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Abstract: Fertilizers industry faces the challenge of improving the efficiency of its 
products either by optimizing the fertilizers in use or by developing new types of 
them. During the last decade, controlled and slow release technologies have 
become more important. These technologies aim to increase the efficiency of the 
applied substance by increasing its action over time and avoiding losses of all kinds 
(leaching, volatilization). The main purpose of the current study was to obtain a 
slow release biofertilizer by incorporating microalgae into a polymeric urea-
formaldehyde matrix (PUFM). The quantitative analysis of macronutrients and 
micronutrients in the microalgae was determined using different techniques 
including titration, UV and Atomic Adsorption Spectroscopy. The matrix and the 
formulation obtained (PUFM + CHLO) were also characterized by Infrared 
Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). The “in vitro” 
study showed a typical slow release behavior of nitrogen (N), phosphorus (P) and 
potassium (K) macronutrients. It was also shown that (PUFM+CHLO) formulation 
has the slowest macronutrients release time with a maximum release of 28%, 26% 
y 46% for (N-P-K) macronutrients respectively during a period of 30 days. The "in 
vivo" study exposed the benefits of the biofertilizer formulation (PUFM + CHLO) 
from conventional commercial fertilizer (CF) (NPK-14-5-12). Due to the presence 
of nutrients of natural origin in microalgae, (PUFM + CHLO) shows ecological 
effects which could also developing sustainable agriculture systems. 
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1 Introduction 
Fertilizers are bioactive agents mainly composed of nitrogen, phosphorus and potassium. Their 

application to crops improve production in quality and quantity [1]. Depending on the method of 
application and climatic conditions, around 90% of the applied fertilizer amount never reaches its 
objective. The above have contributed to a severe environmental contamination including degradation of 
soils, water sources, eutrophication of maritime ecosystems, development of photochemical smog, 
increase in the global concentration of the powerful greenhouse gas nitrous oxide, as well as acidification 
of soils and accumulation of heavy metals in plants [2-4]. In agreement with the disadvantages previously 
exposed, it is necessary developing more efficient fertilizers including environmental friendly 
characteristics [5-8]. 

The industry of fertilizers must increase the efficiency of its products, improving or developing new 
types of fertilizers to avoid or reduce environmental pollution. It is considered that an ideal fertilizer 
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should have at least three characteristics: a high percentage of recovery and production; a minimum 
negative impact on the environment and with a single application of the product should be enough to 
cover the nutritional requirements during the entire culture period [9-14]. According to these 
characteristics, Slow Release Fertilizers (SRF) have a relevance nowadays. The SRF improves the 
efficiency in terms of a better use of the nutrients, they are called smart fertilizers and considered as ideal 
fertilizers. The obtention of SRF constitutes a technology that meets the three characteristics of an ideal 
fertilizer. The use of SRF helps preventing soil degradation, can be used to reduce the amount of fertilizer 
that is applied and make the nutrients available for longer periods of time after application, since they 
avoid losses due to leaching and volatilization of the fertilizer [3,9-15].  

In the SRF, nutrients are contained in a matrix, which prevents uncontrolled dissolution and 
dispersion of the fertilizer promoting the prolonged release of the nutrients. Currently, scientists are 
working on the design of controlled release fertilizer technologies in organic and inorganic matrix in 
response to the need of environmentally friendly fertilizers [4,9,10]. The principle is based on the coating 
of the nutrients by layers of biodegradable polymers that will allow their release in a controlled manner 
depending only on the temperature and humidity of the soil. A greater release will occur when these 
factors increase, which overlaps with the increase in the needs of the plants [10,16]. Additionally, the 
encapsulation of nutrients allows this type of fertilizer to be applied in a localized manner.  

The urea-formaldehyde as the slow-release fertilizers, plays an important role, being the first product 
which the slow release of nitrogen in agriculture was studied [17]. Investigations developed by Gonzalez 
2007 allowed to obtain a polymeric low molecular weight suspension based on urea-formaldehyde for the 
encapsulation of a conventional commercial fertilizer (CF) (NPK-14-5-12), converting it into a 
semipermeable material. This process does not present high complexity, and is a more economical 
method, due to its conditions of synthesis [18].  

Microalgae are employed in agricultural systems as biofertilizers [19-22]. Recently, a consortium 
containing Anabaena variabilis, Chlorella vulgaris and Azotobacter sp, was found to improve 
germination and growth of rice plants and it was recommended as a biostimulator and a biofertilizer for 
crops also the growth of Zea may (maize) was improved with two strains of Chlorella sp [23-25]. This is 
because its high content of fiber, macro and micronutrients, amino acids, vitamins and plant 
phytohormones [26]. The incorporation of these nutrients of natural origin reinforce in the plants his 
resistance to diseases, to the environmental stress, activate his physiological functions, attaining crops 
healthier, with better nutrition and more vigorous [27-29].  

In this project the main objective was to develop a biofertilizer by the incorporation of microalgae 
Chlorella sp (CHLO) and Nannochloropsissp (NANNO) in a polymeric urea-formaldehyde matrix 
(PUFM) using a microencapsulation method (extraction and evaporation of solvent). The biofertilizer 
obtained shows a slow release behavior in the “in vitro” study. The advantages of these biofertilizer 
respect to a conventional commercial fertilizer CF (NPK-14-5-12) were observed in the “in vivo” studies. 
The synthesized matrix (PUFM) in this paper aims to offer a method to obtaining coated materials with a 
low production cost that does not require a strict control of the reaction conditions. The obtained 
formulations (PUFM + CHLO) and (PUFM + NANNO) aim to feed and fortify the plants with their 
application. The presented procedure can be considered as an alternative to obtain universal formulations 
of biofertilizers and other materials could be considered. The use of biofertilizer, will replace the use of 
chemical inputs, thus favoring sustainable agriculture. 

2 Materials and Methods 
2.1 Determination of Microalgae Nutrients 
2.1.1 Quantitative Analysis of Macronutrients (NPK) 

These analyses were performed on the two varieties of microalgae studied. Atomic Adsorption 
Spectroscopy was used to determine potassium (K). The measurement was made at a wavelength of 766.5 
nm, in a spectrometer of Atomic Absorption AA500 (PG Instruments) from Great Britain [30].  
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The determinations of the water-soluble phosphorus (P2O5) content were made by colorimetry at a 
wavelength of 450 nm in a UV/Visible spectrometer brand GENESYS 20 UV SPECTRONIC from the 
USA [31]. It was used a blank test solution and 1 or 2 cm quartz cuvettes of optical path.  

The total nitrogen content (NT) was determined by the Kjeldahl method with volumetric titration [32]. 
 

2.1.2 Quantitative Analysis of Micronutrients 
Measurements were made on an AA Perkin-Elmer 2280by Atomic Adsorption Spectroscopy [33]. 

The experimental conditions are listed in Tab. 1. 

Table 1: Experimental conditions fixed in the atomic adsorption spectroscopy measurement 

Element Wavelength (nm) 
Zn 213.9 
Cu 324.8 
Ca 422.7 
Mg 285.2 
Na 589.6 
Co 240.7 
Fe 248.8 

Power (kW) 1.2 
Nebulizer flow (L/min) 1.2 

Carrier gas Acetylene 
Auxiliary gas flow (L/min) 1.2 
Observation height (mm) 1.5 

 
2.2 Synthesis of PUFM and Microalgae Microencapsulation 

The microencapsulation method of extraction and evaporation of solvent was used in the synthesis of the 
slow-release biofertilizers. The polycondensation reaction between urea and formaldehyde was carried 
out at room temperature. The stirring speed was 700 rpm for 40 min, until reaching a viscosity of 1.9 
g/cm.s, which results in the formation of the matrix (PUFM). Then, is added “in situ” Chlorella sp 
(CHLO) or Nannochloropsissp (NANNO) microalgae the to be encapsulated, forming a stable polymer 
dispersion. The products obtained PUFM + CHLO and PUFM + NANNO were dried at room temperature. 
The matrix (PUFM) was synthesized using the same reaction conditions but without the addition of 
microalgae [18,34]. The experimental conditions set for the synthesis are shown in Tab. 2. 

Table 2: Experimental conditions for the synthesis of slow release biofertilizer formulations 

Formulation Urea (g) Formaldehyde (g) Microalgae(g) 
PUFM 24 34.5 - 
PUFM + CHLO 24 34,5 5 
PUFM + NANNO 24 34,5 5 

2.3 Characterization of the Products and the PUFM Matrix 
2.3.1 Fourier Transform Infrared Spectroscopy (FT-IR)  

Infrared spectra were registered with a FT-IRTHERMO NICOLET Nexus-670. The sample (~ 5 mg) 
and KBr (~ 95 mg) were ground together in an agate mortar until the sample was dispersed. FTIR spectra 
were obtained in the wavenumber region between 500 cm-1 and 4000 cm-1. 

2.3.2 Scanning Electron Microscopy (SEM) 
Morphology was analyzed by Scanning Electron Microscopy (SEM JEOL-5600 LV) at 20 kV 

Samples were coated with a layer of gold of approximately 20 nm using an EMS 550 sputter coating.  
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2.4 “In vitro” Studies of Macronutrients (NPK) 
Nutrients release was monitored in an ideal medium (water). In three 500 mL Erlenmeyer flask with 

lid, 5 g of the PUFM loaded with the microalgae CHLO or NANNO. Conventional commercial fertilizer 
CF (NPK-14-5-12) was used as a witness or reference. Then, 500 mL of distilled water was added. The 
Erlenmeyer flask was placed in a shaker maintaining an agitation of 100 rpm during the entire test period 
(25-30 days). Aliquots of 5 mL of the aqueous phase were taken every 3 days. They were diluted with 
distilled water in a volumetric flask of 100 mL to determine the percentage of potassium oxide, total 
nitrogen and diphosphorus pentoxide in the solution. The aliquot volume extracted was replaced with 
distilled water each time the operation was performed to maintain “sink conditions” [10,46]. 

 
2.5 Statistical Studies of Release of K2O of “in vitro” Studies 

The data corresponding to the release of K2O of each formulation obtained and the conventional 
commercial fertilizer, were compared by mean of analysis of variance using Statgraphics (Version 5 
Plus). If the value of P is less than α (α = 0.05), it is considered statistically significant. 

 
2.6 “In vivo” Studies  

The tests were carried out at the Horticultural Research Institute “Liliana Dimitrova”, in the cultivation 
of gladiolus (gladiolus spp. green variety). They were worked in a compacted red ferralitic soil with medium 
to high fertility. Two different treatments were evaluated, a conventional commercial fertilizer- CF (NPK-14-
5-12) variant (T1) with two applications as recommended for this type of crop [35], as a witness. Second 
treatment was PUFM+ CHLO (T2) with one application during the vegetative cycle (60 days), at the rate of 
40g/m2. During the development of the plantation, the following evaluations were made: number of campane 
(CN) by units, length of the spike (SL). (cm) and length of the floral stem. (FSL) (cm). 

3 Results and Discussions 
3.1 Characterization of Microalgae. Analysis of Macro and Microelements 

Total nitrogen (NT) takes values between 7 and 9%, the latter being the most relevant value, 
belonging to the Chlorella sp variety of microalgae that brings the higher amount of NT (Tab. 3). The 
Chlorella sp can be expected considering its high content in proteins (55-67%) and aminoacids (19 of the 
22 aminoacids, in which 8 are essential aminoacids) [36]. Nitrogen is an important element for plants in 
the formation of chlorophyll, nucleic acid and enzyme which directly influences the development of 
quality and yields of plants. In addition, Chlorella sp also presents a higher content of the macronutrients 
P2O5 and K2O with respect to Nannochloropsis sp. This is very important since these macro nutrients 
directly participate in the vegetative development, fruit formation and agricultural yield. 

Table 3: Composition of macro and microelements of microalgae 

Elements CHLO (%) NANNO (%) 
Zn 2.7 5.8 
Cu 3.7 6.2 
Ca 3.2 1.2 
Mg 2.2 1.8 
Na 5.8 1.8 
Co 2.7 4.1 
Fe       1.3         2.01 
NT         9.70         7.13 

P2O5         2.09        1.08 
K2O        1.10        0.92 
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The results of the microelements are also shown in Tab. 3. The presence of these microelements 

helps the plants in their resistance to pests and diseases. The microelements analyzed in the two varieties 
of microalgae such as: Cu, Ca, Na, Co, Zn, Fe and Mg, have considerable amounts that allow to naturally 
enrich the formulations of slow-release biofertilizers obtained and to nourish the crops where they will be 
applied. The microelements Fe, Mg and Zn intercede in the formation of chlorophyll and in the 
morphology of the cellular structure of plants. Co is essential for photosynthesis, it forms part of the 
enzymes responsible for the synthesis of proteins in plants [37,38]. This is the reason of our marked 
interest in incorporating them in the formulations of slow release biofertilizers. In addition, the 
incorporation of these microalgae may reduce the use of chemical fertilizers, contributing to a reduction 
in environmental pollution. 

Microalgae also contain growth promoting substances called phytohormones, which together with 
macro and microelements, improve the availability of nutrients, during the vegetative cycle of the crop. 
This favors not only the higher productivity of crops, but the synthesis of nutritional and functional 
substances of interest for the care and improvement of consumer health [27,28]. Besides, the 
incorporation of these microalgae may reduce the use of chemical fertilizers, contributing to a reduction 
in environmental pollution among other benefits. 

3.2 Synthesis of PUFM and Microalgae Microencapsulation 
The urea-formaldehyde matrix was obtained by a non-linear polycondensation reaction, where the 

monomers have complementary functional groups that react in three successive steps, giving firstly 
terminal methylol groups and producing condensations of these to originate ethers groups, which 
eventually lead to branched and reticulated products. Fig. 1 presents the general reaction reported in the 
literature, based on which the synthesis of the (UF) matrix should proceed [18]. 

 
Figure 1: Scheme of the reported chemical reaction [39] 

The development of a polymer of short or long chains depends on the conditions that are established 
for its synthesis, such as pH, temperature, reaction time, urea/formaldehyde ratio, the dilution and catalyst 
addition. In this work, the synthesis conditions allow obtaining a stable polymer suspension in which the 
level of crosslinking is low. In this way, the polymer maintains enough hydrophilicity to produce a stable 
dispersion and also allows to modulate the release of the occluded material. These characteristics are 
required for a matrix whose purpose is the encapsulation of products. 
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For the development of our product was necessary to decrease the urea/formaldehyde molar ratio 
(UF) for the formation of the microencapsulation matrix like the reported matrix. This could be due to 
interactions between the microalgae and urea functional groups during the reaction, which will compete 
with the polycondensation reaction that gives rise to the matrix, causing andecrease in the urea necessary 
amount to form the reported polymer suspension [18]. Figs. 2 and 3 show the formulations obtained. 

 

 
Figure 2: Formulation PUFM + CHLO, a) at the end of the synthesis, b) after two hours, c) once the 
solvent was completely evaporated 

 

Figure 3: Formulation PUFM + NANNO, a) at the end of the synthesis, b) after two hours, c) once the 
solvent was completely evaporated 

3.3 Physical-Chemical Characterization of the Product 
3.3.1 Fourier Transform Infrared Spectroscopy (FT-IR. 

The FT-IR spectra of Chlorella sp (CHLO), (PUFM), and (PUFM + CHLO) are presented in Fig. 4 
respectively. 

 
Figure 4: Infrared Spectra (FTIR) of the matrix PUFM, PUFM + CHLO formulation, Chlorella sp 
microalgae (CHLO) 
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For Chlorella sp, at 3277 cm-1, the bands of -CH stretching of the primary and secondary amides are 
presented. The presence of lipids is observed at 2854-2921 cm-1, while at 1628 cm-1, carboxyl groups can 
be observed from the amine bending bands of the peptides that surround the proteins. This band is 
strongly marked in Chlorella sp by its high protein content. At 1060 cm-1 the bands of C-O, C-C, C-O-C 
corresponding to the polysaccharides present in the biomass of Chlorella sp [40-43]. In the case of PUFM, 
the bands of the NH and C=O stretching appear as expected [44] at 3330 and 1627 cm -1, respectively. 
The bands observed in the spectrum corresponding to PUFM + CHLO fairly matched those in UF. This 
FTIR spectrum keeps some features of its components; however, it was difficult to detect any signal 
suggesting any CHLO- PUFM interaction. This result could be related to the fact that this system is a 
multicomponent material. Fig. 4 spectra also shows no displacement of their main bands (the bands of the 
NH and C=O stretching appear as expected [38] at 3330 and 1627 cm-1, respectively). This behavior 
indicates the non-formation of new strong bonds. According to that, interactions between (PUMF) and 
(CHLO) could be considered weak as hydrogen bonds or Van der Waals interactions. The above helps the 
release of the microencapsulated active ingredient (CHLO) from the matrix (PUMF).  

 
3.3.2 Scanning Electron Microscopy (SEM) 

In Fig. 5 it is shown the morphology of the surfaces of the matrix (PUFM), the Chlorella sp 
microalgae (CHLO) and PUFM microparticles loaded with Chlorella sp, obtained by SEM analysis.  

 

 
 
Figure 5: Scanning electron micrographs (SEM) of the: a) matrix PUFM, b) Chlorella sp microalgae, c) 
obtained formulation PUFM + CHLO 

In all the samples, pellets with hemispherical tendency, irregular and heterogeneous are observed, 
with the aggregate formation. In the formulation PUFM + CHLO obtained it is observed that the 
agglomerates have approximately smaller particle sizes of the order of 4 μm (micrometric). This 
morphology could contribute to the exit of the nutrients to the dissolution medium. All of which is 
corroborated in the"in vitro" study.  

 
3.4 “In vitro” studies 

Fig. 6 shows the release profiles of the macronutrients (NPK) for two formulations obtained: PUFM 
+ CHLO, PUFM + NANNO and the conventional commercial fertilizer CF (NPK 14-5-11). 

From Fig. 6 it can be seen the release percentage of each macronutrient in the formulations obtained 
PUFM + NANNO and PUFM + CHLO. Potassium (46-50%) and Nitrogen (28-48%) have higher 
percentages of releases than Phosphorus (26-32%). A reason could be the solubility in water of the 
macronutrients, being potassium, the most soluble macronutrient followed by nitrogen and phosphorus. In 
the case of conventional commercial fertilizer (NPK-14-5-12), without encapsulating, it releases 
approximately a 20-30% from the first day the macronutrients. This accelerated release is precisely the 
fundamental cause of the environmental contamination of fertilizers. 
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Figure 6: Comparison in PUFM + CHL, PUFM + NANNO, CF (NPK 14-5-11) of the a) % of K2O 
release, b) % of Nt and c) % of P2O5 

With these “in vitro” studies, it is proven that the proposed synthesis methodology is valid to 
microencapsulate microalgae and obtain a slow release biofertilizer. It was observed in all cases that the 
percent total nitrogen (NT), phosphorus (P2O5) and potassium (K2O) released is lower for the two obtained 
formulations PUFM + CHLO and PUFM + NANNO showing a slow release behavior in comparison with 
conventional commercial fertilizer CF (NPK-14-5-12). This could be explain considering the matrix 
PUFM as a physical barrier that prevents the immediate release of these nutrients to the solution, 
demonstrating the effectiveness of the coating obtained. 

The PUFM + CHLO sample was the one that showed a better slow release behavior. After 15 days, 
the content of the nutrients released reaches a plateau, keeping the release until the 30 day. In these types 
of coated biofertilizers, the nutrients are available to the plant during a longer period, which causes their 
slower assimilation and avoids the possible losses, giving the plant more time to assimilate them. All of 
this causes a decrease in the number of applications of nutrients in the field. It represents a positive effect 
on the cost (less number of applications) and also environmental benefits. 

3.5 Statistical Studies of Release of % K2O of “in vitro” Studies 
The comparison of variances (σ2) was performed to the percentage of potassium released (K2O) 

obtained from the studies “in vitro”, the conventional commercial fertilizer CF (NPK-14-5-12) and 
PUFM + CHLO and PUFM + NANNO. The results showed homogeneity of the variances (σ2) for 95% 
confidence. Potassium (K2O) was selected for this study because it is the most soluble macronutrient 
contained in the formulations obtained. 

Considering the previous results we proceeded to the determination and comparison of the means of 
the samples. In Table 4 tabulates the means (X) corresponding to the obtained formulations PUFM + 
CHLO and PUFM + NANNO and the conventional commercial fertilizer CF (NPK-14-5-12), in relation 
with the percentage of potassium (K2O) released in the study “in vitro”. 

Table 4: Mean values of percentage of potassium (K2O) released in the study “in vitro” 

 
Formulations 

% of K2O 
released 
X ± ∆X 

PUFM + CHLO 38 a ± 5 
PUFM + NANNO 44 a ± 6 
CF (NPK-14-5-12) 68 b ± 9 

where X ± ∆X is the means and confidence intervals. Different letters in the same column denote 
significant differences at the 95% confidence level. 
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Figure 7: Graphic of means for % nutrient K2O release of the formulations PUFM + NANNO and PUFM 
+ CHLO, CF (NPK-14-5-12) 

Fig. 7 shows that the % macronutrient K2O release of the formulations (PUFM + NANNO and PUFM + 
CHLO are statistically significant differences at the 95% confidence level regarding commercial fertilizer CF 
(NPK-14-5-12). The formulation PUFM + CHLO releases the nutrient K2O slower than PUFM + NANNO. 
The formulation PUFM + CHLO retains more nutrients for a longer period of time. It can produce a slower 
assimilation of the nutrients for the plant, decreasing the possible losses of solubility, the number of 
applications of the product and a positive economic and environmental effect, according to [45]. 

3.6 Studies “in vivo” of Formulation PUFM + CHLO 
Fig. 8 shows the results of “in vivo” study for PUFM + CHLO. In the case of agronomic studies, the 

formulation PUFM + CHLO was selected because it has the slowest macronutrients release in the “in 
vitro” studies. A small increase in the values of the agronomic parameters (length of the spike (SL) by cm 
and length of the floral stem (FSL) by cm) is observed for the application of the treatment PUFM + 
CHLO regarding the conventional commercial fertilizer (CF) (NPK-14-5-12) in the cultivation of the 
gladiolus. For the parameter number of campane (CN) by units, the value obtained for the PUFM + 
CHLO is slightly lower than the (CF) (NPK-14-5-12). Despite these results, is very important to take into 
account that formulation PUFM + CHLO was applied only once during the vegetative cycle (60 days), 
while the (CF) (NPK-14-5-12) was applied twice during this period.  

 
 

Figure 8: Agronomic evaluation of PUFM+ CHLO, CF (NPK 14-5-12). Error bars display 95% 
confidence intervals. Different letters display significant differences between treatments at the 95% 
confidence level 
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The slow release formulations obtained offer some benefits regarding (CF) (NPK-14-5-12). The 
PUFM + CHLO supplies nutrients slowly to plants, increased the efficiency of these. All this results in a 
decrease in the number of applications with a possible positive economic result, by reducing the labour 
costs necessary for the application of the product. 

With the application of PUFM + CHLO, possible losses due to leaching, volatilization and the 
excess of chemical products that pollute the environment are avoided. Besides, with this synthesis is 
possible to take advantage of a natural origin product (microalgae) that offers ecological benefits 
compared to conventional chemical fertilizers. 

These results demonstrate the efficiency of the use of PUFM + CHLO, requiring only one 
application during the crop cycle. Unlike the treatment (CF) (NPK-14-5-12) that needs to be applied twice 
for the cycle of the cultivation of the gladiolus. The formulation PUFM + CHLO could be an alternative 
to the use of chemical fertilizers NPK and for environmental sustainability. 

4 Conclusions 
Quantitative analysis of macro and micronutrients were performed to Chlorella sp (CHLO) and 

Nannochloropsis sp (NANNO) microalgae varieties, which showed a high content of nutrients of natural 
origin to be used as biofertilizer. The microencapsulation and evaporation of solvent method used for the 
synthesis of PUFM + CHLO and PUFM + NANO formulations, which was a suitable technique for 
obtaining a slow release biofertilizer. Weak interactions between PUFM matrix and microalgae CHLO 
and high heterogeneity and irregularity of the surface in the formulation PUFM+CHLO contribute to the 
release nutrients to the environment. Both formulations, PUFM+CHLO and PUFM + NANNO, release 
nutrients more slowly than that with CF (NPK-14-5-12). There are statistically significant differences 
between the release of K2O from our formulations and that with CF (NPK-14-5-12). The PUFM + CHLO 
formulation has a slower release behavior. In the studies carried out in the cultivation of gladiolus, there 
are no appreciable differences between the agronomic parameters evaluated for the treatments 
PUFM+CHLO and CF (NPK-14-5-12). Nevertheless the formulation PUFM + CHLO contributes to 
improve the quality of the crops, with a smaller number of applications in the field and environmental 
benefits. This study showed that with a single application of PUFM + CHLO, agronomic parameters 
similar to CF (NPK-14-5-12) were obtained, which is of considerable environmental relevance. 
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