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Non-Singular Method of Fundamental Solutions based on
Laplace decomposition for 2D Stokes flow problems

E. Sincich1 and B. Šarler1,2,3

Abstract: In this paper, a solution of a two-dimensional (2D) Stokes flow prob-
lem, subject to Dirichlet and fluid traction boundary conditions, is developed based
on the Non-singular Method of Fundamental Solutions (NMFS). The Stokes equa-
tion is decomposed into three coupled Laplace equations for modified components
of velocity, and pressure. The solution is based on the collocation of boundary con-
ditions at the physical boundary by the fundamental solution of Laplace equation.
The singularities are removed by smoothing over on disks around them. The deriva-
tives on the boundary in the singular points are calculated through simple reference
solutions. In NMFS no artificial boundary is needed as in the classical Method of
Fundamental Solutions (MFS). Numerical examples include driven cavity flow on
a square, analytically solvable solution on a circle and channel flow on a rectan-
gle. The accuracy of the results is assessed by comparison with the MFS solution
and analytical solutions. The main advantage of the approach is its simple, bound-
ary only meshless character of the computations, and possibility of straightforward
extension of the approach to three-dimensional (3D) problems, moving boundary
problems and inverse problems.

Keywords: Stokes problem, Laplacian decomposition, non-singular method of
fundamental solutions, Laplace fundamental solution.

1 Introduction

Stokes or creeping flow is a type of fluid flow where the advective inertial forces are
small compared with the viscous forces. This is a typical situation in flows where
the fluid velocities are very slow, the viscosities are very large, or the length-scales
of the flow are very small. Such a situation occurs in many natural and techno-
logical systems. In nature, for example, this type of flow occurs in swimming
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of microorganisms and sperm as well as in the flow of lava. In technology, for
example, it occurs in the mushy zone of metal solidification systems, lubrication
problems, cooling of microelectronic devices, and in the flow of viscous polymer-
s. Consequently, Stokes flow appears also in a spectrum of biomedical situations
like in modelling of the blood flow in the cardiovascular system [Quarteroni and
Veneziani (2003); Vignon-Clementel, Figueroa, Jansen, Taylor (2006)] and airflow
in the lungs [Baffico, Grandmont, Maury (2010)].

The Method of Fundamental Solutions (MFS) has been widely applied in recent
years for the computational analysis of fluid flows. For instance, Alves and Sil-
vestre (2004); Young, Jane, Fan, Murgesan and Tsai (2006) used the latter for
computing the solution to 2D and 3D Stokes flows and Navier Stokes flows [Y-
oung, Lin, Fan, Chiu (2009)]. As it is well known, the MFS is a meshless boundary
collocation technique, particularly suitable for tracking moving and free boundary
problems [Chantasiriwan, Johansson and Lesnic (2009), Šarler (2006)]. We refer to
[Chen, Karageorghis and Smyrlis (2008)] for an exhaustive and detailed treatment
of this topic. The main limitation of this method is the necessity of the existence of
a known fundamental solution. Moreover, in the presence of a singular fundamen-
tal solution, it is necessary to introduce a fictitious boundary outside the physical
boundary in order to make possible the determination of expansion coefficients.
The optimal location of such an artificial boundary is not easy to find. It is widely
accepted that this feature of the MFS represents a main drawback of the method.
Indeed, as a matter of fact, in many practical situations, the artificial boundary is
somehow arbitrary and leads to unstable reconstructions of solution, particularly of
complex-shaped boundary problems. In this respect, a rather novel method, called
NMFS, which has been originally introduced in [Young, Chen and Lee (2006)]
for potential problems and later developed in [Šarler (2009)] for potential flows
problems, allows the sources and the collocation points to coincide on the physical
boundary without any requirement of a fictitious boundary. We recall the follow-
ing related advances of the NMFS for porous media flow with moving boundaries
[Perne, Šarler and Gabrovšek (2012)] and solid mechanics [Liu and Šarler (2013),
(2014)]. Barrero-Gil (2012) developed NMFS for 2D [Barrero-Gil (2013)] and ax-
isymmetric Stokes problems by using the Stokes fundamental solution. Moreover,
in [Cortez (2001), Cortez, Fauci and Medovikov (2005), Smith (2009)] the so called
method of regularized Stokeslet has been efficiently employed to the more general
situation of Stokes flow driven by forces also in the three dimensional setting. The
latter is based on the smoothing of the fundamental solution force by spreading it
over a ball centred on the singularity leading to the so called regularized Stokeslet.
Let us also observe that there exist in the literature other regularization techniques
for the MFS applied to Stokes problem. For instance, in [Gaspar, (2009)] the ap-
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proximation of the Laplacian principal part in the Stokes equation by means of a
suitable fourth order operator leads to a corresponding fundamental solution with
no singular behavior at the origin. With no ambition of completeness we mention
here some computational methods for Stokes flow. In [Jana, Metcalfe and Otino
(1994)] a boundary integral equation method has been used to obtain the steady s-
tate flow field in vortex flow, while in [Anderson, Ternet, Peters and Meijer (2006)]
the authors provided a spectral element method to compute the steady state three
dimensional velocity in a lid-driven cubical cavity. In [Hwang, Anderson, Hulsen
(2005), Kang, Hulsen, Anderson, den Toonder, Meijer (2007)] the finite element
method combined with the fictitious domain approach was employed to compute
the steady state of a two dimensional flow field. In [Avila, Han and Atluri (2011)]
a new MLPG-Mixed-Finite Volume method has been introduced for the solution of
two dimensional steady state Stokes equations. For an exhaustive treatment of the
MLPG method we refer to [Atluri and Zhu (1998)].

Moreover, we refer to the expository article [Dong, Alotaibi, Mohiuddine, Atluri,
Yusa and Yoshimura (2014)] for an unification of a variety of computational
methods, such as Collocation, Finite Volume, Finite Element, Boundary Element,
MLPG, Trefftz methods, and Method of Fundamental Solutions.

In this paper we show an alternative NMFS for Stokes flows problems. The new
feature of our results relies on the combined use of the regularized Laplace funda-
mental solution as proposed by Liu (2010) and improved by Kim (2013) and the
decomposition of the 2D Stokes problems into three Laplacian problems [Curteanu,
Elliot, Ingham and Lesnic (2007)]. Such a decomposition consists in the introduc-
tion of two auxiliary harmonic functions, defined by means of the two compo-
nents of the velocity field and the harmonic pressure itself. Moreover, as shown in
[Curteanu, Elliot, Ingham and Lesnic (2007)], such a reformulation leads to a prob-
lem, equivalent to the original Stokes system, provided a divergence free condition
is satisfied on the boundary. This formulation in contrast to [Barrero-Gil (2012),
Barrero-Gil (2013)] does not employ complicated Stokeslets. The paper is orga-
nized as follows: in Sect. 2 we outline the underlying mathematical formulation
of our method, whereas in Sect. 3 the proposed treatment of the singular terms is
discussed. Then in Sect. 4, three numerical examples are provided to show the
efficiency and the accuracy of the adopted strategy. Finally, conclusions and future
research directions are drawn.

2 Governing Equations

Let Ω be a connected two-dimensional domain with boundary Γ, filled with incom-
pressible steady Stokes flow. We consider Cartesian coordinate system with base
vectors i and j and coordinates px and py of the position vector p. The velocity field
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v = vxi+ vyj and the pressure field P is solution of the following Stokes equation

0 =−∇P(p)+µ∇
2v(p) ; p ∈Ω (1)

∇ ·v(p) = 0; p ∈Ω (2)

here µ represents a constant viscosity. By combining Eq. (1) and (2) it easily
follows that

∇
2P(p) = 0; p ∈Ω (3)

Let us observe that in the system (1, 2) the velocity components and the pressure
are coupled. In order to simplify the treatment of such a system we perform a
change of the unknown variables. The latter stems from the fundamental remarks
by Oseen and Lamb.

Indeed, we have that (1) and (2) are equivalent to

∇
2v′ (p) = 0; p ∈Ω (4)

∇
2P(p) = 0; p ∈Ω (5)

∇ ·v(p) = 0; p ∈ Γ (6)

provided the components vx and vy of the velocity vector v satisfy

µvξ (p) = v
′

ξ
(p)+

pξ

2
P(p) , ξ = x,y (7)

We give here a sketch of the proof of the equivalence between (1, 2) and (4, 5, 6).
First, we show that (1, 2) implies (4, 5, 6).

By taking the Laplacian of the modified velocity components, we obtain

∇
2v
′

ξ
(p) = µ∇

2vξ (p)−∇
2
[ pξ

2
P(p)

]
, ξ = x,y (8)

The last terms in equation (8) can be manipulated as

∇
2
[ pξ

2
P(p)

]
=

∂

∂ pξ

P(p) , ξ = x,y (9)

which gives

∇
2v
′

ξ
(p) = µ∇

2vξ (p)−
∂

∂ pξ

P(p) = 0, ξ = x,y (10)
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Finally, equation (6) follows from (2) and the smoothness of the velocity compo-
nents up to the boundary Γ. Now we prove the converse, or namely that (4, 5, 6)
implies (1, 2). Obviously, we have by (4), (7) and (7) that

0 = ∇
2v
′

ξ
(p) = ∇

2
(

µvξ (p)−
pξ

2
P(p)

)
= µ∇

2vξ (p)−
∂

∂ pξ

P(p) , ξ = x,y

(11)

Hence we proved that (1) holds. In order to infer (2), we observe that by (1) we
deduce

0 =
∂

∂ pξ

(
µ∇

2vξ (p)−
∂

∂ pξ

P(p)
)
= µ∇

2
(

∂

∂ pξ

vξ (p)
)
− ∂ 2

∂ p2
ξ

P(p) , ξ = x,y,

(12)

Hence by summing up the above two equations for ξ = x,y we obtain that

µ∇
2
(

∂

∂ px
vx +

∂

∂ py
vy

)
−∇

2P = 0 (13)

Moreover by (3) we get

∇
2 ( ∇ ·v(p) ) = 0; p ∈Ω (14)

Moreover, being

∇ ·v(p) = 0; p ∈ Γ (15)

we have that (2) follows from (14), (15) and the uniqueness of the Dirichlet prob-
lem for harmonic functions. Thanks to this change of variables, our problem now
amounts to find the three unknown functions v

′
x (p), v

′
y (p) and P(p). We refer to

[Curteanu, Elliot, Ingham and Lesnic (2007)] for a detailed discussion on these top-
ics and the equivalence between (1), (2) and (4), (5), (6). The boundary is divided
in two not necessarily connected parts Γ = ΓD

⋃
ΓT . On the part ΓD the Dirich-

let boundary condition are given, while on the possibly empty part ΓT the traction
(Neumann) boundary conditions are prescribed.

1
µ

[
v
′

ξ
(p)+

pξ

2
P(p)

]
= vΓξ (p) ; p ∈ ΓD, ξ = x,y (16)

−P(p)nx+2µ

(
∂

∂ px
vx (p)

)
nx+µ

(
∂

∂ py
vx (p)+

∂

∂ px
vy (p)

)
ny = tx (p) ; p ∈ ΓT (17)
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−P(p)ny+µ

(
∂

∂ py
vx (p)+

∂

∂ px
vy (p)

)
nx +2µ

(
∂

∂ py
vy (p)

)
ny = ty (p) ; p ∈ ΓT

(18)

where n = (nx,ny) is the outer unit normal to Γ. By the superposition introduced in
(7) the above conditions read as follows(

2
∂

∂ px
v
′
x (p)+ px

∂

∂ px
P(p)

)
nx+

+

(
∂

∂ px
v
′
y (p)+

∂

∂ py
v
′
x (p) +

px

2
∂

∂ py
P(p) +

py

2
∂

∂ px
P(p)

)
ny = tx (p) ; p ∈ ΓT

(19)(
∂

∂ px
v
′
y (p)+

∂

∂ py
v
′
x (p) +

px

2
∂

∂ py
P(p) +

py

2
∂

∂ px
P(p)

)
nx+

+

(
2

∂

∂ py
v
′
y (p)+ py

∂

∂ py
P(p)

)
ny = ty (p) ; p ∈ ΓT

(20)

Moreover, by assuming the incompressibility, we have the following additional
condition at the boundary

∂

∂ px
vx (p)+

∂

∂ py
vy (p) =

1
µ

∂

∂ px

[
v
′
x (p)+

px

2
P(p)

]
+

1
µ

∂

∂ py

[
v
′
y (p)+

py

2
P(p)

]
=

∂

∂ px
v
′
x (p)+

∂

∂ py
v
′
y (p)+ P(p) +

px

2
∂

∂ px
P(p) +

py

2
∂

∂ py
P(p) = 0; p ∈ Γ

(21)

3 Solution procedure

3.1 Solution of the Stokes flow

The common features of the MFS and the NMFS for the solution to the Stokes
system (1) and (2) are discussed first. The differences are elaborated afterwards.
The main underlying idea consists in representing the three harmonic functions,
v
′
x, v

′
y and Pappearing in Eq. (4) and Eq. (5) by Nglobal approximating functions

ϕ jand their coefficients αx
j , α

y
j and α j, namely

v
′

ξ
(p) =

N

∑
j=1

α
ξ

j ϕ j(p), ξ = x,y (22)

P(p) =
N

∑
j=1

α jϕ j(p) (23)
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where p ∈Ω and the approximation functions are harmonic in the open domain Ω.
Because of (22) and (23) the incompressibility condition (21) reads as follows

N

∑
j=1

α
x
j

∂

∂ px
ϕ j (p)+

N

∑
j=1

α
y
j

∂

∂ py
ϕ j (p)

+
N

∑
j=1

α j

(
ϕ j (p)+

px

2
∂

∂ px
ϕ j (p)+

py

2
∂

∂ py
ϕ j (p)

)
= 0; p ∈Γ

(24)

The boundary conditions can be prescribed for any of the three quantities, name-
ly the fluid velocity components (vx, vy) and the pressure P. Moreover, the two
quantities being considered may change over the various boundary sections.

In view of Eqs. (22) and (23) the Dirichlet boundary conditions can be written as

1
µ
(

N

∑
j=1

α
ξ

j ϕ j (p) +
pξ

2

N

∑
j=1

α jϕ j (p)) = vΓξ (p) ; p ∈ ΓD, ξ = x,y, (25)

while the fluid traction conditions read as follows

N

∑
j=1

α
x
j

(
2

∂

∂ px
ϕ j (p)nx +

∂

∂ py
ϕ j (p)ny

)
+

N

∑
j=1

α
y
j

(
∂

∂ px
ϕ j (p)ny

)
+

+
N

∑
j=1

α j

(
px

∂

∂ px
ϕ j (p)nx +

py

2
∂

∂ px
ϕ j (p)ny +

px

2
∂

∂ py
ϕ j (p)ny

)
= tx (p) ; p ∈ ΓT

(26)

N

∑
j=1

α
x
j

(
∂

∂ py
ϕ j (p)nx

)
+

N

∑
j=1

α
y
j

(
∂

∂ px
ϕ j (p)nx +2

∂

∂ py
ϕ j (p)ny

)
+

+
N

∑
j=1

α j

(
px

2
∂

∂ py
ϕ j (p)nx +

py

2
∂

∂ px
ϕ j (p)nx + py

∂

∂ py
ϕ j (p)ny

)
= ty (p) ; p ∈ ΓT

(27)

3.2 Discretisation

In order to discretize the problem, we fix N collocation points p1,...,pN on the
boundary Γ. We are now in the position to formulate the Stokes problem at hand as
the solution of a linear system of 3N algebraic equations

Ax = b (28)



400 Copyright © 2014 Tech Science Press CMES, vol.99, no.5, pp.393-415, 2014

where A stands for a 3N× 3N matrix with entries Ai j, x is a 3N× 1 vector with
entries x j and b is 3N×1 vector with entries bi,

Ai, j =
1
µ

ϕ j(pi)χD(pi)+

(
2

∂

∂ px
ϕ j (pi)nx +

∂

∂ py
ϕ j (pi)ny

)
χT (pi) , (29)

Ai, j+N =
∂

∂ px
ϕ j (pi)nyχT (pi) , (30)

Ai, j+2N =
1
µ

pix

2
ϕ j(pi)χD(pi)

+

(
pix

∂

∂ px
ϕ j (pi)nx +

piy

2
∂

∂ px
ϕ j (pi)ny +

pix

2
∂

∂ py
ϕ j (pi)ny

)
χT (pi),

(31)

Ai+N, j =
∂

∂ py
ϕ j (pi)nxχT (pi) , (32)

Ai+N, j+N =
1
µ

ϕ j(pi)χD(pi) +

(
∂

∂ px
ϕ j (pi)nx +2

∂

∂ py
ϕ j (pi)ny

)
χT (pi) , (33)

Ai+N1,2N+ j =
1
µ

piy

2
ϕ j (pi)χD (pi)

+

(
pix

2
∂

∂ py
ϕ j (pi)nx+

piy

2
∂

∂ px
ϕ j (pi)nx+piy

∂

∂ py
ϕ j (pi)ny

)
χT (pi) ,

(34)

Ai+2N, j =
∂

∂ px
ϕ j (pi) , (35)

Ai+2N,N+ j =
∂

∂ py
ϕ j (pi) , (36)

Ai+2N,2N+ j = ϕ j (pi) +
pix

2
∂

∂ px
ϕ j(pi) +

piy

2
∂

∂ py
ϕ j(pi), (37)

x j = α
x
j , x j+N = α

y
j , x j+2N = α j, (38)

for i = 1, ...,N and j = 1, ...,N

bi = vΓx (pi)χD (pi)+ tx (pi)χT (pi) , i = 1, ...,N (39)

bi = vΓy (pi)χD (pi)+ ty (pi)χT (pi) , i = N +1, ...,2N (40)

bi = 0, i = 2N +1, ...,3N (41)

where χD and χT denote the indicator functions of the portion ΓD and ΓT respec-
tively.
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3.3 The classical method of fundamental solutions

We recall that a possible choice for the 2D fundamental solution for the Laplace
equation is the following

f ∗(p,s) =
1

2π
log(|p− s|−1), (42)

where p stands for a collocation point and s for a source point, respectively.

In the MFS approach, we shall choose the fundamental solution source points lo-
cated outside the physical domain, or namely p 6= s and s /∈ Ω. Roughly speaking
they lie on an “artificial boundary”. The optimal location of the source points is a
delicate issue. In general, it can be observed that if the artificial boundary is too
close to the physical one, then the accuracy of the problem is poor. On the other
hand, if the fictitious boundary is too far, then the problem becomes ill-posed.

The partial derivatives of the fundamental solution (42) are

∂

∂ pξ

f ∗(p,s) =− 1
2π

(pξ − sξ )

|p− s|2
, ξ = x,y (43)

For our purpose we consider N source points s j, j = 1, . . ., N outside Ω and N
collocation points pi, i = 1, . . ., N on the boundary. We define the elements ϕ j (pi)
appearing in the above matrix A as follows

ϕ j (pi) = f ∗(pi,s j), (44)

and
∂

∂ pξ

ϕ j (pi) =
∂

∂ pξ

f ∗(pi,s j), ξ = x,y (45)

3.4 The non-singular method of fundamental solutions

The main idea of the NMFS relies in the desingularisation of the value of the fun-
damental solution when the source and the collocation points coincide, i.e. p j = s j.
As proposed by Liu (2010), the calculation of the desingularised version of the
fundamental solution can be directly set as an average value of the fundamental
solution itself over an area covering the source point. In other words, the concen-
trated point sources are replaced by the area distributed sources covering the source
points. Such distributed sources are meant as an area averaged analytical integra-
tion of the chosen singular solution over a disk centred on the source itself. Hence,
we consider Ncollocation points p1, . . . ,pN lying on the physical boundary Γ and
we define

f̃ ∗(p,p j) =

{
f ∗(p,p j) if p 6= p j

1
πR2

∫
A(p j,R) f ∗(p,p j)dA = 1

2π
log
( 1

R

)
+ 1

4π
if p j = p, (46)
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where A(p j,R) is a disk centred in p j and with radius R. Here and in the following
we will always choose the radius R smaller than half of the distance between the two
neighboring collocation points. According to our experience, reasonable choices
for the radius R in (46) lie in the range [d/7;d/3] where d is the distance between
two neighboring collocation points.

Finally, we define the elements ϕ j (pi)appearing in the matrix A as

ϕ j (pi) = f̃ ∗(pi,p j). (47)

On the contrary, for the elements ∂

∂ pξ

ϕ j(pi) , ξ = x,y due to the divergence free
condition (6) we observe that only the off-diagonal ones can be determined analyt-
ically, while the diagonal elements must be obtained indirectly. In this respect, we
adopt the method proposed by Šarler (2009) to compute the diagonal coefficients
in Ai+2N, j, Ai+2N,N+ j, Ai+2N,2N+ j. In this approach, we first assume a constant
solution equal to 1 everywhere

1 =
N

∑
j=1

β jϕ j (pi) . (48)

Hence, solving for β j, we can find the corresponding densities for all the boundary
points. Finally, from the equations

N

∑
j=1

β j
∂

∂ pξ

ϕ j (pi) = 0, ξ = x,y (49)

we arrive at the following expression for the diagonal terms

∂

∂ pξ

ϕi (pi) =−
1
βi

N

∑
j=1, j 6=i

∂

∂ pξ

ϕ j (pi) , ξ = x,y, (50)

required in Eqs (35)-(37). Let us also mention that the method suggested by Kim
(2013) in order to determine the diagonal elements for Neumann boundary con-
ditions, which is based on the fact that the boundary integration of the normal
gradient of the potential must vanish, can be used.

4 Numerical Examples

In order to show the efficiency and the reliability of our newly proposed numeri-
cal approach, four numerical examples on different geometries and with different
boundary conditions are discussed.
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Example 1: Lid-driven Cavity Flow

The first example is the well-known lid-driven cavity flow, that was previously
solved by many numerical methods, including meshless ones [Mramor, Vertnik,
Šarler (2013)]. The cross section of the square cavity is represented by the domain
Ω = (−1,1)× (−1,1). The lid is moving with unit velocity in x-direction and the
other boundary conditions are assumed as no slip according to the following choice
of the Dirichlet data

vΓx =

{
1 on (−1,1)×{1} ,
0 elsewhere on Γ ,

vΓy = 0 on Γ, (51)

and the viscosity is assumed to be equal to one. In the absence of an analytical
solution we intend to use the classical method of fundamental solution in order to
provide a MFS solution as a basis for comparison with the NMFS method.

 

                                         

Figure 1: The profile of vx at px = 0 along py axis computed by means of the MF-
S method with three different node densities: +: N=100; o: N=196, *: N=292,
RM=5d and RM=10d (from left to right) where d denotes the smallest distance be-
tween two nodes. In the bottom plot we show the difference in absolute value
between two profiles vxat px = 0along py axis computed by means of the MFS
method with node densities N=100 and RM=5d and RM= 10d.
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Figure 2: The profile of vy at py = 0 along px axis computed by means of the MF-
S method with three different node densities: +: N=100; o: N=196, *: N=292,
RM=5d and RM=10d (from left to right) where d denotes the smallest distance be-
tween two nodes. In the bottom plot we show the difference in absolute value
between two profiles vy at py = 0 along px axis computed by means of the MFS
method with node densities N=100 and RM=5d and RM= 10d.

For such a purpose, in the first numerical experiment, we check the reliability of the
MFS solution by tuning different values of the number N of the nodes employed
and different distances RM between the sources points and the physical boundary.
Figs. 1 and 2 represent the velocities along the profiles px = 0 and py = 0 in 41
equidistant points in the interval [−1,1].

One can see from Figs. 1 and 2 that both solutions coincide well, which means that
the calculation with the smaller density of the nodes gives a reasonable accuracy
already.

A plot of the profiles of the velocity components, obtained with MFS and NMFS
numerical solutions is presented in Fig. 3 for the case with 196 boundary nodes.
Such an experiment shows a good agreement of the results obtained with the two
methods.
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 Figure 3: The profiles of vx at px = 0along py axis and the profiles of vy at py = 0
along px axis respectively (+: MFS, o: NMFS ) using 196 boundary nodes in both
methods and where for the MFS we chose RM= 5d while for the NMFS we chose
the radius Rin (42) equal d/4.

 

                                            

 

 

Figure 4: Comparison between the vx profile at px = 0 along the py axis computed
with the MFS (+) with RM = 5d and NMFS (o) when the number of nodes in MFS
is kept fixed at 196 and the number of nodes N for NMFS is N = 28, N = 52, N =
100 and R in (42) is equal to R=d/4, respectively (top to bottom).
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  Figure 5: Comparison between the vy profile at py = 0 along the px axis computed
with the MFS (+) with RM = 5d and MMFS (o) when the number of nodes in MFS
is kept fixed at 196 and the number of nodes N for MMFS is N = 28, N = 52, N =
100 and R in (42) is equal to R = d/4, respectively (top to bottom).

 

 

  Figure 6: The profiles of vx at px = 0 along the py axis and the profiles of vy at
py = 0 along the px axis respectively, by using 100 boundary nodes in MFS and
NMFS methods. Different values of R in (42) have been chosen when dealing with
the NMFS method (+: MFS, o: NMFS with R = d/5, * = NMFS with R = d/4, -
=NMFS with R=d/3 ).
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In the third numerical experiment, we compare the numerical solutions obtained
with MFS with respect to the one obtained with NMFS where the number of bound-
ary nodes used for the latter increases (see Figs. 4 and 5).

In Fig. 6 we discussed the dependence of the NMFS solution upon the choices of
the radius R in (46). We observe that the values of R in the interval (0, d/3] lead
to a satisfactory reconstruction, however in agreement with Liu’s finding in [Liu
(2010)] the choice R=d/4 is the optimal one. Such a choice is also consistent in
solid mechanics [Liu and Šarler (2013)].

The condition numbers of the algebraic systems produced by NMFS are 2.14 ∗
103, 6.65∗103,1.5∗104 for 100, 196, 292 number of nodes respectively.

Example 2: Circular computational domain with analytical solution

In the second example, the following analytical solution is considered [Young, Lin,
Fan and Chiu (2009)]

vx(px, py) =−p2
x +4p3

y ,

vy(px, py) = 3p3
x +2px py−1,

P(px, py) = 24px py−2px,

(52)

where the circular computational domain Ω = A(0,0.5) is used and the Dirichlet
boundary conditions are derived directly from the analytical solution. The aim of
this example is to provide a validation by means of the comparison between the
analytical solutions and the numerical solutions computed by the MFS and NMFS
methods.

We used 600 equidistant boundary nodes picking the source points at a distance
RM=5d, where d is the smallest Euclidean distance between the two nodes when
considering the MFS method, whereas, the numerical solutions computed by the
NMFS have been obtained by keeping the number of boundary nodes fixed to 600
and by choosing R in (46) equal to d/4. In Fig. 7, the profiles of the velocity along
px = 0 and py = 0 are presented respectively.

Fig. 8 shows the relative error computed in the Euclidean norm of the differences
between the analytical solution and the NMFS solution, measured along the profile
of vy at py = 0 in 9 equidistant points on the interval (−0.5,0.5). The number of
boundary nodes is from 225 to 2625. Moreover, we took into account the depen-
dence of the error with respect to the choice of the parameter R in (46), where with
N we denote the number of the employed boundary nodes.

The condition number of the algebraic system produced by NMFS is 1.4∗105.
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  Figure 7: The profiles of vx at px = 0 along py axis and the profiles of vy at py = 0
along px axis respectively (+: MFS, o: NMFS, - : analytical solution).

  

Figure 8: The relationship between the relative errors and the number of boundary
nodes for different R in (38) calculated by NMFS (+: R=d/3, *: R=d/4, o: R=d/5,).

Example 3: Flow in a channel

We consider a more practical example of flow in a channel which has been pre-
viously considered in [Fan, Li and Kuo (2011)]. We make the following choice
of the geometry Ω = (−2,2)× (−0.5,0.5) and the following choice for Dirichlet
boundary data

vΓx(px, py) =


3(1−4p2

y) on {2}× (−0.5,0.5) ,
2 on {−2}× (−0.5,0.5) ,
0 elsewhere on Γ .

vΓy(px, py) = 0 on Γ (53)
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We assume no-slip boundary conditions on the upper and the bottom boundary,
whereas a uniform inflow velocity is prescribed on the left boundary. Moreover,
we consider a parabolic profile of the outflow velocity on the right boundary.

First, we use the classical MFS to calculate the velocity field. We employ 960
equidistant boundary nodes as collocation points and we select the source points
at a distance 5d from the physical boundary, where as usual d denotes the smallest
distance between the two nodes.

In Fig. 9 we compare the numerical solution presented in Figs. 9 and 10, calculated
by the MFS and the numerical solution computed by the NMFS where the radius R
in (46) has been chosen equal to d/4.

  

  Figure 9: Profiles of vx at px = 0 along py axis and the profiles of vy at py = 0 along
px axis respectively (+: MFS, o: NMFS).

 

   Figure 10: The difference vM
x −vN

x of the profiles of vx computed by the MFS and the
NMFS method at px = 0 along py axis and the difference vM

y −vN
y of the profiles of vy

computed by the MFS and the NMFS method at py = 0 along px axis respectively.
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Let us observe that the NMFS solutions are essentially identical to the MFS one.
Moreover, let us stress that by a visual comparison we can infer that our results
are in good agreement with Trefftz method results obtained in [Fan, Li and Kuo
(2011)] for the same example.

The condition number of the algebraic system produced by NMFS is 1.8∗105.

Example 4: Mixed Dirichlet-Fluid Traction boundary condition

We now solve the Stokes problem (1) and (2) in the rectangular domain Ω =
(−2,2)× (−0.5,0) In this respect we consider the following analytical solution

vx(px, py) = 24p2
y − 3 ,

vy(px, py) = 0 ,

P(px, py) = 24px ,

(54)

We impose the following mixed Dirichlet-traction type boundary conditions

vΓx(px, py) = 24p2
y−3, vΓy(px, py) = 0 on {2}× (−0.5,0),

vΓx(px, py) = 24p2
y−3, vΓy(px, py) = 0 on {−2}× (−0.5,0),

vΓx(px, py) = 3, vΓy(px, py) = 0 on (−2,2)×{−0.5},
tx(px, py) = 0, ty(px, py) =−24px on (−2,2)×{−0},

(55)

which are derived directly from the analytical solution.

  

  Figure 11: Profiles of vx at px = 0 along py axis and the profiles of vy at py =−0.25
along px axis respectively (+: MFS, o: NMFS).

We employed 1728 equidistant boundary nodes both for the MFS method and the
NMFS method as well. We fixed the source points at distance RM=5d when dealing
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with the MFS method while we chose R in (46) equal to d/4 when treating the
NMFS. In Fig. 11, the profiles of the velocity along px = 0 and py = −0.25 are
presented respectively. Let us observe that also for the mixed Dirichlet-traction
boundary condition case, the analytical solution and the computed one are in good
agreement.

The condition number of the algebraic system produced by NMFS is 1.04∗106.

5 Conclusions

In this paper, a combination of the NMFS and the Laplacian decomposition tech-
nique has been applied for the first time in order to solve a 2D Stokes flow prob-
lem with prescribed fluid velocity components along the boundary. By means of
a suitable change of variables, we first reformulated the original Stokes system in
terms of three Laplace equations satisfied by the new variables. The introduced har-
monic functions are expanded as a linear combination of non-singular approxima-
tion functions. Moreover, we prescribe the continuity equation along the boundary
which ensures that it is fulfilled in the domain as well. By a discretization argument
we rephrased the problem at hand as a solution of a linear system of equation with
unknown coefficients. We show the efficiency of the NMFS method by comparing
the NMFS solutions with the MFS ones and, when available, with the analytical
ones. The NMFS gives essentially the same results as the MFS, but has a great
advantage that no artificial boundary is necessary. As a topic of future work we in-
tend to extend the discussed method to 3D and to axisymmetry. Let us also mention
that we believe that our technique can be successfully applied in study of inverse
problems [Karageorghis, Lesnic and Marin (2011)], arising in the determination
of unknown boundaries [Cabib, Fasino and Sincich (2011)] and unknown terms in
boundary conditions [Sincich (2007); Sincich (2010)] by a single measurement.
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