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Abstract: Many engineering applications need to analyse the system dynamics on the 
macro and micro level, which results in a larger computational effort. An explicit-implicit 
asynchronous step algorithm is introduced to solve the structural dynamics in multi-scale 
both the space domain and time domain. The discrete FEA model is partitioned into 
explicit and implicit parts using the nodal partition method. Multiple boundary node 
method is adopted to handle the interface coupled problem. In coupled region, the 
implicit Newmark coupled with an explicit predictor corrector Newmark whose 
predictive wave propagates into the implicit mesh. During the explicit subcycling process, 
the variables of boundary nodes are solved directly by dynamics equilibrium equation. 
The dissipation energy is dynamically determined in accordance with the energy balance 
checking. A cantilever beam and a building two numerical examples are proposed to 
verify that the method can greatly reduce the computing time while maintaining a high 
accuracy. 
 
Keywords: Structural dynamics, node partition, Newmark method, explicit-implicit 
asynchronous integration, stability condition 

1 Introduction 
Explicit and implicit time integration algorithms are the two direct integration algorithms 
in the transient dynamic analysis. 
With the improvement of numerical simulation method, there is a growing demand to 
solve dynamic problems with different temporal and spatial scale. The explicit and 
implicit algorithms are often combined to solve the problem, in order to take advantage 
of different algorithms [Hughes (2012)]. There are two kinds of combination approach, 
one is explicit and implicit algorithms used sequentially to solve the problem in the time 
domain, the other is to use different family algorithm in different spatial domain. 
In the first case, a reasonable approach is to integrate explicit and implicit algorithms into 
a unified program. The algorithm shift from one family to another according to the 
appropriate transition condition. It is necessary to deal with the numerical oscillation of 
explicit and implicit switching [Jung and Yang (1998)]. This kind of method is used to 
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predict springback in sheet metal forming by Narkeeran and Lovell [Narasimhan and Lovell 
(1999)]. Noels used this explicit-implicit combined method to handle crashworthiness 
analysis [Noels, Stainier and Ponthot (2004); Noels (2006)]. Bock presented a unified 
framework for the numerical solution of optimal control problems  solved with both implicit 
and explicit switches [Bock, Kirches and Meyer (2018)]. 
For another type of combination, the element partition and nodal partition are applied. 
The structure is divided into a number of subdomains. Each subdomain has its own 
integration scheme and time step. This kind of research originates from Belytschko and 
Hughes [Belytschko and Mullen (1978); Hughes and Liu (1978)]. In the later decades, 
many representative algorithms have emerged. The algorithms can be divided into two 
categories: with or without overlapping region. 
In the context of non-overlapping subdomain coupling method, Schur-type approaches 
and dual Schur-type approaches are two typical methods. The Schur-type method 
enforces  the displacement or acceleration continuity at the interface [Mahjoubi, Gravouil 
and Combescure (2009)]. Liu et al. [Liu and Belytschko (1982)] developed a new family 
of implicit-explicit algorithm which permits different time integration and different time 
steps to be used simultaneously by element partitioning. Smolinski et al. [Smolinski, 
Belytschko and Neal (1988); Wu and Smolinski (2000)]. Daniel proposed an implicit 
subcycling algorithm [Daniel (2003)] developed an explicit subcycling algorithm by 
nodal partitioning.  
For dual Schur-type approsches, Gravouil et al. [Gravouil and Combescure (2002)] 
proposed a multi-time-step dual Schur approach with a velocity continuity condition on 
the interface at the fine time step,which referenced as GC method. Prakash et al. [Prakash 
and Hjelmstad (2004)] developed the PH method which enforced continuity of velocity at 
the coarse time step but only valid for two subdomains. Karimi et al. [Karimi and 
Nakshatrala (2014)] compared the GC method and PH method in detail and a new multi-
time-step monolithic coupling method combining the advantages of both methods is 
developed. 
For overlapping subdomain coupling method, The Arlequin framework is a representative 
method [Ghanem, Torkhani, Mahjoubi et al. (2013)]. In recent years, explicit-implicit 
mixed method is gradually combined with adaptive time step or improve the performance 
and application scope of the algorithm [Soares (2018); Fernandes, Cardoso and Mansur 
(2017)]. Fekak extended the explicit-implicit method to the field of nonsmooth dynamics 
[Fekak, Brun, Gravouil et al. (2017)]. Dimarco developed a high order implicit-explicit 
linear multistep methods for kinetic equations [Dimarco and Pareschi (2017)]. In 
simulation of three-dimensional grapheme, a hybrid implicit-explicit finite-difference 
time-domain method is presented [Chen and Wang (2016)]. 
When mixed with different time steps, the assumption of linear acceleration or linear 
velocity is applied to tackle the partition boundary conditions. The interpolation process of 
Lagrange multipliers is used to deal the interface problem .This approach is often regarded 
as the source of error accumulation and the development of instability, which has led to a 
bigger error of the calculation result and a harsh condition [Biesiadecki and Skeel (1993)]. 
In this article, we use the dynamic multiple boundary method to handle the explicit and 
implicit boundary information transmission. The variable of the boundary nodes is solved 
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directly by explicit transfer process. Numerical cases show that our modification results 
in a higher accuracy than classical interpolation method. The proposed method can 
increase computational efficiency by using nodal partition and asynchronous time step 
method. 
The rest of this paper is organized as follows: In Section 2, the Newmrak integrator and 
explicit Newmark based on predictor-corrector formula schemes are introduced to solve 
the structural dynamic equation. Then, In Section 3 The asynchronous explicit-implicit 
integration process is proposed to use different time scales and integral methods in 
different regions. In Section 4, The check of energy balance for the explicit-implicit 
mixed asynchronous step method is described. In Section 5, two numerical examples are 
conducted to verify the rationality and feasibility of the explicit-implicit mixed 
asynchronous method. Finally, conclusions are drawn in Section 6. 

2 The Newmark discretized solution procedure 
The finite element discretized of a structure which leads to the semi-discretized dynamic 
equilibrium equation can be written as Cook [Cook (2007)]. 

int( ) ( ) ( ( )) ( )extt t t t+ + =Ma Cv f u f   (1) 
Where M is the mass matrix, a is the nodal acceleration vector, C is the damping matrix, 
fint and fext are the vectors of internal and external force respectively. The given initial 
displacement and velocity conditions is u(t0)=u0 and v(t0)=v0. For linear elasticity, the 
equilibrium equation is a second-order time differential equation and the internal force 
vector  fint can be written as 

int ( ( )) ( )t t=f u Ku  (2) 
Where K is the symmetric stiffness matrix, v and u are the nodal velocity and 
displacement vectors. The Eq. (1) can be solved by discretized in time among which the 
Newmark based time integrator is mostly used. 

2.1 The Newmark integrator scheme 
The Newmark method has two parameters γ and β . Displacement, velocity and 
acceleration vectors of generalized structural nodes from time tn to time tn+1 are based on 
the equilibrium of the dynamic equation [Cook (2007)]. Subscript n is used to denote the 
time step. At the time step tn+1 
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un+1, vn+1, an+1 are the displacement ,velocity and acceleration vectors at time step n+1 
respectively. un, vn, an are the displacement ,velocity and acceleration vectors at time step 
n. t∆  is the time step. In the Newmark integral method, the displacement un+1 in time tn+1 

is solved from the dynamic equation 
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The above equation can be rewritten as 

1 1eff n n+ +=K u f                                                                                                                       (5) 

The matrix Keff  in the above equation is referred as the effective stiffness matrix. The 
matrix  Keff  and external force vector 1n+f  are defined as 
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In all time steps the effective stiffness matrix Keff remains constant in linear dynamic 
analysis. 

2.2 The explicit newmark based on predictor-corrector scheme 
In the predictor-corrector time discretion of explicit Newmark scheme, the predictors of 
the scheme can be written as Hughes [Hughes (2012)] 
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The vectors 1
p
n+u  and 1

p
n+v means the corresponding predictor displacement and velocity 

vectors at time step n+1. The predictor form of the structural dynamic equation can be 
defined as  

1 +1 1 1
p p

n n n n+ + ++ + =Ma Cv Ku f  (8) 
If the lumped mass matrix is adopted, the mass matrix M is diagonal and the method is 
explicit. The nodal acceleration vector an+1 can be solved from the dynamic equation 

1
1 1 +1 1( )p p

n n n n
−

+ + += − −a M f Cv Ku  (9) 
Then, the corrector displacement un+1 and velocity vn+1 vectors of n+1 time step can be 
obtained from the equations 
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 (10) 

With the provided initial displacement u0 and velocity v0 conditions, the initial 
acceleration a0 can be solved as follows  

1
0 0 0 0( )−= − −a M f Cv Ku  (11) 
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3 The explicit-implicit coupling method with overlapping node 
3.1 Notation and tag for explicit-implicit coupling 
There are two partition methods, namely mesh partition and node partition. The 
overlapping node partition method is used. The elements fall into three groups: Explicit 
region, implicit region and interface elements. The schematic of node partition with 
overlapping node is shown in Fig. 1. 

 

Figure 1: Node partition diagram with overlapping node 

For each subdomain, the nodes can be divided into internal node, external node and 
boundary node. The displacement for explicit subdomain can be described as E

Iu , E
Bu and 

E
Eu . The superscript letter E represents the explicit partition and the subscript represents 

the node type. The displacement for implicit subdomain can be described as I
Iu , I

Bu and I
Eu . 

The external node in explicit subdomain is the boundary node in implicit subdomain and 
vice versa. 
We define the tags TE E E

I B =  u u u and 
TI I I

I B =  u u u to represent the non-overlapping 
subdomain nodal displacement. The superscripts E and I represent the explicit and 
implicit region. Velocity, acceleration and external force vectors have the same tags. 
The time step for the explicit region rt∆ can be defined as  

min( ) ( 1,2,..., )i
r crt t i nelemα∆ = ∆ =   (12) 
i
crt∆  is the critical time step for element i confirmed by the CFL condition. α is the scale 

factor. A larger time step ∆t is adopted to implicit region. The time step ratio m between 
explicit and implicit region can be defined as  

*: ( )
r

tm m N
t
∆

= ∈
∆

 (13) 
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The following notation represents the value of a quantity at subdomain time level. X can 
indicates displacement, velocity or acceleration 

+ / : ( ) ( )i i
n j m i rt n t j t j m= = ∆ + ∆ ≤X X  (14) 

n is the number for system time step and j is for subcycling time step. The asynchronous 
time step in system time level is shown in Fig. 2 

 

Figure 2: Suddomain and system time step 

3.2 The asynchronous step explicit-implicit integration coupling method 
The time steps for implicit and explicit region are ∆t and ∆tr. The step ratio satisfies 
∆t=m∆tr. The multi-layer boundary node method is used to tackle the asynchronous step 
explicit-implicit coupling algorithm. Multi-layer overlapping node consists boundary 
node and external node. In order to explain the method clearly, we take the step ratio m=3 
for example. Data matching for multi overlapping node is shown in Fig. 3. 

 

Figure 3: Data matching for multi overlapping node 

For explicit region, the nodal displacement is defined as E
Iu , E

Bu , 1
E
Eu , 2

E
Eu and 3

E
Eu . 

I
Eu , 1

I
Bu , 2

I
Bu , 3

I
Bu and I

Iu  are displacement tags for implicit region.  
The equilibrium equation of the linear structural dynamics at time step n can be 
partitioned as 
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 (15) 

The damping matrix C is assumed in the form of Rayleigh damping. While different from 
the Belytschko method [Belytschko and Mullen (1978)], the predictor corrector form 
explicit Newmark scheme is used to solve the nodal acceleration of explicit region. 
During the explicit subcycling process, the explicit region need to be updated all nodes 
through time step m-1 

2
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The supermark E represents all explicit nodes. The nodal acceleration of explicit region 
can be solved as 

1
/ / / + / , / , /( ) [ ( ) ( ) ( ) ( ) ]E E E E E p E E p E E p E E p

n j m n j m n j m n j m BE E n j m BE E n j m
−

+ + + + += − − − −a M f C v K u C v K u  (17) 

Where j=1, 2, 3…m. 
The displacement and velocity of the explicit non-overlapping nodes are corrected by the 
Eq. (10). The displacement of implicit region is calculated after explicit subdomain. The 
expression is as follows 

1 1
I I I
eff n n+ +=K u f  (18) 
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The subscript n+1 means system time ( 1) rn t n t m t+ ∆ = ∆ + ∆ . The acceleration 1
I
n+a  and 

velocity  1
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n+v  vectors of the implicit region are defined as 
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 (19) 

With the increase of explicit subcycling time step, the external node which can be solved 
correctly in explicit region is decrease. The internal and boundary nodes for explicit 
region can be solved correctly during the subcycling time step. Before the next system 
step, external nodes need data transmission as I E

E B=u u  and ( 1,2... )E I
Ei Bi i m= =u u . 

The two-dimensional nodal time-displacement flow of the asynchronous explicit-implicit 
method is shown in Fig. 4. 
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Figure 4: Message passing for asynchronous time step calculation 

The proposed method uses the equilibrium equation to solve the acceleration of the 
boundary node which completely preserves the precision of boundary node. 

4 Energy balance check for numerical stability 
In the compute process, any unstable result can lead to pseudo energy. By checking the 
energy balance, the calculation of stability can be checked in real time. For the linear 
without structural damping case, the system internal energy wint, work of the external 
force wext and kinetic energy wkin are defined as Krenk [Krenk (2006)] 

int
1
2

1
2

T

ext T ext

kin T

W
W
W

=

=

=

u Ku
u f

v Mv
 (20) 

According to the principle of energy conservation, the energy requirements in the 
processes of solving the dynamic equation have the following equation 

int intmax( , , )dis kin ext kin ext
n n n nW W W W W W We= + − ≤                                                                (21) 

e is a very small error tolerance limit whose general order of magnitude is 10-2. The 
energy balance calculation can be implemented in each sub region if the overall dynamic 
system is very large. 

5 Numerical examples and discussion 
In the following two examples, we assume the parameters of implicit scheme 

0.5Iγ = and 0.25Iβ = and the parameters of explicit region 0.5Eγ = and 0Eβ = . The 
explicit-implicit asynchronous algorithm is used to solve the same model under the 
conditions of different time step ratios m. 
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5.1 Case of a cantilever beam in bending 
A cantilever beam with rectangle section is presented. A bending load is subjected to the 
free end point A. The load time curve is shown in Fig. 5. The geometry and finite element 
mesh are shown in Fig. 6. The maximum force is 10000 N. 

 

Figure 5: The load time curve for cantilever beam 

 

Figure 6: The geometry and finite element mesh of cantilever beam 

The thickness of the rectangular cross-section is 0.03 m. The material is isotropic, linear 
elastic with Young’s modulus E=210×109 Pa, mass density ρ=7800 kgm-3 and Poisson 
ratio ν=0.3. The beam is discretized into isoparametric quadrilateral element. The mesh 
size of the element in the coarse grid region is about 3 times of the size in the fined area. 
The whole element number of the region is 1080. 
The step of the explicit region is defined by the CFL condition: ∆tcr=5.78×10-5

 s. In this 
case, we use the step ∆tr=5×10-5

 s for explicit region. The implicit region adopts a large 
time step ∆t. 
Under the condition of time step ratio ∆t=6∆tr, vertical displacement of point A is 
compared with the classical mixed method [Wu and Smolinski (2000)]. The vertical 
displacements of point A are shown in Fig. 7.  
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Figure 7: The vertical displacements of point A for different methods 

Then we compare the accuracy of the algorithm under three different time step ratios m=3, 
m=12 and m=24. Fig. 8 compares the vertical displacement of point A. Fig. 9 is the local 
enlarged of Fig. 8. It can be find that the displacement curve is basically coincident and 
the accuracy of the algorithm is not significantly decreased with the step ratio increase. 

 

Figure 8: The vertical displacements of point A for different step ratios 

 
Figure 9: Local enlarged of Fig. 8 
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In order to analyze quantitatively the computational accuracy, we define sum of 
displacement errors uerr and maximum error of displacement  umax  two indexes as 

max2 max
;

the

i i
err prop the propu u= − = −u u u u  (22) 

Where uthe means the theoretical displacement, uprop means the displacement calculated 
by different method and i is time step. The displacement error for different methods are 
counted as shown in Tab. 1. Although with the increase of the step ratio m, the two 
precision indexes is increasing for both methods. The interpolation process of boundary 
data is not involved in the proposed method and it has higher computational accurarcy 
than traditional mixed explicit implicit method. 

Table 1: Sum of displacement error uerr and maximum error of displacement umax for 
different methods and step ratios  m 

Step ratio 
Proposed method Mixed method 
uerr umax(10-4) uerr umax(10-4) 

m=3 0.237 2.03 0.952 6.27 
m=6 0.413 5.84 2.208 10.25 
m=12 0.608 7.31 3.986 13.64 
m=24 0.845 10.80 6.197 17.15 

The energy curve Fig. 10 shows that the dissipation energy almost zero for step ratio 
m=12. Namely, the development of pseudo energy does not appear in the computational 
process. The method is stability for a larger step ratio condition. 

 
Figure 10: The energy curve of cantilever beam with step ratio m=12 

The computation time for different methods is counted as shown in Tab. 2.  
The two methods can reduce the calculation time. But the traditional mixed method needs 
to solve the global stiffness matrix at system time level. This has caused an increase in 
computing time to a certain extent. The proposed multiple partition boundary method can 
also reduce the computational time while maintain a higher accuracy. 
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Table 2: Computation time for cantilever beam with different methods  and different step 
ratio m; Step for explicit region and benchmark implicit method are ∆tr=1×10-5 s 

Solve method Step ratio Computation time/s Percentage 

Implicit method 315.2 100.0% 

Mixed method  

m=3 255.5 81.06% 
m=6 226.4 71.83% 
m=12 201.9 64.04% 
m=24 165.7 52.57% 

Proposed method 

m=3 187.4 59.45% 
m=6 161.3 51.17% 
m=12 138.0 43.78% 
m=24 110.9 35.21% 

5.2 Case of a building in exploding 
This case considers the dynamic response of a building under the explosion shock wave. 
The shock wave pressure, the overpressure peak value, impulse and duration are used to 
describe the explosion shock wave. The explosion shock can be simplified as a right 
triangle pulse load on the front of the structure, retaining its peak and duration 
characteristics [Ngo, Mendis, Gupta et al. (2007)]. 
The blasting shock wave conditions are set as showed in Tab. 3. The external force is 
loaded in the form of equivalent nodal load. The damping ratio of the structure is 5%, 
which load in the form of Rayleigh damping. The parameters of concrete are taken as 
follows: Mass density ρ=2500 kgm-3, the material Young modulus E=30 GPa and 
Poisson ratioν=0.2. The model is discretized into three dimensional hexahedral linear 
fully integrated elements. The mesh number of the model is 144384. There are 21657 
elements in explicit region. The critical time step of explicit region is ∆tcr=1.43×10-4 s. 
The time step ∆tr=1.15×10-4 s is adopted in this case. 

Table 3: Blast load considered in dynamic analysis 

Load 
case 

Explosive mass 
/kg 

Distance 
/m 

Reflected 
overpressure 

/kPa 

Impulse 
/kPa·ms 

Positive 
phase 

duration/ms 
1 100 10 846 1543 9.7 
2 200 10 1699 2582 12.1 
3 500 10 4250 5172 17.5 
4 500 15 1254 3096 16.2 
5 500 20 535 2186 18.4 
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Explicit-implicit asynchronous time step algorithm is used to solve the whole finite 
element simulation model and the explicit-implicit partition is shown in Fig. 11. 

 

Figure 11: A building model under explosion shock wave 
For the response of building structure under earthquake or other impacts, the inter layer 
displacement angle is an important parameter. Fig. 12 compares the distribution of the 
maximum inter layer displacement angle of the building structure under five loading 
conditions [Jayasooriya, Thambiratnam, Perera et al. (2011)]. We choose the step ratio 
m=3, which means the time step ∆t=3∆tr  is used in the implicit region. 
The results of Fig. 12 show that the response of the building structure is influenced 
significantly by the mass of the explosive and the distance of the explosion point. When 
the 2 and 4 of the working conditions, the maximum inter story drifts angle of the 
structure is close to 4%. And the structural deformation under the load condition 3 is 
much larger than that of the other working conditions. The maximum lateral drift of the 
building is more than 10%, which will produce great damage to the building. 
Fig. 13 compares the inter layer displacement angle of three different step ratios m at the 
same load case 2. With the increase of the step ratio m, the three calculation results have 
the same change rule. 

Fig. 14 is the displacement time curve at the top of the building in the direction of the 
impact of the shock wave. At the same load case 2, displacement time curve of the 
explicit method, the proposed method and the classical mixed method (reference method) 
are compared [Wu and Smolinski (2000)]. The maximum displacement reaches 124 
millimeters. It is necessary to further analyze the displacement response of the building 
under various load conditions. 
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Figure 12: The maximum inter layer displacement angle of the building 

 

Figure 13: The inter layer displacement angle of different step ratios m  under load case 2 

 
Figure 14: The displacement time curve at the top of the building 

The computational efficiency of traditional central difference algorithm and the proposed 
algorithm are compared in this paper. The CPU time is calculated by the different 
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selected step ratios m . The computation time consumed for different methods is shown 
in Tab. 4. 

Table 4: Computation time for a building in exploding with different methods  and 
different step ratio m; time step ∆t=1.15×10-4 s for explicit region and benchmark explicit 
method  

Solve method Step ratio Computation time/s Percentage 

Explicit method 10324 100.0% 

Mixed method  

m=1 8538 82.7% 
m=3 7165 69.4% 
m=10 6053 58.6% 
m=30 4656 45.1% 

Proposed method 

m=1 6927 67.1% 
m=3 5430 52.6% 
m=10 4037 39.1% 
m=30 2911 28.2% 

The computation time required for solving the same physical problem is greatly reduced 
by using the multi-scale discrete grid and the different step size in the time domain. The 
more nodes are used in large step size, the greater computational efficiency is obtained. 
The proposed method has the potential for practical application in large scale 
computation. 

6 Conclusions 
In many actual dynamic engineering applications, the system has different physical and 
mechanical properties. The accuracy requirement of the different parts of the system 
determines the scale of the finite element discrete mesh, which limits the time step.  
In this paper, an explicit-implicit multi-time-step method of finite element is proposed to 
solve this problem. Compared with other time integration analysis methods, this method 
has several characteristics: 
(1) According to the mechanical properties and computational accuracy of a different 
computing domain, in both space and time domain, the model is simulated with different 
scales. The more nodes are used in large step size, the greater computational efficiency of 
the theory can be obtained. 
(2) The algorithm uses the changing boundary nodes to deal with the coupling between 
large and small steps. There is no additional assumption on the boundary node 
information transfer. The larger time step ratio can be used in theory. 
(3) The energy balance method can be used to find the generation of pseudo-energy and 
unstable development in calculation. It is helpful to get more reasonable calculation 
results in real time to adjust the calculation step. 
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To a certain extent, the changing boundary nodes method increases the difficulty of pre-
processing. If the algorithm can be reasonably parallel and the calculation domain is 
optimized to achieve load balance, the method must be able to obtain a good performance 
in solving the super large scale application. It will be the focus of further research. 
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