parts:
Active fractures, which form a connected fracture network and dominate fluid flow
and solute transport; and inactive fractures, which are dead-end parts of the frac-
tures (isolated fractures will be incorporated into rock matrix) and do not con-
tribute significantly to the fluid flow, but maybe important for the solute transport,
especially for rock matrix diffusion. We present a multi-continuum method (in-
cluding active fracture continuum, inactive fracture continuum and matrix contin-
uum), which is based on the “multiple interacting continua” method, to describe
fluid flow and solute transport in fractured media, including interactions of (1) ac-
tive fractures with inactive fractures, (2) active fractures with matrix and (3) inac-
tive fractures with matrix. A 2-D discrete fracture network is transformed into a
coarse-scale grid-based equivalent continuum model, and each coarse-scale block
is discretized into overlying sub-blocks including active fracture continuum, inac-
tive fracture continuum and nested matrix continua with equivalent properties based
on local fracture geometry information. The permeability tensor for the sub-block
associated with active fracture continuum is determined from local flow simulations
using the underlying discrete fracture network. The permeability for inactive frac-
ture continuum and matrix continuum is assigned with very small value as they do
not significantly contribute to the fluid flow. With this upscaling method, we estab-
lished a heterogeneous, anisotropic permeability tensor field in the study domain.
The above methodology was applied to a 2D BMT (benchmark test) of the inter-
national cooperative project DECOVALEX 2011. This benchmark test consists of
a 20×20 m model domain including a 2-D fracture-network of 7797 individual
fractures with apertures of each fracture correlated to their length. The simulation
results show that the inactive fractures will enhance rock matrix diffusion, which is
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consistent with observations at field experiments as reported in the literatures, and
thus play an important role in solute transport in fractured media.

Keywords: Multi-continuum model, MINC method, Inactive fractures, 2-D dis-
crete fracture network, solute transport

1 Introduction

Fractured media may be represented by stochastic discrete fracture network-matrix
system [Min, Jing and Stephansson (2004); Zuo, Peng, Li, Chen and Xie (2009)].
In such a system, global flow is assumed to occur only through the network of inter-
connected fractures, whereas fractures and rock matrix can exchange mass and heat
locally. With a detailed fracture characterization, fluid flow and solute transport in
fractured media can be investigated using a discrete fracture network (DFN) model
directly [Baghbanan and Jing (2007); Gato and Shie (2008); Zuo, Xie, Zhou and
Peng (2010); Zhao, Jing, Neretnieks and Moreno (2011); Smith, Crocker, Flewitt
and Mahalingam (2012);] or using an equivalent continuum model with upscaled
hydrological parameters from the underlying discrete fracture network [Long, Re-
mer, Wilson, and Witherspoon (1982); Oda (1985); Dershowitz, Lapointe, Eiben
and Wei (2000); Rutqvist, Leung, Hoch, Wang and Wang (2013)], and the interac-
tion of fractures with matrix can hence be captured through characterizing fractures
and matrix explicitly with different hydrologic parameters [Doughty, Salve and
Wang (2002); An, Wu, and Gao (2012)], or through a dual-continuum strategy with
a transfer function linking fracture with matrix [Barenblatt, Zheltov and Kochina
(1960); Warren and Root (1963); Dogan, Class and Helmig (2009)], or through
an “multiple interacting coutinua” method which treats the fracture-matrix inter-
action in a fully transient way by a subgridding technique [Pruess and Narasimhan
(1982) Karimi-Fard, Gong and Durlofsky (2006); Tatomir, Szymkiewicz, Class and
Helmig (2011)]. However, not all the fractures have the same impact on flow and
transport. The dead-end parts of fractures and isolated fractures do usually not con-
tribute significantly to the fluid flow, but may still be important for solute transport,
because they will increase contact areas between fractures and matrix, which may
potentially impact overall flow and transport behavior.

To investigate the effect of dead-end parts of fractures on solute transport, we con-
ceptualize the original fracture-matrix system as three parts: (1) active fractures,
which are connected globally and dominate the fluid flow and solute transport; (2)
inactive fractures, which are dead-end parts of fractures and has little contribution
to fluid flow; (3) matrix, including isolated fractures which here are considered
as part of the matrix. The importance of inactive fractures on transport was also
shown by Zhou, Liu, Bodvarsson and Molz (2006) and Zhou, Liu, Molz, Zhang
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and Bodvarsson (2007) from literature survey of field scale experiments. They
considered diffusion into stagnant water and infilling material within fractures as
one of the reasons of the observed enhancement of field-scale matrix diffusion.
Neretnieks (2002) used a stochastic multi-channel model, which could model dif-
fusion into stagnant water regions, to analyze tracer tests in fractured rock. Wu,
Liu and Bodvarsson (2004) used a triple-continuum model to investigate the effect
of “small fractures” (a similar definition of inactive fractures) on flow and transport
in the unsaturated zone at Yucca Mountain (Nevada) and calibrate its hydrological
parameters to field-scale tests.

In this paper, we present an alternative way of treating inactive fractures by us-
ing a multi-continuum approach, which is based on the “multiple interacting con-
tinua (MINC)” method considering fully transient inter-porosity flow [Pruess and
Narasimhan (1982); Pruess, Oldenburg and Moridis (1999)]. Using this approach,
we study the effect of inactive fractures on solute transport in a 2D discrete frac-
ture network, with the effective hydrological parameters upscaled from the under-
lying discrete fracture network and matrix. A detailed explanation for the multi-
continuum approach is given in Section 2. Then, in Section 3, we first present
a comparison of our multi-continuum model with an analytical solution of triple
porosity model, and thereafter apply the multi-continuum approach to a 2D DFN
benchmark test, that was part of the international cooperative project DECOVALEX
2011.

2 Multi-continuum Model

2.1 Comparison with other conceptual models for handling fracture-matrix in-
teraction

Figure 1 illustrates the multi-continuum concept compared to MINC, and triple-
continuum concept [Wu, Liu and Bodvarsson (2004)]. These three modeling con-
cepts are focused on the handling of fracture-matrix interaction. The MINC method
[Pruess and Narasimhan (1982)] adopts the classical double-porosity approach [War-
ren and Root (1963)] involving a continuum treatment for both the fracture network
and the porous rock matrix (Fig.1 (b)). The double-porosity method assumes that
the inter-porosity flow is “quasi-steady”, while the MINC method considers fully
transient inter-porosity flow by sub-gridding of the matrix domain into sequence
of nested computational volume elements (Fig.1 (b)), which is based on the as-
sumption that the thermodynamic properties of the matrix vary with the distance
from the nearest fracture. Consequently, the crucial point of the MINC method is
the partitioning (or discretization) procedure adopted for inter-porosity flow. More
details about MINC method can be found in Pruess and Karasaki (1982); Pruess
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(1983) and Pruess and Narasimhan (1982).

Figure 1: Schematic of different conceptualizations for partitioning a fracture-
matrix system: (a) Triple-continuum model; (b) MINC model; (c) Multi-continuum
model. (M=matrix; F=Active fractures; f=inactive fractures) Modified from
[Doughty (1999) and Wu, Liu and Bodvarsson (2004)]

The multi-continuum method involving inactive fractures extends the MINC con-
cept by adding one more connection (via inactive-fracture continuum) between
active-fracture continuum and matrix continuum (Fig.1 (c)), which is like the idea
of the triple-continuum concept. However, differences exist between multi- and
triple-continuum models. The triple-continuum is an extension of the double-
permeability model, which can consider matrix-matrix flow, but still assume a
quasi-steady fracture-matrix flow; while the multi-continuum model enables tran-
sient matrix responses. Besides, the triple-continuum model uses two sets of frac-
ture geometric parameters such as fracture spacing for active and inactive fractures
respectively; while the multi-continuum model considers active and inactive frac-
tures as one pattern of fractures, and therefor uses only one fracture spacing. Thus,
the multi-continuum model partitions the fracture-matrix system into three kinds of
continua: active-fracture continuum, inactive-fracture continuum and nested ma-
trix continua. And can handle active fracture-matrix (F-M) interaction, inactive
fracture-matrix (f-M) interaction, and active fracture-inactive fracture (F-f) interac-
tion.
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Principally, the multi-continuum model still follows the assumptions of the MINC
model [Pruess (1983)] as:

(1) Approximate thermodynamic equilibrium exists locally within each of the three
continua at all times at a given location.

(2) The fracture network is sufficiently well connected throughout the considered
fractured porous domain.

(3) The thermodynamic conditions in the rock matrix are considered to depend only
on the distance from the nearest fracture.

2.2 Numerical implementation

The numerical implementation of the multi-continuum discussed above is based on
the framework of integral finite difference method in the TOUGH2 multiphase flow
and heat transport simulator [Pruess, Oldenburg and Moridis (1999)]. The multi-
continuum method uses the similar partitioning scheme as the MINC method. For
a 2-D discrete fracture network (Fig.2 (a)), the “primary mesh” (Fig.2 (b)) is first
specified in terms of integral finite difference form by means of a set of coarse
blocks with volume Vn (n= 1, 2,. . . , N), interface areas Anm, and nodal distance Dnm.
Second, the “secondary mesh” (the complete computational mesh) is generated by
sub-gridding each grid block of the primary mesh into a sequence of overlapping in-
teracting sub-continua, including active-fracture continuum, inactive-fracture con-
tinuum and a series of matrix continua (see Fig.2 (c)). All inter-block connections
(Anm, Dnm) and permeability of the primary mesh are assigned to the active-fracture
system in which global flow and transport occurs. Additional intra-block connec-
tions are generated to permit mass exchange between sub-continua. Fig. 2 (d)
describes the representative intra-block connections of F-M, f-M, F-f and M-M.

2.2.1 Determination of intra-block connections

In one element of the secondary mesh (Fig.2 (d)), assume that the active and in-
active fracture volume fractions are known as φ F and φ f , respectively, with the
fracture spacing FS of the original fracture system composed of both active and
inactive fractures. With the original fracture volume fraction (φF=φ F+φ f , where
subscript F denotes original fractures, F and f for active and inactive fractures
respectively in this context), fracture spacing FS and the “proximity function” in
the MINC method we can determine the interface area AF−M, AM−M and nodal
distance DF−M, DM−M (Pruess 1983). Then the interface area, nodal distance of
F-M, f-M and F-f, and volume of each sub-continuum can be obtained through
the aforementioned parameters, and are listed in Tab. 1. The volumes of active-
and inactive-fracture continua (VF and Vf ) are calculated by their fracture volume
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Figure 2: Schematic of mesh construction of multi-continuum model. (a) Original
discrete fracture network including active and inactive fractures; (b) Primary mesh
of fracture-matrix system; (c) Secondary mesh of fracture-matrix system; (d) A
representative element of secondary mesh.

fraction and coarse block volume (Vn). Each matrix continuum volume (VM) is
obtained by dividing the total matrix volume by the number of matrix continua.
Interface area of F-M and f-M (AF−M, A f−M) are proportional to their relative frac-
ture volume fraction. Nodal distance of F-M and f-M (DF−M, D f−M) are same as
DF−M based on the notion that the active and inactive fractures belong to the same
pattern of fractures. Interface area (AF− f ) and nodal distance (DF− f ) between ac-
tive and inactive fracture continua are treated using geometry of inactive fractures
with the introduction of a characteristic length (l f ) of inactive fractures.

2.2.2 Determination of model parameters in a 2-D DFN

In a 2-D DFN system with a unit thickness, the model parameters for each coarse
block can be determined by geometric information of fractures in that block. The
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Table 1: Geometric parameters of intra-block connections

Interacting Type Sub-continuum Volume Interface Area Nodal Distance

F-M VF = φ FVn AF−M = φ F AF−M DF−M = DF−M
f-M V f = φ f Vn A f−M = (1 - φ F )AF−M D f−M = DF−M
F-f AF− f =V f / l f DF− f = l f / 2

M-M VM = (1 - φF)Vn/NM AM−M DM−M

Note in Tab. 1, φ F=φ F / (φ F +φ f ) is the relative active fracture volume fraction; NM is
number of matrix continua.

active and inactive fracture volume fraction is:

ϕF =
NF

∑
i=1

lFiaFi

An
, (1)

ϕ f = ϕF−ϕF , (2)

where ϕF =
NF
∑

i=1

lFiaFi
An

is the original fracture volume fraction, NF and NF is the num-

ber of original fractures and active fractures in the coarse block respectively, An is
the area of the block, lFi and lFi is the length of an original fracture and an active
fracture, aFi and aFi is the aperture of an original fracture and an active fracture.

To determine the characteristic length of inactive fractures (l f ), we assume that
each original fracture has a part that could be classified as an inactive fracture, and
then l f can be obtained by

l f =
ϕ f An
NF
∑

i=1
aFi

. (3)

The proximity function in the MINC method for an idealized 1-D fracture set and
2-D two perpendicular fracture sets (as shown in Fig.3, the matrix blocks are parti-
tioned uniformly by fractures.) is PROX(x) = 2

a x and PROX(x) = 2(a+b)
ab x− 4

ab x2 =(2
a +

2
b

)
x− 4

ab x2 respectively [Pruess (1983)]. Where a and b is fracture spacing in
respective horizontal and vertical directions, and x is the distance from a fracture.
The first term of the proximity function 2

a or 2(a+b)
ab is just equal to the fracture areal

intensity parameter P32 in one block (Fig.3), where P32 can be estimated in two-
dimensional cases, the average fracture length per unit area [Xu, Dowd, Mardia,
and Fowell (2006)]. Consequently, we can estimate fracture spacing from P32by
equating random fractures in the block to an idealized fracture pattern (Fig. 3)
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based on the fracture distribution. The fracture spacing for fractures which can be
equated to a 1-D fracture set is

FS =
2

P32
= 2/

NF
∑

i=1
lFi

An
. (4)

Whereas the fracture spacing for fractures which can be equated to a 2-D fracture
set is

FSh =
2

P32v
= 2/

NFV

∑
i=1

lFi

An
, (5)

FSv =
2

P32h
= 2/

NFH

∑
i=1

lFi

An
, (6)

where FSh and FSv is the fracture spacing in horizontal and vertical direction re-
spectively, P32v and P32h is the fracture areal intensity parameter in vertical and
horizontal direction respectively, and NFV and NFH is the number of fractures in
vertical and horizontal direction, respectively.

Figure 3: Idealized 1-D (a) and 2-D (b) fracture-matrix system.

2.2.3 Calculation of upscaled permeability tensor of active-fracture continuum

Many upscaling methods have been used to link the local scale to coarse support
scale due to limitations of computer power [Luan, Sun, and Gu (2011); Gu, Zhang,
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Yuan, and Ning (2012); Li, Wang, and Lee (2012)]. In this study, the fracture-
matrix system is transformed into a grid-based continuum model (Fig.2 (b)), and
the upscaled permeability tensor of each coarse block can be estimated by a DFN
flow analysis for the underlying fracture network [Jackson, Hoch and Todman
(2000); Pouya and Fouché (2009)]. In the present study, we used the method of
Pouya and Fouché (2009) to calculate the equivalent permeability tensor of each
coarse block which contains active fractures. Pouya and Fouché (2009) give a rig-
orous definition of the equivalent permeability tensor K which relates mean flux

−→
Q

and the mean pressure gradient
−→
G by an equation of the type

−→
Q =−KKK ·−→G (7)

The permeability tensor K is demonstrated to be symmetric and positive-definite
under linear pressure boundary condition. The condition of linear pressure at the
block contour (as shown in Fig.4) is defined by

p(−→x ) =
−→
A ·−→x + p, (8)

where
−→
A is a constant vector and p a constant scalar, −→x is the position vector at

block boundary.

The mean pressure gradient (
−→
G ) is derived to be equal to the constant vector (

−→
A ),

and can be formulated as

−→
G =

−→
A . (9)

For this case of a 2-D fracture system, mean flux is calculated by

−→
Q =

1
V ∑

k
f (k)−→x (k), (10)

where V is the volume of the block, −→x (k) is the position vector of an intersection
point of a fracture trace with the contour of the domain, and f (k) is the flux going
out of the trace at this point (Fig.4).

Consequently, the equivalent permeability tensor can be constructed by perform-
ing DFN flow simulations for two distinct directions (Fig.4) under linear pressure
boundary conditions.

The inactive fracture-continuum and matrix continua contribute little to the global
fluid flow, and are assigned relatively small permeability.
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Figure 4: A representative block containing active fractures under linear pressure
boundary condition in two distinct directions. P2, P1is the constant hydraulic pres-
sure at upstream and downstream boundary respectively.

3 Numerical examples

3.1 Comparison with analytical solution

In this section, the multi-continuum model is applied to a wellbore flow problem
extracted from Wu, Liu and Bodvarsson (2004). The problem under consideration
is one- dimensional radial flow into a fully penetrating well in a radially infinite,
horizontal reservoir that contains a set of uniform fractures (including active and
inactive fracture) and matrix properties. Without consideration of wellbore stor-
age and skin effects, Liu, Bodvarsson and Wu (2003) and Wu, Liu and Bodvarsson
(2004) present an analytical solution of dimensionless pressure drop at the well-
bore with a triple-porosity model. The basic parameters for the analytical solu-
tion and the derived model parameters for the multi-continuum model are listed in
Tab. 2. The derived model parameters such as fracture spacing (matrix block size)
and characteristic length of inactive fractures are determined from the given inter-
porosity flow shape factor α by using the Warren-Root pseudo-steady state model
[Warren and Root (1963)].

Fig.5 shows the evolution of the pressure drawdown at the wellbore with compar-
ison between numerical and analytical solutions. The pressure drawdown curve
of the multi-continuum model with three continua (one active-fracture continuum,
one inactive-fracture continuum and one matrix continuum, circles) shows good
agreement with the analytical solution of the triple-porosity model (solid line),
and exhibits three distinct, straight, parallel lines in semi-log space which corre-
sponds to the effect of active, inactive fractures and matrix on fluid flow. The
multi-continuum model with ten continua (two fracture continua and eight matrix
continua, dashed line) shows a smoother pressure drop at intermediate time stage
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Figure 5: Comparison of pressure drawdown curves between numerical and ana-
lytical solutions

mainly due to that sub-gridding matrix block into more matrix continua can cap-
ture fully transient fracture-matrix interaction, while the triple-continuum model is
limited to a quasi-steady state inter-porosity flow.

3.2 Application to a 2-D benchmark test (BMT) of DECOVALEX 2011

To study the effect of inactive fractures on the solute transport, we apply the multi-
continuum model to a 2-D discrete fracture network, which is a benchmark test
(BMT) of the DECOVALEX 2011 [Rutqvist, Leung, Hoch, Wang and Wang (2013)].
This BMT consists of a 20×20 m model domain with a 2-D fracture-network model
of 7797 individual fractures with fracture apertures correlated with fracture length
(Fig.6). The model domain under low hydraulic pressure gradient of 10 Pa/m in
horizontal direction is investigated. In our model simulations, we used a stan-
dard solute transport model which is part of the TOUGH2 code and applied the
TOUGH2/EOS1 equation of state module [Pruess, Oldenburg and Moridis (1999)].
Water component 2 is injected at the inlet boundary in a pulse over a short time
period, and then the mass flow of water component 2 at each outlet boundary is
monitored to calculate breakthrough curves (BTC).

The study domain is discretized into 40×40 blocks with overlapping sub-continua
in each block based on the partitioning technique in Section 2. A heterogeneous,
anisotropic permeability tensor field will be established finally in the study domain.
The inactive fracture continuum and matrix continuum is assigned with a low per-
meability coefficient of 1.0×10−20 m2 because of their insignificant contribution
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Table 2: Parameters used in the wellbore flow problem using either a triple-porosity
model or a multi-continuum model of the fractured reservoir

Parameter Value Unit

Basic parameters

Matrix porosity φ M = 0.263
Active fracture porosity φ F = 0.001
Inactive fracture porosity φ f = 0.01
Matrix permeability kM = 1.572×10−16 m2

Active fracture permeability kF = 1.383×10−12 m2

Inactive fracture permeability k f = 1.383×10−14 m2

Total compressibility of three
media

CM =CF =C f = 1.0×10−9 1/Pa

Well radius rw = 0.1 m
Well production rate q = 100 m3/day
Formation thickness h = 20 m
F-M shape factor αF−M = 0.480 m−2

F-f shape factor αF− f = 0.351 m−2

f-M shape factor α f−M = 4.688 m−2

Water density ρ =1000 kg/m3

Water phase viscosity µ =1×10−3 Pa·s
Derived model
parameters

Fracture spacing FS = 1.5 m

f characteristic length l f = 0.24 m

to global fluid flow. The matrix porosity of each block is around 0.316% (consid-
ering isolated fractures in the block), and the matrix tortuosity is 1.0×10−2. The
molecular diffusion coefficient is 1.0×10−9 m2/s.

The BTC at the three flow outlet boundaries is compared for simulation results
derived by different research teams in the DECOVALEX project using different
models (Fig.7). The IC team used the NAPSAC DFN model and particle tracking
method for simulating solute transport; KTH team used distinct element method
with UDEC and particle tracking method [Rutqvist, Leung, Hoch, Wang and Wang
(2013)]. The BTCs obtained by the above three models show a reasonably good
agreement and exhibit long tailing behavior of solute transport under low hydraulic
pressure gradient due to rock matrix diffusion.

The effect of inactive fractures on solute transport is investigated through a compar-
ison of solute concentration evolution in the rock matrix (Fig. 8a) and breakthrough
curves (Fig. 8b) between multi-continuum model and active-fracture model. In the
active-fracture model we did not consider the effect of inactive fractures, but we
used the same permeability tensor field, determined from DFN flow simulations in
the local coarse block. The comparison of the results in Fig. 8 indicates that the
inactive fractures enhance rock matrix diffusion via increasing contact areas be-
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Figure 6: A 20×20 m 2-D fracture network model with 7797 fractures under hori-
zontal hydraulic pressure gradient

Figure 7: Comparison of breakthrough curves among different research teams
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Figure 8: A comparison between the multi-continuum model and the active-fracture
model: (a) evolution of solute concentration in the rock matrix; (b) Breakthrough
curves.

tween fracture and matrix systems (Fig. 8a) and impact the overall solute transport
behavior (Fig. 8b). The enhancement of rock matrix diffusion in this case is not
very strong due to the fact that the this is a very dense and well-connected fracture
network in which the total volume fraction of inactive fractures (0.18×10−3) is one
order of magnitude less than that of active fractures (0.11×10−2). However, we can
still infer that although inactive fractures do not significantly impact the total flow
through the model, it can have a significant impact on the solute transport.

4 Conclusions

In this paper a multi-continuum model which can consider the effect of inactive
fractures was developed. The model was verified against an analytical solution of a
wellbore flow problem, and then applied to a 2-D fracture network system to study
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the effect of inactive fractures on solute transport. The simulation indicates that
the inactive fractures, which although have little contribution to global fluid flow,
will increase the contact areas between fracture and matrix systems, and this will
enhance rock matrix diffusion and impact the overall transport behavior. This en-
hancement of matrix diffusion through inactive fractures in a 2-D fracture network
is also consistent with the findings of field scale experiments [Zhou, Liu, Bodvars-
son and Molz (2006)].
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